小学奥数之牛吃草问题图解(一)

合集下载

牛吃草问题(共10张PPT)

牛吃草问题(共10张PPT)
第9页,共10页。
(★★★★★)
小明从甲地步行去乙地,出发一段时间后,小亮有事去追赶他,若骑自行车,
每小时行15千米,3小时可以追上;若骑摩托车,每小时行35千米,1小时可以追上; 若开汽车,每小时行45千米,多少分钟可以追上小明?
思路分析 小神童妙解题Fra bibliotek将一段时间后两人的距离当作草地上原有的草;这样原题可变为
小神童妙解题
当题目中出现两种或几种动物一起吃草时,可以能过它们的关系把它们转 化成一种动物,化繁为简
第7页,共10页。
(★★★★)
有三块草地,面积分别为5公顷、15公顷和24公顷。草地上的草一样厚,而且 长得一样快。第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天。问:
第三块草地可供多少头牛吃80天?
小明从甲地步行去乙地,出发一段时间后,小亮有事去追赶他,若骑自行车,每小时行15千米,3小时可以追上; 一片草地,每天都匀速长出青草,如果可供24头牛吃6天,或20头牛吃10天,那么可供18头牛吃几天? ——牛吃草问题 问:第三块草地可供多少头牛吃80天? 画展9点开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点9分就不再有人排队; 有三块草地,面积分别为5公顷、15公顷和24公顷。 若骑摩托车,每小时行35千米,1小时可以追上; 求第一个观众到达的时间。 与牛吃草的各种量一一对应 有一片草场,草每天的生长速度相同。 ——牛吃草问题 如果有多块地,大小一一样,可以转化成最小单位,求出最小单位的地上的原有有草和每天长出的草量 若56只羊30天可将草吃完,70只羊16天也可将草吃完(4只羊一天的吃草量相当于1头牛一天的吃草量)。 5:让其它牛去吃原来的草。 问:第三块草地可供多少头牛吃80天? “一片草地,15头牛3小时可以吃完; 如果开5个入场口,9点5分就没有人排队。

小学奥数中的牛吃草问题

小学奥数中的牛吃草问题

一牧场,可供58头牛吃7天,或者可供50头牛吃9天,假设草的生长量每天相等,每头牛每天的吃草量也相等,那么,可供多少头牛吃6天?【思路】解决牛吃草的问题,我们可以分4步法来解答:①假设1头牛1天吃1份草;②计算每天的新长草;③计算原有草;④分牛讨论。

【解答】①假设1头牛1天吃1份草②每天的新长草:58×7=406(份),50×9=450(份)450-406=44(份),44÷(9-7)=22份,即每天新长草22份。

③原有草:406-7×22=252(份)④分牛讨论原有草原有草7天的新长草9天的新长草多出的2天新长草新长草:22份→22头(每天22头牛专门应付新长草)原有草:252份,252÷6=42(份)→42头合计22+42=64头牛答:可供64头牛吃6天(化动为静)有一片牧场,草每天都在迅速地生长(即草每天增长的量相等),如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天吃完牧草。

设每头牛每天吃草的量是相等的,如果放牧18头牛,几天可以吃完牧草?【思路】解决牛吃草的问题,我们可以分4步法来解答:①假设1头牛1天吃1份草;②计算每天的新长草;③计算原有草;④分牛讨论。

【解答】①假设1头牛1天吃1份草②每天的新长草:24×6=144(份),21×8=168(份)168-144=24(份),24÷(8-6)=12份,即每天新长草12份。

③原有草:144-6×12=72(份)④分牛讨论原有草原有草6天的新长草8天的新长草多出的2天新长草新长草:12份→12头(每天12头牛专门应付新长草)原有草:72份,72÷(18-12)=12(天)如果放牧18头牛,12天可以吃完牧草(化动为静)如果要使队伍10分钟消失,需要打开多少个检票口?【思路】其实这也是一道变形的牛吃草问题。

