初中数学七、鸡兔同笼问题A同步练习及答案

合集下载

鸡兔同笼练习题及答案

鸡兔同笼练习题及答案

鸡兔同笼练习题及答案关键信息1、练习题的数量:____________________________2、练习题的难度级别:____________________________3、答案的详细程度:____________________________4、答案的准确性保证:____________________________5、练习题的适用范围:____________________________6、练习题的更新频率:____________________________一、练习题部分11 笼子里有若干只鸡和兔,从上面数有 35 个头,从下面数有 94 只脚,鸡和兔各有多少只?111 一个笼子里鸡和兔的总数为 20 只,它们的脚总数为 56 只,求鸡和兔的数量分别是多少?112 有鸡兔共 18 只,共有 52 条腿,鸡兔各有几只?二、答案部分21 对于“笼子里有若干只鸡和兔,从上面数有 35 个头,从下面数有94 只脚,鸡和兔各有多少只?”这道题,我们可以使用假设法来解答。

假设全是鸡,那么脚的总数应该是 35×2 = 70 只,而实际有 94 只脚,多出来的 94 70 = 24 只脚是因为把兔当成鸡来算,每只兔少算了 4 2= 2 只脚,所以兔的数量为 24÷2 = 12 只,鸡的数量为 35 12 = 23 只。

211 对于“一个笼子里鸡和兔的总数为 20 只,它们的脚总数为 56 只,求鸡和兔的数量分别是多少?”假设全是鸡,脚的总数为 20×2 = 40 只,实际多了 56 40 = 16 只脚,每只兔少算 2 只脚,所以兔有 16÷2 = 8 只,鸡有 20 8 = 12 只。

212 对于“有鸡兔共 18 只,共有 52 条腿,鸡兔各有几只?”同样假设全是鸡,脚数为 18×2 = 36 条,实际多 52 36 = 16 条腿,兔的数量为 16÷2 = 8 只,鸡有 18 8 = 10 只。