排队等候的人是“草”,检票口是“牛”,检票前若干分钟排队的人是“原有草”,每分钟新增的人是“新长草”。

小学思维数学讲义:牛吃草问题(一)-含答案解析

小学思维数学讲义:牛吃草问题(一)-含答案解析

牛吃草问题(一)1. 理解牛吃草这类题目的解题步骤,掌握牛吃草问题的解题思路.2. 初步了解牛吃草的变式题,会将一些变式题与牛吃草问题进行区别与联系英国科学家牛顿在他的《普通算术》一书中,有一道关于牛在牧场上吃草的问题,即牛在牧场上吃草,牧场上的草在不断的、均匀的生长.后人把这类问题称为牛吃草问题或叫做“牛顿问题”.“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间.难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定.“牛吃草”问题是小学应用题中的难点.解“牛吃草”问题的主要依据:① 草的每天生长量不变;② 每头牛每天的食草量不变;③ 草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值④ 新生的草量=每天生长量⨯天数.同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定1头牛1天吃草量为“1”;⑵草的生长速度=(对应牛的头数⨯较多天数-对应牛的头数⨯较少天数)÷(较多天数-较少天数); ⑶原来的草量=对应牛的头数⨯吃的天数-草的生长速度⨯吃的天数;⑷吃的天数=原来的草量÷(牛的头数-草的生长速度);⑸牛的头数=原来的草量÷吃的天数+草的生长速度.“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.模块一、一块地的“牛吃草问题”【例 1】 牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?【考点】牛吃草问题 【难度】3星 【题型】解答【关键词】对比思想方法【解析】 设1头牛1周的吃草量为“1”,草的生长速度为(239276)(96)15⨯-⨯÷-=,原有草量为(2715)672-⨯=,可供72181519÷+=(头)牛吃18周【答案】19头牛【巩固】 有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天.那么它可供几头牛吃20天?【考点】牛吃草问题 【难度】3星 【题型】解答【关键词】对比思想方法【解析】 设1头牛1天的吃草量为“1”,那么251015-=天生长的草量为1225241060⨯-⨯=,所以每天生长的草量为60154÷=;原有草量为:()24410200-⨯=.20天里,草场共提供草200420280+⨯=,可以让2802014÷=头牛吃20天.【答案】14头牛【巩固】 牧场有一片青草,每天长势一样,已知70头牛24天把草吃完,30头牛60天把草吃完,则 头例题精讲 知识精讲教学目标牛96天可以把草吃完.【考点】牛吃草问题 【难度】3星 【题型】填空【关键词】湖北省,创新杯,对比思想方法【解析】 设1头牛1天的吃草量为“1”,那么每天新生长的草量为()()103060702460243⨯-⨯÷-=,牧场原有草量为10306016003⎛⎫-⨯= ⎪⎝⎭,要吃96天,需要10160096203÷+=(头)牛. 【答案】20头牛【巩固】 一牧场放牛58头,7天把草吃完;若放牛50头,则9天吃完.假定草的生长量每日相等,每头牛每日的吃草量也相同,那么放多少头牛6天可以把草吃完?【考点】牛吃草问题 【难度】3星 【题型】解答【关键词】对比思想方法【解析】 设1头牛1天的吃草量为1个单位,则每天生长的草量为:(509587)(97)22⨯-⨯÷-=,原有草量为:509229252⨯-⨯=,(252226)664+⨯÷=(头)【答案】64头牛【例 2】 青青一牧场,牧草喂牛羊; 放牛二十七,六周全吃光。

牛吃草问题(五年级奥数讲解及例题分析)

牛吃草问题(五年级奥数讲解及例题分析)

小学奥数之牛吃草问题牛吃草问题是小学奥数五年级的内容,学过的同学都知道这是一类比较复杂的应用题,还有一些相应的变形题:排队买票、大坝泄洪、抽水机抽水等等。

那么在这里讲下牛吃草问题的解题思路和解题方法、技巧供大家学习。

一、解决此类问题,孩子必须弄个清楚几个不变量:1、草的增长速度不变 2、草场原有草的量不变。

草的总量由两部分组成,分别为:牧场原有草和新长出来的草。

新长出来草的数量随着天数在变而变。

因此孩子要弄清楚三个量的关系:第一:草的均匀变化速度(是均匀生长还是均匀减少)第二:求出原有草量第三:题意让我们求什么(时间、牛头数)。

注意问题的变形:如果题目为抽水机问题的话,会让求需要多少台抽水机二、解题基本思路1、先求出草的均匀变化速度,再求原有草量。

2、在求出“每天新增长的草量”和“原有草量”后,已知头数求时间时,我们用“原有草量÷每天实际减少的草量(即头数与每日生长量的差)”求出天数。

3、已知天数求只数时,同样需要先求出“每天新生长的草量”和“原有草量”。

4、根据(“原有草量”+若干天里新生草量)÷天数”,求出只数三、解题基本公式解决牛吃草问题常用到的四个基本公式分别为:1、草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷(吃的较多天数-吃的较少天数)2、原有草量=牛头数×吃的天数-草的生长速度×吃的天数3、吃的天数=原有草量÷(牛头数-草的生长速度)4、牛头数=原有草量÷吃的天数+草的生长速度四、下面举个例子例题:有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。