北师大版八年级数学上册《5.3应用二元一次方程组—鸡兔同笼》同步测试题及答案

北师大版八年级数学上册《5.3应用二元一次方程组—鸡兔同笼》同步测试题及答案

北师大版八年级数学上册《5.3应用二元一次方程组—鸡兔同笼》同步测试题及答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.甲是乙现在的年龄时,乙15岁;乙是甲现在的年龄时,甲30岁,那么( ) A .甲比乙大5岁 B .甲比乙大10岁 C .乙比甲大10岁D .乙比甲大5岁2.唐代初期数学家王孝通撰写的《缉古算经》中记载:“今有五十鹿入舍,小舍容四鹿,大舍容六鹿,需舍几何?”大意为:今有50只鹿进圈舍,小圈舍可以容纳4头鹿,大圈舍可以容纳6头鹿,若每个圈舍都住满,求需要多少圈舍?设需要小圈舍x 间,大圈舍y 间,根据题意可列方程为( ) A .4y +6x =50 B .50+4x =6yC .4x +6y =50D .50+6y =4x3.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位):马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为( )A .{4x +6y =383x +5y =48B .{4x +6y =485x +3y =38C .{4x +6y =483x +5y =38D .{4x +6y =385x +3y =484.如图,足球的表面是由32块呈多边形的黑、白皮块缝合而成的,已知黑色皮块数比白色皮块数的一半多2块,则白色皮块的块数是( )A .18B .20C .22D .245.一工坊用铁皮制作糖果盒,每张铁皮可制作盒身20个,或制作盒底30个,一个盒身与两个盒底配成一套糖果盒.现有35张铁皮,设用x 张制作盒身,y 张制作盒底,恰好配套制成糖果盒,则下列方程组中符合题意的是( ) A .{x +y =35y =2xB .{x +y =352×20x =30yC .{x +y =3520x =2×30yD .{x +y =352x 20=y 306.《孙子算经》中有一道题,原文是:今有木,不知长短.引绳度之,余绳五尺四寸;屈绳量之,不足二尺.木长几何?意思是:用一根绳子去量一根长木,绳子还剩余5.4尺;将绳子对折再量长木,长木还剩余2尺,问木长多少尺?设木长x尺,绳长y尺,根据题意列方程组得()A.{x−y=5.412y+2=x B.{y−x=5.412y−2=x C.{y−x=5.412y+2=x D.{x−y=5.412y−2=x7.“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡图各几何”是《孙子算经》卷中著名数学问题.意思是:鸡兔同笼,从上面数,有35个头;从下面数,有94条腿.问鸡兔各有多少只?若设鸡有x只,兔有y只,则所列方程组正确的是()A.{x+y=35x+2y=94B.{x+y=35x+4y=94C.{x+y=352x+4y=94D.{x+y=354x+2y=948.《九章算术》中有这样一道数学问题:端午游园,共坐八船,大船满六,小船满四,三十八学子,满船坐观.请问客家,大小几船?其大意为:端午时节出去游园,所有人共坐了8只船,大船每只坐6人,小船每只坐4人,38个人,刚好坐满,问:大小船各有几只?若设有x只大船,y只小船,则列出关于x、y 的二元一次方程组正确的是()A.{x+y=86x+4y=38B.{x+y=88x+8y=38C.{x+y=84x+6y=38D.{x−y=86x+4y=38二、填空题9.已知两个角的和是67°56′,差是12°40′,则这两个角的度数分别是.10.《九章算术》中有这样的问题:只闻隔壁人分银,不知多少银和人;每人6两少6两,每人半斤多半斤;试问各位善算者,有人分银(注:1斤=10两).11.甲对乙说:“我像你这样大岁数的那年,你的岁数等于我今年的岁数的一半;当你到我这样大岁数的时候,我的岁数是你今年岁数的二倍少7岁.”则今年甲的年龄为岁,乙的年龄为岁.12.我国古代劳动人民不仅擅长诗歌,而且有时还借助诗歌讨论数学问题.下面便是一个例子:“三百七十八里关,初行健步不为难,脚痛每日减一半,六天才能到其关,要问每天行里数,请君仔细算周详.“请你根据这首诗歌的意思确定“第一天行的里数”是.(注:诗歌中的“里”是我国古代计量路程的单位)13.古典数学文献《增删算法统宗·六均输》中有这样一道题:甲、乙两人一同放牧,两人暗地里在数羊的数量.如果乙给甲9只羊,则甲的羊数量为乙的两倍;如果甲给乙9只羊,则两人的羊数量相同.则乙的羊数量为只.14.新农村建设工地需派96名工人去挖土或运土,平均每人每天挖土5m3或运土3m3.如何分配挖土和运土的人数,使得挖出的土刚好能被运完?若设分配x人挖土,y人运土.为求x,y,小聪正确地列出了其中一个方程x+y=96,你所列的另一个方程为.15.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2,图中各行从左到右列出的算筹数分别表示未知数x 、y 的系数与相应的常数项,把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来就是{3x +2y =19x +4y =23,类似的,图2所示的算筹图我们可以用方程组形式表述为 .16.用如图①中的长方形和正方形纸板分别作为侧面和底面,制作如图②的竖式和横式两种无盖纸盒.现有a 张长方形纸板和b 张正方形纸板,若做出竖式纸盒x 个,横式纸盒y 个,恰好将纸板用完,则两种纸盒的总个数为 .(用含a ,b 的式子表示)三、解答题17.列方程或方程组解应用题福林制衣厂现有24名制作服装的工人,每天都制作某种品牌的衬衫和裤子,每人每天可制作这种衬衫3件或裤子5条.已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,若该厂要求每天获得利润2100元,则需要安排多少名工人制作衬衫?多少名工人制作裤子?18.某蔬菜种植户有甲、乙两块菜地,甲菜地去年收获xkg 西蓝花,乙菜地去年收获ykg 西蓝花,今年在县技术专家的帮助下,甲菜地增收10%,乙菜地增收15%.(1)今年两块菜地共收获__________kg 西蓝花;(用含x ,y 的代数式表示)(2)若去年两块菜地共收获10000kg 西蓝花,今年共收获11200kg 西蓝花,求甲、乙两块菜地今年分别收获多少千克西蓝花.19.学校七年级为了开展球类兴趣小组,需要购买一批足球和篮球.若购买4个篮球和3个足球需花费530元,若购买1个篮球和6个足球需花费500元. (1)篮球和足球的单价各是多少元?(2)实际购买时,正逢商场进行促销,所有体育用品都按原价的八折优惠出售.已知该年级决定购进这两种球,恰好花费960元.若两种球都要,请问有几种购买方案,请加以说明.20.重庆市某足球特色学校在七年级各班男队开展足球单循环比赛,即每个班男队都与其他各班男队比赛一场,再按各队总积分(即该队所有比赛场得分之和)排列名次.记分办法是胜一场得3分,平一场得1分,负一场得0分.(1)比赛中,若七一班男队胜场数的两倍比平场数多1场,总积分为14分,求七一班男队胜了多少场? (2)已知该校七年级共有16个班,比赛中,若七一班男队的平场数是负场数的整数倍,且总积分为15分,请推算七一班男队最少负了多少场?21.2024年4月13日,以“共享开放机遇、共创美好生活”为主题的第四届中国国际消费品博览会在海南海口开幕,吉祥物“元元”和“宵宵”深受大家的喜欢,某商家购进一批“元元”和“宵宵”,已知一个“元元”的进价比一个“宵宵”的进价多20元,并且购买4个“元元”的价格是购买3个“宵宵”价格的2倍. (1)商家购进每个“元元”和“宵宵”的进价分别是多少元?(2)若商家购进“元元”和“宵宵”各1000个,先按进价的120%标价销售,宵宵很快就售完,剩下的200个按照标价的八折销售完,请问商家共盈利多少元?22.小莉家用钢管做防盗窗,按设计要求,其中需要长为1.2m 的钢管88根,长为2.3m 的钢管36根(钢管的粗细均相同),并要求这些用料不能是焊接而成的.现钢材市场的这种规格的钢管每根都为6m . (1)试问一根6米长的钢管有哪些裁剪方法呢?请填写下空(余料作废). 方法1:当只裁剪长为1.2米的用料时,最多可剪_____________根;方法2:当先剪下1根2.3米的用料时,余下部分最多能剪1.2米长的用料_____________根; 方法3:当先剪下2根2.3米的用料时,余下部分最多能剪1.2米长的用料_____________根.(2)联合用(1)中的方法2和方法3各裁剪多少根6米长的钢管,才能刚好得到所需要的相应数量的材料? (3)小明经过探究发现:如果联合(1)中的二种裁剪方法,还有一种不同于(2)中的方案能刚好得到所需要的相应数量的材料,请写出这个裁剪方案,并说理理由.参考答案题号 1 2 3 4 5 6 7 8 答案ACCBB CCA1.解:设甲现在的年龄为x 岁,乙现在的年龄为y 岁 依题意,得:{y −(x −y)=15x +(x −y)=30解得:{x =25y =20.∴甲现在的年龄为25岁,乙现在的年龄为20岁 ∴甲比乙大5岁 故选:A .2.解:设需要小圈舍x 间,大圈舍y 间根据题意可列方程为:4x +6y =50 故选:C .3.解:由题可列方程组为:{4x +6y =483x +5y =38故选:C .4.解:设黑色的有x 块,白色的有y 块 ∴{x +y =32x =12y +2解得,{x =12y =20∴白色皮块的块数为20 故选:B .5.解:设用x 张制作盒身,y 张制作盒底 根据题意得:{x +y =352×20x =30y故选:B .6.解:设木长x 尺,绳长y 尺,根据题意得:{y −x =5.412y +2=x 故选:C .7.解:设鸡有x 只,兔有y 只,则由题意可得{x +y =352x +4y =94故选:C .8.解:设有x 只大船,y 只小船,根据题意可得{x +y =86x +4y =38故选:A9.解:设这两个角的度数分别是x ,y ,则有:{x +y =67°56′x −y =12°40′解得:{x =40°18′y =27°38′故答案为:40°18′ 27°38′.10.解:设共有x 人,y 两银子,则可列方程组为:{6x =y +65x =y −5解得:{x =11y =60故答案为:11.11.解:设今年甲的年龄为x 岁,乙的年龄为y 岁,则甲比乙大(x −y )岁 由题意得:{x2=y −(x −y )x +(x −y )=2y −7解得:{x =28y =21即今年甲的年龄为28岁,乙的年龄为21岁 故答案为:28 21.12.解:设第六天走了x 里,则第5天走了2x 里,第4天走了4x 里,第3天走了8x 里,第2天走了16x 里,第1天走了32x 里,根据题意得:x +2x +4x +8x +16x +32x =378解得:x =6∴第一天走了32×6=192(里). 故答案为:192.13.解:设甲放x 只羊,乙放y 只羊 由题意得:{x +9=2(y −9)x −9=y +9解得:{x =63y =45即:乙的羊数量45只. 故答案为:45. 14.解:由题意得 5x =3y ; 故答案:5x =3y .15.解:第一个方程x 的系数为2,y 的系数为1,相加的结果为11;第二个方程x 的系数为4,y 的系数为3,相加的结果为27,所以可列方程为{2x +y =114x +3y =27.故答案为:{2x +y =114x +3y =27.16.解:根据题意得:{4x +3y =b①x +2y =a②①+②得:5x +5y =5(x +y)=a +b∴x +y =15(a +b ).故答案为:15(a +b).17.解:设安排x 名工人制作衬衫,y 名工人制作裤子,根据题意,得{x +y =2430×3x +16×5y =2100解得{x =18y =6答:安排18名工人制作衬衫,6名工人制作裤子. 18.(1)解:(1+10%)x +(1+15%)y =(1.1x +1.15y )kg ∴今年两块菜地共收获(1.1x +1.15y )kg 西蓝花 故答案为:(1.1x +1.15y );(2)解:根据题意,得{x +y =100001.1x +1.15y =11200 解得{x =6000y =4000∴(1+10%)x =1.1×6000=6600,(1+15%)y =1.15×4000=4600. 答:甲菜地今年收获6600kg 西蓝花,乙菜地今年收获4600kg 西蓝花. 19.(1)解:设篮球的单价是x 元,足球的单价是y 元 依题意,得:{4x +3y =530x +6y =500解得:{x =80y =70答:篮球的单价是80元,足球的单价是70元; (2)解:设购买篮球m 个,足球n 个 依题意,得:0.8(80m +70n)=960∴m =15−78n∵m 、n 均为正整数 ∴ {m =8n =8 或{m =1n =16答:有二种方案:购买篮球8个、足球8个或者篮球1个、足球16个. 20.(1)解:设七一班男队胜了x 场,平了y 场. 依题意得:{2x −y =13x +y =14解得:x =3,y =5.答:七一班男队胜了3场. (2)解:∴该校七年级共有16个班 ∴七一班男队共比赛15场设七一班男队负了z 场,则平了kz 场,k 是整数.依题意得:3(15−kz −z)+kz =15,解得:(2k +3)z =30. 因为k 为整数,所以(2k +3)只能是奇数.即(2k +3)为30的正奇数约数 所以(2k +3)只可能为1、3、5、15. 当2k +3=1时z =30,不合题意,舍去; 当2k +3=3时k =0,z =10; 当2k +3=5时k =1,z =6; 当2k +3=15时k =6,z =2.经比较可知,七一班男队最少负了2场.21.(1)解:设供应商购进每个“元元”和“宵宵”的进价分别是x 元,y 元 由题意得{x −y =204x =2×3y解得{x =60y =40答:商家购进每个“元元”和“宵宵”的进价分别是60元,40元. (2)宵宵的利润:40×0.2×1000=8000(元)元元的利润:(60×0.2×800)+(60×1.2×0.8−60)×200=9120(元) 8000+9120=17120(元) 答:商家共盈利17120元.22.(1)解:方法1:6÷1.2=5,最多可剪5根; 方法2:(6−2.3)÷1.2=3.7÷1.2=3112,最多可剪3根; 方法3:(6−2.3×2)÷1.2=1.4÷1.2=116,最多可剪1根; 故答案为:5 3 1;(2)解:设用方法2剪x 根,用方法3剪y 根6m 长的钢管才能刚好得到所需要的相应数量的材料 ∴{x +2y =363x +y =88解得:{x =28y =4;∴用方法2剪28根,方法3剪4根6m 长的钢管,才能刚好得到所需要的相应数量的材料;(3)解:设用方法1剪m 根,用方法3剪n 根6m 长的钢管才能刚好得到所需要的相应数量的材料 ∴{2n =365m +n =88 解得:{m =14n =18;∴用方法1剪14根,方法3剪18根6m 长的钢管,才能刚好得到所需要的相应数量的材料;。