如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。

一般方法:先假设1头牛1天所吃的牧草为1,那么就有:(1)27头牛6天所吃的牧草为:27×6=162 (这162包括牧场原有的草和6天新长的草。

小学奥数六年级牛吃草的问题(含答案)

小学奥数六年级牛吃草的问题(含答案)

小学奥数六年级牛吃草的问题(含答案)1、一块草原长满草,每天牧草都均匀生长.这片草原可供10头牛吃20天,可供15头牛吃10天。

问:可供25头牛吃多少天?1.解析:设1头牛1天吃1份牧草,则牧草每天的生长量:(10×20-15×10)÷(20-10)=5(份),原有草量:10×20-5×20=100(份),则可供25头牛吃100÷(25-5)=5天。

2、12头牛28天可以吃完10公亩牧场上全部牧草,21头牛63天可以吃完30公亩牧场上全部牧草。

多少头牛126天可以吃完72公亩牧场上全部牧草(每公亩牧场上原有草量相等,且每公亩牧场上每天生长草量相等)?2.解析:设1头牛1天吃1份牧草,则每公亩牧场上的牧草每天的生长量:(21×63÷30-12×28÷10)÷(63-28)=0.3(份),每公亩牧场上的原有草量:21×63÷30-0.3×63=25.2(份),则72公亩的牧场126天可提供牧草:(25.2+0.3×126)×72=4536(份),可供养4536÷126=36头牛。

3、现欲将一池塘水全部抽干,但同时有水匀速流入池塘。

若用8台抽水机10天可以抽干;用6台抽水机20天能抽干。

问:若要5天抽干水,需多少台同样的抽水机来抽水?3.解析:设1台抽水机1天的抽水量为1单位,则池塘每天的进水速度为:(6×20-8×10)÷(20-10)=4单位,池塘中原有水量:6×20-4×20=40单位。

若要5天内抽干水,需要抽水机40÷5+4=12台。

4、一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水?4.解析:设每人每小时的淘水量为“1个单位”,则船内原有水量与3小时内漏水总量之和为:1×3×10=30单位,船内原有水量与8小时漏水量之和为1×5×8=40单位,说明8-3=5小时进水40-30=10单位,即进水速度为每小时10÷5=2单位,而发现漏水时,船内已有30-2×3=24单位的水了。