鸡兔同笼的练习题及答案

鸡兔同笼的练习题及答案

鸡兔同笼的练习题及答案鸡兔同笼问题是一种经典的数学问题,通常用于训练学生的逻辑推理能力。

这种问题要求学生通过已知的头和脚的总数来确定鸡和兔子的数量。

以下是一些练习题及答案,供学生练习。

练习题1:一个笼子里有鸡和兔子共35个头,94只脚。

问鸡和兔子各有多少只?答案1:设鸡有x只,兔子有y只。

根据题目,我们有以下两个方程:x + y = 35 (头的总数)2x + 4y = 94 (脚的总数)通过解方程组,我们可以得到:2x = 94 - 4yx = (94 - 4y) / 2将x的表达式代入第一个方程:(94 - 4y) / 2 + y = 3594 - 4y + 2y = 70y = 24将y的值代入x的表达式:x = (94 - 4 * 24) / 2x = 11所以,鸡有11只,兔子有24只。

练习题2:笼子里有鸡和兔子共40个头,100只脚。

鸡和兔子各有多少只?答案2:设鸡有a只,兔子有b只。

我们有以下方程:a +b = 402a + 4b = 100解这个方程组,我们得到:2a = 100 - 4ba = (100 - 4b) / 2将a的表达式代入第一个方程:(100 - 4b) / 2 + b = 40100 - 4b + 2b = 80b = 20将b的值代入a的表达式:a = (100 - 4 * 20) / 2a = 20所以,鸡有20只,兔子也有20只。

练习题3:一个笼子里有鸡和兔子共50个头,脚的总数是140只。

问鸡和兔子各有多少只?答案3:设鸡有c只,兔子有d只。

我们有以下方程:c +d = 502c + 4d = 140解这个方程组,我们得到:2c = 140 - 4dc = (140 - 4d) / 2将c的表达式代入第一个方程:(140 - 4d) / 2 + d = 50140 - 4d + 2d = 100d = 20将d的值代入c的表达式:c = (140 - 4 * 20) / 2c = 30所以,鸡有30只,兔子有20只。

(完整版)鸡兔同笼练习题及答案

(完整版)鸡兔同笼练习题及答案

1、鸡兔同笼,共有头30个,足86只,求鸡兔各有多少只?2、有20张5元和10元的人民币,一共是175元,5元和10元的人民币各有多少张?3、王老师圆珠笔和钢笔共买了15枝,圆珠笔每枝1.5元,钢笔每枝4.5元,共花了49.5元,圆珠笔和钢笔各买了多少枝?4、鸡兔同笼,鸡兔共35个头,94条腿,问鸡兔各多少只?5、在一个停车场内,汽车、摩托车共停了48辆,其中每辆汽车有4个轮子,每辆摩托车有3个轮子,这些车共有172个轮子,停车场内有汽车摩托车各多少辆?6、小刚买回8分邮票和4分邮票共100张,共付出6.8元,问,小刚买回这两种邮票各多少张?7、在知识竞赛中,有10道判断题,评分规定:每答对一道题的两分,答错一道题要倒扣一分。

小明答了全部题目,但最后只得了14分,他答错几题?8、某运输队为超市运送暖瓶500箱,每箱装有6个暖瓶。

已知每10个暖瓶的运费为5元,损坏一个不但不给运费还要赔10元,运后结算时,运输队共得1350元的运费。

问损坏了多少暖瓶?9、鸡兔同笼,头共20个,脚共62只,求鸡兔各有几只?10、小华买了2元和5元邮票一共34张,用去98元钱。

求小华买了2元和5元的邮票各多少张?11、全班46人去划船,共乘12只船,其中大船每只坐5人,小船每只坐3人,求大船和小船各有多少只?12、在一个停车场上,停了汽车和摩托车一共32辆。

其中汽车有4个轮子,摩托车有3个轮子,总共有108个轮子,汽车和摩托车各多少辆?13、红旗小学举行数学竞赛,共10题,做对一题10分,做错一题倒扣两分。

小明得了52分,他做错了几道题?14、100名师生绿化校园,老师每人栽3课,学生每两人栽1棵,共栽树100棵。

求老师和同学各栽树多少棵?15、东风小学有3名同学去参加数学竞赛,一份试卷共10道题,答对一题得10分,答错一题不但不得分还要扣去3分,这三名同学都答了全部题目,小明得74分,小华得22分,小红得87分,他们三人共答1.鸡兔同笼,鸡兔共35个头,94条腿,问鸡兔各多少只?2. 例题: 鸡兔同笼,鸡比兔多15只,鸡兔共有脚132只,问鸡兔各多少只?3. 例题:鸡兔同笼,鸡兔共40个头,鸡脚比兔脚共多32只,问鸡兔各多少只?4. 例题:鸡兔同笼,鸡比兔多10只,但脚却比兔子少60只,问鸡兔各多少只?5. 鸡兔同笼,鸡比兔多10只,鸡脚比兔脚多10只,问鸡兔各多少只?6. 在一个停车场内,汽车、摩托车共停了48辆,其中每辆汽车有4个轮子,每辆摩托车有3个轮子,这些车共有172个轮子,停车场内有汽车、摩托车各多少辆?7. 张大妈养鸡兔共200只,鸡兔足数共560只,求鸡兔各有多少只?8. 张大妈家养的鸡比兔多13只,兔足比鸡足少16只,求鸡兔各有多少只?9. 鹤龟同池,鹤比龟多12只,鹤龟足共72只,求鹤龟各有多少只?10. 小刚买回8分邮票和4分邮票共100张,共付出6.8元,问,小刚买回这两种邮票个多少张?各付出多少元?11. 东风小学有3名同学去参加数学竞赛,一份试卷共10道题,答对一题得10分,答错一道不但不得分,还要扣去3分,这3名同学都回答了所有的题目,小明得74分,小华得22分,小红得87分,他们三人共答对多少题?12. 在知识竞赛中,有10道判断题,评分规定:每答对一题得2分,答错一题要倒扣一分。

鸡兔同笼问题练习题及答案

鸡兔同笼问题练习题及答案

鸡兔同笼问题练习题及答案一、例题精讲若干只鸡和兔子关在同一个笼子里,从上边数,有35个头,从下边数,有94只脚,问,鸡和兔子各有几只。

【解析】题目中告诉我们鸡和兔子共有35个头,94只脚,而常识告诉我们,一只鸡有一个头两只脚,一只兔子有一个头4只脚,所以,我们可以假设鸡和兔子分别有x,y只,则有: x+y=35,2x+4y=94,由此可以解得x=23,y=12。

按照我们的方程法,其实就是可以解出的,但是在实际操作过程中,方程可能将比较耗时,所以我们须要给大家传授另外一种快速的方法,假设法。

在这道题中,我们可以假设全部的动物都就是鸡,则35个动物就可以存有70只脚,但实际上,存有94只脚,所以我们算是的70可以和实际差距24只脚,再去思索一下,为啥可以差距呢?是因为我们把所有的兔子都当作了鸡,每把一直兔子当作鸡的时候就可以太少两只脚,所以共少24只脚,就须要12只兔子。

因此就可以存有23只鸡。

对比上述两种方法,我们会发现假设法比较简单一些。

二、典型例题例1.某餐厅设有可坐12人和10人两种规格的餐桌共28张,最多可容纳人同时就餐,问餐厅有多少10人桌?a.2b.4c.6d.8【答案】a。

中公解析:假设全部都是10人桌,则共可以容纳人,但实际上容纳人,相差52人,而每一张12人桌和10人桌会相差2人,所以会有26张12人桌,因此我们可以得到10人桌有2张。

三、题目稳固例. 有一辆货车运输只玻璃瓶,运费按到达时完好的瓶子数目计算,每只2角钱,如有破损,破损一只还要倒赔2角,结果共得到运费.2元,破损的只数是:a.17b. 24c.34d.36【答案】a。

解析:假设所有的瓶子都是完好无损的,则可以得到运费元,但实际上只有.2,相差6.8元,因为当瓶子破损时,与好的瓶子相比,除了2角钱运费得不到还需要倒赔2角,所以每有一个坏瓶子会与好瓶子相差4角,因此共有17个坏的瓶子。

选择a。

鸡兔同笼的练习题及答案

鸡兔同笼的练习题及答案

鸡兔同笼问题的练习题及答案一、基础题1. 有一个笼子里有鸡和兔,共有头30个,脚90只,请问笼子里各有几只鸡和兔?2. 鸡和兔共40只,脚共有112只,求鸡和兔各有多少只?3. 笼子里有鸡和兔共35只,脚共有94只,鸡和兔各有多少只?4. 笼子里有鸡和兔共18只,脚共有52只,求鸡和兔的数量。

5. 有一个笼子里鸡和兔共有26只,脚共有70只,问鸡和兔各有多少只?二、提高题6. 有两个笼子,第一个笼子里有鸡和兔共20只,脚共有60只;第二个笼子里有鸡和兔共25只,脚共有70只。

请问两个笼子中鸡和兔各有多少只?7. 有三个笼子,分别装有鸡和兔,第一个笼子共15只,第二个笼子共20只,第三个笼子共25只,三个笼子的脚总数为96只。

求每个笼子中鸡和兔的数量。

8. 笼子里有鸡和兔共30只,如果增加5只鸡,脚的总数将增加20只,求原来笼子里鸡和兔各有多少只?9. 笼子里有鸡和兔共50只,脚共有140只,如果将鸡换成兔,兔换成鸡,那么笼子里的脚总数将增加40只。

求原来鸡和兔各有多少只?10. 有两个笼子,第一个笼子里鸡和兔共15只,第二个笼子里鸡和兔共25只,两个笼子的脚总数为100只。

求两个笼子中鸡和兔各有多少只?三、拓展题11. 有三个笼子,分别装有鸡和兔,第一个笼子共10只,第二个笼子共15只,第三个笼子共20只,三个笼子的脚总数为68只。

求每个笼子中鸡和兔的数量。

12. 笼子里有鸡和兔共40只,脚共有110只。

如果将鸡换成兔,兔换成鸡,那么笼子里的脚总数将减少30只。

求原来鸡和兔各有多少只?13. 有四个笼子,分别装有鸡和兔,第一个笼子共8只,第二个笼子共12只,第三个笼子共16只,第四个笼子共20只,四个笼子的脚总数为只。

求每个笼子中鸡和兔的数量。

14. 笼子里有鸡和兔共60只,脚共有160只。

如果将鸡换成兔,兔换成鸡,那么笼子里的脚总数将增加40只。

求原来鸡和兔各有多少只?15. 有五个笼子,分别装有鸡和兔,每个笼子的鸡和兔总数分别为10、15、20、25、30只,五个笼子的脚总数为140只。

鸡兔同笼练习题及答案

鸡兔同笼练习题及答案鸡兔同笼练习题及答案鸡兔同笼是一道经典的数学问题,常常用来训练逻辑思维和解决问题的能力。

这个问题的形式是这样的:在一个笼子里有鸡和兔子,总共有头和脚。

问鸡和兔子各有多少只?这个问题看似简单,但实际上需要运用代数方程的解法。

我们可以设鸡的数量为x,兔子的数量为y。

根据题目中给出的条件,我们可以得到两个方程:1. 鸡和兔子的总数量:x + y =2. 鸡和兔子的总脚数:2x + 4y =接下来,我们需要解这个方程组。

可以通过消元法或代入法来求解。

这里我们选择代入法。

首先,将第一个方程变形得到:x = - y。

然后,将x的值代入第二个方程中:2(- y) + 4y =化简得到: -2y + 4y =合并同类项得到:2y =最后,解得:y =将y的值代入第一个方程中:x + =化简得到:x + =合并同类项得到:x =所以,鸡的数量为,兔子的数量为。