高斯小学奥数四年级下册含答案第17讲_牛吃草问题

高斯小学奥数四年级下册含答案第17讲_牛吃草问题

第十七讲牛吃草问题什么是“牛吃草问题”呢?同学们先来看看一个简单的例子:仓库里有一堆草,给4头牛吃,6天可以吃完,如果给3头牛吃,几天能吃完? 这道题该怎么处理呢?我们可以借助下面这个关系式来进行求解:由于每头牛每天的吃草量是不变的,因此可以把它设为单位“1”.这样4头牛6天吃掉的草量就等于4624⨯=个单位,而3头牛每天吃掉“3”个单位的草,因此3头牛需要2438÷=天才能吃完.大家看,牛吃草问题是不是很简单?但是,这道题还不是真正的“牛吃草问题”呢.真正的“牛吃草问题”不是让一群牛去仓库里吃草,而是去一片草地上吃草.大家能看出这其中的区别吗?地方更宽敞?草更新鲜?当然不是这些,最大的区别在于,仓库里草的总量是固定不变的,而草地上的草还在不停地生长,这样一来问题一下子就变复杂了.不过大家不用害怕,有了上面设单位“1”的方法后,这类题目的解法是很容易的,大家可以从下面的例子中学到这种方法.首先我们来看一下例题1,当草地原草量和生长量都告诉我们的时候,我们该如何解决“牛吃草问题”.-例题1一块草地有草180份,每天长5份.如果每头牛每天吃1份草,那么:(1)要使得草永远吃不完,那么最多放养_______头牛;(2)6头牛,吃_______天;(3)10头牛,吃_______天;(4)_______头牛,吃18天;(5)_______头牛,吃15天.「分析」原有草量已知,要计算多少天可以把草吃完,关键是找出每天减少多少草量.练习1一块草地有草60份,每天长2份.那么:(1)要使得草永远吃不完,那么最多放养_______头牛;(2)5头牛,吃_______天;(3)7头牛,吃_______天;(4)_______头牛,吃10天;(5)_______头牛,吃15天.当原草量和生长量都未知时,我们该怎么办呢?例题2有一片牧场,草每天都在均匀地生长.如果在牧场上放养18头牛,那么10天就把草吃完了;如果放养24头牛,那么7天就把草吃完了.(1)要放养多少头牛,才能恰好14天把草吃完?(2)如果放养32头牛,多少天可以把草吃完?「分析」这是最常见的牛吃草问题,这类问题的难点在于牛吃草的同时,草还在生长.假设1头牛1天吃1份草,会发现两种放养方法吃的总草量不同.为什么会这样呢?因为两次草生长的天数不同,于是就可以算出草生长的速度了.练习2有一片牧场,草每天都在均匀地生长.如果放养24头牛,那么6天就把草吃完了;如果放养21头牛,那么8天就把草吃完了.(1)放养多少头牛,12天才能把草吃完?(2)要使得草永远吃不完,那么最多放养多少头牛?我们可以把例2的方法总结一下,得出牛吃草问题的基本解题步骤:1.将每头牛每天的吃草量设为单位“1”;2.比较已知条件中的牛的吃草总量,算出草每天的生长量;3.计算草地原有草的总量;4.根据所问问题求解.前面的两道题都是草在生长,草的总量在增加.而实际生活中,草量有时也会随着时间不断减少,那么碰到这样的问题我们该怎么办呢?下面就来看一道这样的问题.例题3进入冬季后,有一片牧场上的草开始枯萎,因此草会均匀地减少.现在开始在这片牧场上放羊,如果放38只羊,需要25天把草吃完;如果放30只羊,需要30天把草吃完.(1)放养多少只羊,12天才能把草吃完?(2)如果放20只羊,这片牧场可以吃多少天?「分析」本题在羊吃草的同时,草也在不断的减少,这也是牛吃草问题的一种.同前面的问题一样,我们还是要对比一下两个已知条件,算出草的减少速度和原有草总量.练习3进入冬季,有一片牧场上的草开始枯萎,因此均匀地减少.若在这儿放牛,可以供32头牛吃24天,或者供27头牛吃28天.(1)放养多少头牛,12天才能把草吃完?(2)如果在这片牧场上养21头牛,那么草可以供吃多少天?例题4有一片草场,草每天的生长速度相同.若14头牛30天可将草吃完,70只羊16天也可将草吃完(4只羊一天的吃草量相当于1头牛一天的吃草量).那么17头牛和20只羊多少天可将草吃完?「分析」这道题既有牛又有羊,只需将牛羊统一,然后按照基本的牛吃草问题求解即可.练习4一片草场,草每天都在均匀生长.如果在这片草场上放20头牛和24头羊,那么18天可以吃完;如果在这片草场上放15头牛和54头羊,那么15天就把草吃完.已知,一头牛每天吃的草量相当于3只羊每天吃的草量,请问如果在这片草地上放12头牛和18头羊可以吃几天?在前面的例题中,牛总是听话地呆在某一块草地上吃草,因此在吃的过程中,牛的数量不会发生改变.而实际上,牛有时不会老老实实呆在一块草地上的,它们会四处走动,而牛一走动就会改变草地上牛的数量.那么在吃草的过程中,牛的数量发生变化又该如何处理呢?请大家来看下面的问题.例题5一片草地,草每天都在均匀生长.有15头牛吃草,8天可以把草全部吃完.如果起初这15头牛吃了2天后,又来了2头牛,则总共7天就可以把草吃完.如果起初这15头牛吃了2天后,又来了5头牛,则总共需要多少天可以把草吃完?假定草生长的速度不变,每头牛每天吃的草量相同.