这就是鸡兔同笼问题的解答。

但我们可以进一步思考这个问题。

首先,我们可以发现,鸡兔同笼问题的解并不是唯一的。

根据题目中给出的条件,我们可以得到一个不等式:0 ≤ x ≤ 。

这个不等式告诉我们,鸡的数量不能小于0,也不能大于。

换句话说,鸡的数量是一个非负整数,且不超过。

同样地,兔子的数量也有类似的限制:0 ≤ y ≤ 。

这个问题还可以引申出更多的思考。

我们可以思考以下几个问题:1. 当鸡和兔子的总数量为奇数时,是否存在解?答案是不存在。

因为鸡和兔子的总数量一定是偶数,而奇数无法被2整除。

2. 当鸡和兔子的总脚数为奇数时,是否存在解?答案也是不存在。

因为鸡和兔子的总脚数一定是4的倍数,而奇数无法被4整除。

3. 如果题目中给出的条件有误,例如给出的总脚数不正确,我们应该如何解决这个问题?在这种情况下,我们可以通过检查题目中给出的条件是否合理来解决问题。

如果条件不合理,我们可以向出题者求证或提出疑问。

总的来说,鸡兔同笼问题是一个经典的数学问题,可以锻炼我们的逻辑思维和解决问题的能力。

二元一次方程组的应用第1课时“鸡兔同笼”问题(同步练习)七年级下册

第七章二元一次方程组3 二元一次方程组的应用第1课时“鸡兔同笼”问题夯基础1.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是 ( )A{y−x=4.5,2x−y=1B{x−y=4.5,2x−y=1C.{x−y=4.5,y2−x=1D.{y−x=4.5, x−y2=12.小慧去花店购买鲜花,若买5枝玫瑰和3枝百合,则她所带的钱还剩下10元;若买3枝玫瑰和5枝百合,则她所带的钱还缺4元,若只买8枝玫瑰,则她所带的钱还剩下 ( )A.31元B.30元C.25元D.19元3.五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人,则1艘大船与1艘小船一次共可以满载游客的人数为 ( )A.30B.26C.24D.224. 2022年北京冬奥会吉祥物冰墩墩和冬残奥会吉祥物雪容融深受大家喜爱.已知购买1个冰墩墩毛绒玩具和2个雪容融毛绒玩具用了400元,购买3个冰墩墩毛绒玩具和4个雪容融毛绒玩具用了1000元.这两种毛绒玩具的单价各是多少元?练能力1.中国古代数学著作《算法统宗》中记载了这样一个题目:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:用九百九十九文钱共买了一千个苦果和甜果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个.问:苦、甜果各有几个?设苦果有x个,甜果有y个,则可列方程组为 ( )A.{x+y=1000,47x+119y=999B.{x+y=1000,74x+911y=999C.{x+y=1000,7x+9y=999D.{x+y=1000,4x+11y=9992.为培养青少年的创新意识、动手实践能力、现场应变能力和团队精神,湘潭市举办了第10届青少年机器人竞赛.组委会为每个比赛场地准备了四条腿的桌子和三条腿的凳子共12个,若桌子腿数与凳子腿数的和为40条,则每个比赛场地有几张桌子和几条凳子?设有x张桌子,有y条凳子,根据题意所列方程组正确的是( )A.{x+y=40,4x+3y=12B.{x+y=12,4x+3y=40C.{x+y=40,3x+4y=12D.{x+y=12,3x+4y=403.某停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为8元/辆.现在停车场内停有30辆中、小型汽车,这些车共缴纳停车费324元,求中、小型汽车各有多少辆,据题意可求得中型汽车有辆,小型汽车有辆.4.我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两.银子共有两.5.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价值是多少?该问题中物品的价值是钱.6.[2022·泰安泰安某茶叶店经销泰山女儿茶,第一次购进了A种茶30盒,B种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A 种茶20盒,B种茶15盒,共花费5100元.求第一次购进的A,B两种茶每盒的价格.7. “绿水青山就是金山银山”,科学研究表明:树叶在光合作用后产生的分泌物能够吸附空气中的悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4mg,若一片国槐树叶与一片银杏树叶一年的平均滞尘总量为62mg.(1)请分别求出一片国槐树叶和一片银杏树叶一年的平均滞尘量;(2)娄底市双峰县九峰山森林公园某处有始于唐代的三棵银杏树,据估计三棵银杏树共有约50000片树叶.问这三棵银杏树一年的平均滞尘总量约多少千克?参考答案夯基础1.D2.A3.B4.解:设冰墩墩毛绒玩具的单价为x元,雪容融毛绒玩具的单价为y元,依题意,得{x+2y=400,3x+4y=1000,解得{x=200,y=100.答:冰墩墩毛绒玩具的单价为200元,雪容融毛绒玩具的单价为100元. 练能力1.A2.B3.12 184.465.536.解:设第一次购进A种茶每盒x元,B种茶每盒y元,根据题意,得{30x+20y=6000,1.2x×20+1.2y×15=5100.解得{x=100,y=150.答:A种茶每盒100元,B种茶每盒150元.7.解:(1)设一片银杏树叶一年的平均滞尘量为x mg,一片国槐树叶一年的平均滞尘量为y mg.由题意,得{x+y=62,x=2y−4,解得{x=40,y=22.答:一片银杏树叶一年的平均滞尘量为40 mg,一片国槐树叶一年的平均滞尘量为22mg;(2)50000×40=2000 000(mg)=2kg,答:这三棵银杏树一年的平均滞尘总量约2千克.。

鸡兔同笼练习题10道及答案

鸡兔同笼练习题10道及答案1、笼子的鸡和兔,共10个头,34只脚,其中鸡有______只,兔有______只.答案与解析:假设全部是鸡,则兔的只数:(34-10×2)÷(4-2)=(34-20)÷2,=14÷2,=7(只);鸡的只数:10-7=3(只);答:其中鸡有3只,兔有7只.故答案为:3,7.2、鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?答案与解析:解:4*100=400,400-0=400假设都是兔子,一共有400只兔子的脚,那么鸡的脚为0只,鸡的脚比兔子的脚少400只。

400-28=372实际鸡的脚数比兔子的脚数只少28只,相差372只,这是为什么?4+2=6这是因为只要将一只兔子换成一只鸡,兔子的总脚数就会减少4只(从400只变为396只);鸡的总脚数就会增加2只(从0只到2只),它们的相差数就会少4+2=6只(也就是原来的相差数是400-0=400,现在的相差数为396-2=394,相差数少了400-394=6)。

372÷6=62表示鸡的只数,也就是说因为假设中的100只兔子中有62只改为了鸡,所以脚的相差数从400改为28,一共改了372只100-62=38表示兔的只数。

3、今有鸡与兔同在一个笼子里,已知头的总数是20,腿的总数是70,问鸡与兔各有多少只?答案与解析:设鸡有x只,则兔有(20﹣x)只,2x+(20﹣x)×4=70,2x+80﹣4x=70,2x=10,x=5;则兔的只数为:20﹣5=15(只);答:鸡有5只,兔有15只.4、有鸡、兔共20只,脚44只,鸡、兔各几只?答案与解析:假设全是兔,则鸡有:(4×20﹣44)÷(4﹣2),=36÷2,=18(只),则兔有20﹣18=2(只),答:鸡有18只,兔有2只5.鸡兔同笼,共100个头,320只脚,鸡、兔各多少只?答案与解析:设鸡有x只,则兔有(100﹣x)只,2x+(100﹣x)×4=320,2x+400﹣4x=320,2x=400﹣320,2x=80,x=40;兔有:100﹣40=60(只);答:鸡有40只,兔有80只6、已知笼子里有鸡、兔两种动物,共72条腿,30个头,你知道有多少只兔吗?答案与解析:假设全是鸡,则兔有:(72﹣30×2)÷(4﹣2),=12÷2,=6(只).答:有6只兔7、鸡兔同笼,鸡比兔多15只,鸡兔共有脚132只,问鸡兔各多少只?根据题干分析可得,兔子有:(132﹣15×2)÷(2+4),=102÷6,=17(只),则鸡有17+15=32(只),答:鸡有32只,兔有17只8.鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?答案与解析:设兔有x只,则鸡有100﹣x只,(100﹣x)×2﹣4x=80,200﹣2x﹣4x=80,6x=120,x=20,100﹣20=80(只),答:鸡有80只,兔有20只9、有龟和鹤共50只,龟和鹤的腿(腿均健全)共132条,龟和鹤各有几只?答案与解析:假设全是龟,鹤:(50×4﹣132)÷(4﹣2),=68÷2,=34(只);龟:50﹣34=16(只);答:龟有16只,鹤有34只10、在一个大会议室里有一些圆桌子和方桌子,数一数,发现共有22张桌子,每张圆桌子有3条腿,每张方桌子有4条腿,所有的桌子共有76条腿,问:圆桌子和方桌子各有多少张?答案与解析:假设全是方桌子,圆桌子:(4×22﹣76)÷(4﹣3),=12÷1,=12(条);方桌子:22﹣12=10(条);答:圆桌子有12条,方桌子有10条。

鸡兔同笼练习题及答案

鸡兔同笼练习题及答案鸡兔同笼练习题1、鸡兔同笼,共有头30个,足86只,求鸡兔各有多少只?2、有20张5元和10元的人民币,一共是175元,5元和10元的人民币各有多少张?3、王老师圆珠笔和钢笔共买了15枝,圆珠笔每枝1.5元,钢笔每枝4.5元,共花了49.5元,圆珠笔和钢笔各买了多少枝?4、鸡兔同笼,鸡兔共35个头,94条腿,问鸡兔各多少只?5、在一个停车场内,汽车、摩托车共停了48辆,其中每辆汽车有4个轮子,每辆摩托车有3个轮子,这些车共有172个轮子,停车场内有汽车摩托车各多少辆?6、小刚买回8分邮票和4分邮票共100张,共付出6.8元,问,小刚买回这两种邮票各多少张?7、在知识竞赛中,有10道判断题,评分规定:每答对一道题的两分,答错一道题要倒扣一分。

小明答了全部题目,但最后只得了14分,他答错几题?8、某运输队为超市运送暖瓶500箱,每箱装有6个暖瓶。

已知每10个暖瓶的运费为5元,损坏一个不但不给运费还要赔10元,运后结算时,运输队共得1350元的运费。

问损坏了多少暖瓶?9、鸡兔同笼,头共20个,脚共62只,求鸡兔各有几只?10、小华买了2元和5元邮票一共34张,用去98元钱。

求小华买了2元和5元的邮票各多少张?11、全班46人去划船,共乘12只船,其中大船每只坐5人,小船每只坐3人,求大船和小船各有多少只?12、在一个停车场上,停了汽车和摩托车一共32辆。