「分析」这道题牛的数量在变化,但同其他牛吃草问题一样,还是需要通过比较草量的变化求出每天生长的草量和原有草量.有很多的问题看上去和“牛吃草”毫无联系,但仔细观察就会发现,它们都只是换了个形式的“牛吃草”而已.这样的问题通常都可以看成牛吃草问题来求解,下面我们来看一个这样的例子.例题6有一个蓄水池装有8根排水管,某天天降大雨,雨水以均匀的速度不停地向这个蓄水池注入.后来有人想打开排水管,使池内的水全部排光(这时池内已注入了一些水).如果把8根排水管全部打开,需3小时把池内的水全部排光;如果打开5根水管,需6小时把池内的水全部排光.想要4.5小时把池内的水全部排光,需同时打开多少根排水管?「分析」雨水注入蓄水池,排水管往外排水,这和牛吃草问题有什么类似呢?什么量相当于牛、什么量相当于草呢?课堂内外牛顿的故事牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的.牛顿Newton(1642~1727,英国人)是大科学家,是近代科学的象征.他在世时作为科学界的主宰几乎被当作偶像崇拜.他作为英国皇家学会连任24年的终身会长,法国科学院至尊的外国院士,还兼任英国造币局局长和国会议员,并前所未有地被封为贵族,获得爵士称号.他死后作为自然科学家又第一个获得国葬,长眠于威斯敏斯特教堂,这是历代帝王和一流名人的墓地.牛顿去世之后,他的声望有增无减.他不仅有不朽的著作《自然哲学的数学原理》《光学》等流传于世,而且由于后继大师们的发展,他的思想观念长期统率着科学战线上的士卒.他在物理、数学研究上的主要成果,至今仍是各国大中学生必修的功课.牛顿名言:“我不知道在别人看来,我是什么样的人;但在我自己看来,我不过就像是一个再海滨玩耍的小孩,为不时发现比寻常更为光滑的一块卵石或比寻常更为美丽的一片贝壳而沾沾自喜,而对于展现在我面前的浩瀚的真理的海洋,却全然没有发现.”“如果说我比别人看得更远些,那是因为我站在了巨人的肩上.”“无知识的热心,犹如在黑暗中远征.”“你该将名誉作为你最高人格的标志.”“我能算出天体运行的轨道,却算不出人性的贪婪.”作业1.有一片牧场,草每天都在均匀地生长.如果在牧场上放养24头牛,那么6天就把草吃完了;如果只放养21头牛,那么8天才把草吃完.那么要使得草永远吃不完,最多可以放养多少头牛?2.有一片牧场,草每天都在均匀地生长.如果放养8头牛,8天就把草吃完了;如果放养10头牛,6天就把草吃完了.如果放养14头牛,多少天就能把草吃完?3.有一片均匀生长的草地,可以供1头牛吃40天,或者供5只羊吃20天,如果1头牛每天吃草量相当于3只羊每天吃的草.那么这片草地每天生长的草可供多少只羊吃1天?这片草地的原草量可供多少只羊吃1天?如果让1头牛与6只羊一起吃可以吃多少天?4.由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么,如果没有放养牛,牧场上的草全部枯萎需要多少天?5.一片草地,可供8头牛吃30天或者供10头牛吃25天.那么这片草地可供4头牛吃多少天?第十七讲牛吃草问题1.例题1答案:5;180;36;15;17详解:(1)要使得草永远吃不完,放养的牛数又要最多,就一定是长多少吃多少,所以需要放养5头牛;(2)方法一:6头牛每天吃6份,而草每天长5份,实际相当于每天消耗1份草,一共能吃1801180÷=天;方法二:6头牛派5头牛去吃每天新生长的草,而1头牛吃原草,仍然是180天;(3)方法同第二问,()÷-=天;18010536(4)方法一:18天,原草与新草一共是180518270+⨯=份,吃了18天,所以每天要吃2701015÷=份,所以需要15头牛;方法二:原草180份,吃18天,需要10头牛,但是还要有5头牛吃每天新长的草,一共要15头牛;(5)方法同第四问,18015517÷+=头.2.例题2答案:14;5详解:(1)设每头牛每天吃1份草,18头牛10天吃180份,24头牛7天吃168份.相差了18016812-=天的草,所以草每天的生长量是-=份,是因为多长了10731234-=÷=份.10天后是180份,10天长了40份新草,所以原草量是18040140份.140份草要14天吃完,需要10头牛,其中还需要4头牛吃每天的新草,一共需要10414+=头牛;(2)32头牛中有4头牛吃新草,剩下28头牛吃原有的140份草,所以需要吃÷=天.1402853.例题3答案:90;40详解:(1)设每只羊每天吃1份草,38只羊25天吃950份,30只羊30天吃900份.相差了95090050-=天的草,所以草每天的枯萎量-=份,是因为多枯萎了30255是50510⨯=份草,所以原草量是÷=份.30天后是900份,30天枯萎了3010300+=份.1200份草要12天吃完,即每天减少100份,其中每天枯萎900300120010份草,所以每天羊吃90份草,所以放养90只羊;(2)每天枯萎10份,放养20只羊,则每天一共减少30份,把1200份草吃光,需要12003040÷=天.答案:10详解:设每只羊每天吃1份草.14头牛可换为56只羊,所以56只羊30天吃⨯=份.每天的生长量是56301680⨯=份;70只羊16天吃70161120()()-⨯=份.17头牛和20 16801120301640-÷-=份,原草量是16803040480只羊相当于88只羊,其中有40只羊吃新草,剩下48只羊吃480份原草,需要10天.5.例题5答案:6天详解:设每头牛每天吃1份草,15头牛8天吃120份;15头牛7天,2头牛5天吃⨯+⨯=份.每天草的生长量是()()15725115-÷-=份.原草量是120115875-⨯=份.如果15头牛吃了2天,有5头牛吃原草,相当于还有10头牛1205880在吃原草,原草还剩下8010260-⨯=份.20头牛中5头牛吃每天新长的草,剩下的15头牛吃原有草,需要60154+=天.÷=天.一共用了2466.例题6答案:6根详解:设每根水管每小时排1份水,8根3小时排24份水,5根6小时排30份水,雨水每小时注入()()-⨯=份水.2根水-÷-=份水,池内原有2423183024632管用来排新注入的雨水,原水需要18 4.54÷=根水管,一共需要同时打开6根水管.7.练习1答案:2;20;12;8;6简答:(1)要使得草永远吃不完,放养的牛数又要最多,就一定是长多少吃多少,所以需要放养2头牛;(2)方法一:5头牛每天吃5份,而草每天长2份,实际相当于每天消耗3份草,一共能吃60320÷=天;方法二:5头牛派2头牛去吃每天新生长的草,而3头牛吃原草,仍然是20天;(3)方法同第二问,()÷-=天;607212(4)方法一:10天,原草与新草一共是6021080+⨯=份,吃了10天,所以每天要吃80108÷=份,所以需要8头牛;方法二:原草60份,吃10天,需要6头牛,但是还要有2头牛吃每天新长的草,一共要8头牛;(5)方法同第四问,601526÷+=头.答案:18;12简答:(1)设每头牛每天吃1份草,24头牛6天吃144份,21头牛8天吃168份.相差了16814424-=份,是因为多长了862-=天的草,所以草每天的生长量是24212÷=份.6天后是144份,6天长了72份新草,所以原草量是1447272-=份.72份草要12天吃完,需要6头牛,其中还需要12头牛吃每天的新草,一共需要61218+=头牛;(2)要使得草永远吃不完,放养的牛数又要最多,就一定是长多少吃多少,所以需要放养12头牛.9. 练习3答案:67;35简答:(1)设每头牛每天吃1份草,32头牛24天吃768份,27头牛28天吃756份.相差了76875612-=份,是因为多枯萎了28244-=天的草,所以草每天的枯萎量是1243÷=份.24天后是768份,24天枯萎了24372⨯=份草,所以原草量是76872840+=份.840份草要12天吃完,即每天减少70份,其中每天枯萎3份草,所以每天牛吃67份草,所以放养67头牛;(2)每天枯萎3份,放养21头牛,则每天一共减少24份,把840份草吃光,需要8402435÷=天.10. 练习4答案:30天简答:设每只羊每天吃1份草.20头牛可换为60只羊,所以84只羊18天吃84181512⨯=份;15头牛可换为45只羊,所以99只羊15天吃99151485⨯=份.每天的生长量是()()1512148518159-÷-=份,原草量是151********-⨯=份.12头牛和18只羊相当于54只羊,其中有9只羊吃新草,剩下45只羊吃1350份原草,需要30天.11. 作业1答案:12头简答:设每头牛每天吃草“1”,246144⨯=,218168⨯=,所以草每天生长量为 ()()1681448612-÷-=.要想草永远吃不完,牛每天吃掉的草不能超过草每天长的量,最多可放养12头牛,原草量不变.12. 作业2答案:4天简答:8864⨯=,10660⨯=,草每天生长量为()()6460862-÷-=,原草量是606248-⨯=.放养14头牛,草每天减少14212-=,经过48124÷=天草就吃完了.13. 作业3答案:1只;80只;10天简答:设每只羊每天吃草“1”,把牛转换为羊,340120⨯=,520100⨯=,草每天长()()12010040201-÷-=,可供1只羊吃一天.原有草量是12040180-⨯=,可供80只羊吃一天.1头牛和6只羊相当于是9只羊,可以吃()809110÷-=天.14. 作业4答案:30天简答:205100⨯=,16696⨯=,比较发现草每天枯萎()()10096654-÷-=.所以5天草共枯萎4520⨯=,原草量是10020120+=,没有牛的话,一共需要120430÷=天草全部枯萎.15. 作业5答案:50天简答:830240⨯=,1025250⨯=,比较30天吃的总草量240,和25天吃的总草量250,能判断出草在枯萎.草每天枯萎()()25024030252-÷-=,原草量是240302300+⨯=.有4头牛时,每天草的减少量是426+=,所以经过300650÷=天草吃完了.。