其中汽车有4个轮子,摩托车有3个轮子,总共有108个轮子,汽车和摩托车各多少辆?13、红旗小学举行数学竞赛,共10题,做对一题10分,做错一题倒扣两分。

小明得了52分,他做错了几道题?14、100名师生绿化校园,老师每人栽3课,学生每两人栽1棵,共栽树100棵。

求老师和同学各栽树多少棵?15、东风小学有3名同学去参加数学竞赛,一份试卷共10道题,答对一题得10分,答错一题不但不得分还要扣去3分,这三名同学都答了全部题目,小明得74分,小华得22分,小红得87分,他们三人共答对多少题?1.鸡兔同笼,鸡兔共35个头,94条腿,问鸡兔各多少只?2. 例题: 鸡兔同笼,鸡比兔多15只,鸡兔共有脚132只,问鸡兔各多少只?3. 例题:鸡兔同笼,鸡兔共40个头,鸡脚比兔脚共多32只,问鸡兔各多少只?4. 例题:鸡兔同笼,鸡比兔多10只,但脚却比兔子少60只,问鸡兔各多少只?5. 鸡兔同笼,鸡比兔多10只,鸡脚比兔脚多10只,问鸡兔各多少只?6. 在一个停车场内,汽车、摩托车共停了48辆,其中每辆汽车有4个轮子,每辆摩托车有3个轮子,这些车共有172个轮子,停车场内有汽车、摩托车各多少辆?7. 张大妈养鸡兔共200只,鸡兔足数共560只,求鸡兔各有多少只?8. 张大妈家养的鸡比兔多13只,兔足比鸡足少16只,求鸡兔各有多少只?9. 鹤龟同池,鹤比龟多12只,鹤龟足共72只,求鹤龟各有多少只?10. 小刚买回8分邮票和4分邮票共100张,共付出6.8元,问,小刚买回这两种邮票个多少张?各付出多少元?11. 东风小学有3名同学去参加数学竞赛,一份试卷共10道题,答对一题得10分,答错一道不但不得分,还要扣去3分,这3名同学都回答了所有的题目,小明得74分,小华得22分,小红得87分,他们三人共答对多少题?12. 在知识竞赛中,有10道判断题,评分规定:每答对一题得2分,答错一题要倒扣一分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七、鸡兔同笼问题(A)
年级 ______班_____ 姓名 _____得分_____
1.某校有100名学生参加数学竞赛,平均分是63分,其中男生平均分是60分,女生平均分是70分,男同学比女同学多________人.
2.有黑白棋子一堆,其中黑子的个数是白子个数的2倍,如果从这堆棋子中每次同时取出黑子4个,白子3个,那么取出________次后,白子余1个,而黑子余18个.
3.学生买回4个篮球5个排球一共用185元,一个篮球比一个排球贵8元,篮球的单价是________元.
4.小强爱好集邮,他用1元钱买了4分和8分的两种邮票,共20张.那么他买了4分邮票________张.
5.松鼠妈妈采松子,晴天每天采20个,雨天每天可采12个,它一连采了112个,平均每天采14个,这几天中有________天是雨天.
6.一些2分与5分的硬币共299分,其中2分的个数是5分个数的4倍,5分的有________个.
7.某人领得工资240元,有2元,5元,10元三种人民币共50张,其中2元和5元的张数一样多,那么10元的有________张.
8.一件工程甲独做12天完成,乙独做18天完成,现在由甲先做若干天后,再由乙单独完成余下的任务,这样前后共用了16天,甲先做了_______天.
9.买一些4分、8分、1角的邮票共15张,用币100分最多可买1角的______张。

10.买一些4分与8分的邮票共花6元8角,已知8分的邮票比4分的多40张,那么8分的邮票有______张.
二、分析解答题:
11.鸡兔共200只,鸡的脚比兔的脚少56只,则鸡有几只,兔有几只?
12.有一辆货车运输2000只玻璃瓶,运费按到达时完好瓶子数目计算,每只2角,如有破损,破损1个瓶子还要倒赔1元,结果得到运费379.6元,问这次搬运中玻璃损坏了几只?
13.某次数学测验共20题,做对一题得5分,做错一题倒扣1分,不做得0分.小华得了76分,问他做对几题?
14.甲乙两人射击,若命中,甲得4分,乙得5分;若不中,甲失2分,乙失3分,每人各射10发,共命中14发,结算分数时,甲比乙多10分,问甲、乙各中几发? ———————————————答案——————————————————————
一、填空题答案:
1. 40人
女生:(63⨯100-60⨯100)÷(70-60)=30(人)
男生: 100-30=70(人)
70-30=40(人)
2. 8次
由黑子的个数是白子个数的2倍,假如每次取出白子2个(黑子的一半)的话,那么最后余下黑子18个,白子应余下18÷2=9(个)
现在只余下一个白子,这是因为实际每次取3个比假设每次多取一个,故共
取(9-1)÷(3-2)=8(次)
3. 25元
(185-4⨯8)÷(5+4)+8=25(元)
4. 15张
(20⨯8-100)÷(8-4)=15(张)
5. 6天
(112÷14⨯20-112)÷(20-12)=6(天)
6. 23个
299÷(2⨯4+5)=23(个)
7. 10张
(10⨯50-240)÷[10-(2+5)÷2]=40(张)
[ 240-(2+5)⨯(40÷2)]÷10=10(张)
8. 4天
把这项工程设为36份,甲每天做3份,乙每天做2份,甲先做4天,乙再做12天才完成.
9. 6张
假如都买4分邮票,共用4⨯15=60(分),就多余100-60=40(分).买一张1角邮票,可以认为40分换1角,要多6分,40÷6=6……4,就多买6张.最后多余4分,加上一张4分邮票,恰好买一张8分邮票.
10. 70张
4分:(680-8⨯40)÷(8+4)=30(张)
8分:30+40=70(张)
二、分析解答题.
1. 兔76只,鸡124只.
兔:(200+56÷2)÷(2+1)=76(只)
鸡:200-76=124(只)
2. 17只
(0.2⨯2000-379.6)÷(1+0.2)=17(只)
3. 16题
76分比满分少24分.做错一题少6分,不做少5分,24分只能做错4题,那么没有没做,16题做对.
4.甲中8发,乙中6发.
假设甲中10发,乙就中14-10=4(发).甲得4⨯10=40(分),乙得5⨯4-3⨯6=2(分).此题条件“甲比乙多10分”相差(40-2)-10=28(分),甲少中1发,少4+2=6(分),乙可增加5+3=8(分). 28÷(8+6)=2. 10-2=8(发)……甲.
14-8=6(发)……乙.。

相关文档
最新文档