牛吃草问题PPT课件


01
C(t) = C + g * t
牛吃草的速度与数量和时间的关系
02
v*n*t
牛吃草后草场剩余的草量
03
C(t) - v * n * t
模型解析与求解方法
如果v * n > g,即牛吃草的速度 大于草的生长速度,那么草场将 无法满足牛的吃草需求,草场的 草量将逐渐减少。
如果v * n < g,即牛吃草的速度 小于草的生长速度,那么草场将 能够满足牛的吃草需求,并且剩 余的草量将逐渐增加。
05
拓展延伸与实际应用
牛吃草问题在其他领域的拓展
经济学领域
类似于“牛吃草”的资源分配问题,在经济学中经常涉及到如何合理分配有限资源的问题 。通过引入经济学中的供需关系、边际分析等概念,可以帮助学生理解资源分配的原理和 方法。
生态学领域
在生态系统中,资源的有限性和生物之间的竞争关系与“牛吃草”问题相似。通过引入生 态学中的竞争排斥原理、生态平衡等概念,可以引导学生思考如何在生态系统中实现资源 的可持续利用。
案例三:多牛多草场的复杂情况分析
要点一
4. 根据三片草地的总面积和总生 长量,求出总的原有草量
(3+2+1)-(24+30+48)b。
要点二
5. 根据总的原有草量和每天每头 牛的吃草量,求出需要的…
(3+2+1)-(24+30+48)b/a。
04
解题思路与技巧总结
解题思路梳理
理解问题背景
首先,需要明确问题的背景,即牛吃 草的场景,以及草的生长速度、牛吃 草的速度等关键信息。
案例一:基础牛吃草问题
问题描述
一片均匀生长的草地,可以供10头牛吃20天,或者供15头牛吃10天。问:如果 这片草地可以供25头牛吃,那么可以吃多少天?

人教版六年级数学上册牛吃草问题课件(共23张PPT)

解:设1头牛1天吃的草为1份。牧场每天新长 草(17×30-19×24)÷(30-24)=9(份)
草地原有草(17-9)×30=240(份)
这群牛8天应吃掉草
240+9×8+4×2=320(份)
所以这群牛有320÷8=40(头)
答:这群牛本来有40头.
3.经测算,地球上的资源可供100亿人生活100 年,或可供80亿人生活300年。假设地球新生成 的资源增长速度是一定的,为使人类有不断发 展的潜力,地球最多能养活多少亿人?
例1 牧场上一片青草,每天牧草都匀速生长。这片牧草可供10头牛吃20天, 或者可供15头牛吃10天。问:可供25头牛吃几天?
设1头牛一天吃的草为1份。那么,10头牛20天吃200份,草被吃完;15头牛 10天吃150份,草也被吃完。前者的总草量是200份,后者的总草量是150
份,前者是原有的草加 20天新长出的草,后者是原有的草加10天新长出的 草。
【分析】:与例3比较,“总的草量”变成了“扶梯的梯级总数”,“草” 变成了“梯级”,“牛”变成了“速度”,也可以看成牛吃草问题。
上楼的速度可以分为两部分:一部分是男、女孩自己的速度,另一部
分是自动扶梯的速度。男孩5分钟走了20×5= 100(级),女孩6分钟走了
15×6=90(级),女孩比男孩少走了100-90=10(级),多用了6-5=1
例2 一个水池装一个进水管和三个同样的出水管。 先打开进水管,等水池存了一些水后,再打开出 水管。如果同时打开2个出水管,那么8分钟后水 池空;如果同时打开3个出水管,那么5分钟后水 池空。那么出水管比进水管晚开多少分钟?
出水管所排出的水可以分为两部分:一部分是出 水管打开之前原有的水量,另一部分是开始排水 至排空这段时间内进水管放进的水。因为原有的 水量是不变的,所以可以从比较两次排水所用的 时间及排水量入手解决问题。

小学五年级奥数课件 牛吃草问题


例题【三】(★ ★ ★ ★)
一片均匀生长的草地,可以供18头牛吃40天,或者供12头牛与36只羊吃 25天, 如果1头牛每天的吃草量相当于3只羊每天的吃草量。请问:这片草地让17头 牛与多少只羊一起吃,刚好16天吃完?
18头牛,40天吃完; 24头牛,25天吃完; 头牛,16天吃完;
例题【三】(★ ★ ★ ★)
400÷40=10(分钟)
知识链接
1. 牛吃草—四步法: (1) 设1牛1天吃1份; (3) 求原有草; (4) 分牛. 2. 牛吃草的演绎:两种动物,天气变冷,排队问题. 3. 关键点:对比两个条件,找到草长速度.
18头牛,40天吃完; 24头牛,25天吃完;
头牛,16天吃完;
设1头牛1天吃1份
草长速:(720-600)÷(40-25)=8份
原有草:600-8×25=400(份)
25头+8头=33头
分牛 角落:8头
33-17=16头牛
原草场:?头
16×3=48(只)
400÷16=25(份) 25头
例题【四】(★ ★ ★ )
某游乐场开门前有400人在排队,开门后每分钟来的人数是固定的, 一个入口每分钟进入10个人, 如果开放了4个入口,20分钟后就没有 人排队了,现在开放6个入口,那么开门 10 分钟后没有人排队 了.

10×4×20=800(人) 人未速(800-400)÷20=20(人)
分入口 角落:2入口 原来入:4入口
例题五(★ ★ ★ ★ ★ )
一个蓄水池装有9根管, 其中1根为进水管, 其余8根为出水管. 开始进水 管以均匀的速度不停地向这个蓄水池蓄水. 池内注入了一些水后, 有人 想把出水管也打开, 使池内的水全部排光. 如果把8根出水管全部打开, 需要3小时可将池内的水排光; 而若仅打开3根出水管, 则需要18小时排 光. 如果要在8小时内全部排光,最少需要打开几根出水管?

小学奥数思维训练-牛吃草问题(通用,含答案)

保密★启用前小学奥数思维训练-牛吃草问题学校:___________姓名:___________班级:___________考号:___________一、解答题1.内蒙古草原的一个牧场有一片青草,这片青草每天都在匀速生长。

这片牧草可供24头牛吃12天,可供30头牛吃8天,问可供多少头牛吃4天?2.日立造纸厂有一水池,装有一根进水管和若干根同样粗细的出水管。

先打开进水管,水均匀的流入池中,当水注满全池的23时,若同时打开6根出水管15分钟,可将池内的水放干,若同时打开7根出水管12分钟可将池内的水放干,若所有的出水管都同时打开,10分钟就可将池内的水放干,那么这个水池装有多少根出水管?3.一片牧场,草每天生长的速度相同,现在这片牧场可供16头牛吃20天,或可供80只羊吃12天,如果1头牛的吃草量相当于4只羊的吃草量,那么10头牛和60只羊一起可以吃多少天?4.广州火车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。

从开始检票到检票队伍消失,若同时开5个检票口,则需要30分钟,若同时开6个检票口,则需20分钟。

如果要使等候检票的队伍10分钟消失,需要同时开多少个检票口?5.红旗农场有三块草地,面积分别是5、15、36公顷。

草地上的草一样厚,而且长得一样快。

第一块草地可供12头牛吃28天,第二块草地可供21头牛吃63天,第三块草地可供36头牛吃多少天?6.一个牧场上长满青草,牛在吃草而草又在不断生长,这片青草可供58头牛吃7周,或供48头牛吃9周,那么,可供多少头牛吃5周?7.由于天气逐渐冷起来,牧场上的草不仅不长大,反而在匀速地在减少,已知某块地上的草可供21头牛吃10天,或可供30头牛吃8天,照此计算,可供45头牛吃多少天。

8.用2台同样的抽水机抽干一个有泉水的水库需40小时,用3台这样的抽水机抽干这个水库需24小时,试问,若要8小时抽干这个水库,需要这样的抽水机多少台?(泉水均匀地向水库渗水)9.春天养殖厂在2004年的夏天严重缺水,需要从离养殖厂2000米处的河里抽水,如果用3台抽水机抽6天水量刚好充足;如果用4台抽水机抽4天水量刚好充足,那么要在2天内把水量抽足,需要多少台抽水机?(途中每天水蒸发量相等)10.一片牧草,每天在匀速生长,现在这片牧草可供120只羊吃20天或36头牛吃15天。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档