DS证据理论 _浙大

合集下载

证据理论方法详解分析

证据理论方法详解分析

第五章证据理论(Evidence Theory)方法在本章§1,我们将讨论一种被称之为登普斯特-谢弗(Dempster-Shafer)或谢弗-登普斯特(Shafer-Dempster)理论(简称D-S理论或证据理论)的不精确推理方法。

这一理论最初是以登普斯特(Dempster,1967年)的工作为基础的,登普斯特试图用一个概率区间而不是单一概率数值去建模不确定性. 1976年,谢弗(Shafer,1976年)在《证据的数学理论》一书中扩展和改进了登普斯特工作. D-S理论具有好的理论基础。

确定性因子能被证明是D-S 理论的一种特殊情形。

在§2我们将描述一种简化的证据理论模型MET1 . 在§3我们将给出支持有序命题类问题的具有凸函数性质的简化证据理论模型。

围绕证据理论的一些新的研究工作,将在第六章介绍。

§1D-S理论(Dempster-Shafer Theory)●辨别框架(Frames of Discernment)D-S理论假定有一个用大写希腊字母Θ表示的环境(environment),该环境是一个具有互斥和可穷举元素的集合:Θ = { θ1 , θ2 , ⋯, θn }术语环境在集合论中又被称之为论域(the universe of discourse)。

一些论域的例子可以是:Θ = { airliner , bomber , fighter }Θ = { red , green , blue , orange , yellow }Θ = { barn , grass , person , cow , car }注意,上述集合中的元素都是互斥的。

为了简化我们的讨论,假定Θ是一个有限集合。

其元素是诸如时间、距离、速度等连续变量的D-S 环境上的研究工作已经被做。

理解Θ的一种方式是先提出问题,然后进行回答。

假定Θ = { airliner , bomber , fighter }提问1:“这军用飞机是什么?”;答案1:是Θ的子集{ θ2 , θ3 } = { bomber , fighter }提问2:“这民用飞机是什么?”;答案2:是Θ的子集{ θ1} = { airliner },{ θ1} 是单元素集合。

《基于DS证据理论的多传感器数据融合算法研究与应用》范文

《基于DS证据理论的多传感器数据融合算法研究与应用》范文

《基于DS证据理论的多传感器数据融合算法研究与应用》篇一一、引言随着传感器技术的快速发展,多传感器数据融合技术已成为现代信息处理领域的重要研究方向。

多传感器数据融合技术能够有效地整合来自不同传感器的信息,提高系统的感知能力和决策准确性。

DS(Dempster-Shafer)证据理论作为一种重要的不确定性推理方法,为多传感器数据融合提供了有力的理论支持。

本文将基于DS证据理论,对多传感器数据融合算法进行研究与应用进行探讨。

二、DS证据理论概述DS证据理论是一种处理不确定性和不完全性问题的推理方法,它通过定义一个信念函数来描述对某一命题的信任程度。

该理论将证据分为基本概率分配函数(m函数),并利用组合规则(Dempster规则)对不同证据进行融合,从而得到对命题的联合信任程度。

DS证据理论具有灵活性和适用性强的特点,能够有效地处理多传感器数据融合中的不确定性和冲突问题。

三、多传感器数据融合算法研究基于DS证据理论的多传感器数据融合算法主要包括以下几个步骤:1. 数据预处理:对来自不同传感器的原始数据进行去噪、校准和同步等预处理操作,以确保数据的准确性和一致性。

2. 特征提取:从预处理后的数据中提取出有用的特征信息,为后续的决策提供依据。

3. 构建基本概率分配函数:根据提取的特征信息,为每个命题分配一个基本概率值,形成基本概率分配函数。

4. 证据组合:利用DS组合规则将不同传感器的证据进行组合,得到对各命题的联合信任程度。

5. 决策输出:根据联合信任程度,得出最终的决策结果。

四、算法应用与实验分析多传感器数据融合算法在多个领域得到了广泛应用,如智能机器人、目标跟踪、图像处理等。

以智能机器人为例,通过融合激光雷达、摄像头、红外传感器等多种传感器的数据,可以提高机器人在复杂环境下的感知能力和决策准确性。

本文以一个基于DS证据理论的多传感器数据融合系统为例,通过实验分析该算法的性能。

实验结果表明,该算法能够有效地融合不同传感器的数据,提高系统的感知能力和决策准确性。

D-S证据理论在目标识别与检测中的应用研究的开题报告

D-S证据理论在目标识别与检测中的应用研究的开题报告

D-S证据理论在目标识别与检测中的应用研究的开题报告一、研究背景目标识别与检测一直是计算机视觉领域的研究热点和难点之一。

在实际应用中,目标的形态、尺寸、角度等因素的变化、遮挡、噪声的干扰以及光照变化等因素,均会影响目标识别与检测的精度和有效性。

因此,如何提高目标识别与检测的鲁棒性和准确性一直是该领域研究的难点之一。

在目标识别与检测中,D-S证据理论被广泛应用。

该理论可以有效地解决遮挡、多尺度、多视角等问题,提高目标检测与识别的准确性和鲁棒性。

因此,本研究将探究D-S证据理论在目标识别与检测中的应用。

二、研究内容本研究旨在探究D-S证据理论在目标识别与检测中的应用,并针对该领域中存在的一些问题进行探讨。

具体研究内容如下:(1)D-S证据理论的原理与基本概念。

(2)研究目标识别与检测中存在的问题,并探讨D-S证据理论如何解决这些问题。

(3)在实际应用中,通过实验对D-S证据理论在目标识别与检测中的应用进行验证。

(4)对研究结果进行总结和分析。

三、研究目标本研究的目标是深入阐述D-S证据理论在目标识别与检测中的应用,并从理论和实践两个层面,解决目标识别与检测中的常见问题,论证D-S证据理论的有效性。

同时,本研究旨在推动目标识别与检测领域的研究进展。

四、研究方法本研究采用理论分析和实验验证相结合的研究方法。

首先,通过文献综述分析目标识别与检测中存在的问题及D-S证据理论的研究现状。

然后,探讨D-S证据理论在目标识别与检测中的应用。

最后,设计实验验证D-S证据理论在目标识别与检测中的有效性。

五、研究意义本研究旨在提高目标识别与检测的准确性和鲁棒性,更好地满足实际应用需求。

通过探讨D-S证据理论在目标识别与检测中的应用,本研究为相关领域的研究提供理论基础和实验验证结果,推动该领域的研究进展。

D-S证据推论理论

D-S证据推论理论

火灾的发生是一个伴有光、烟、温升、辐射和气体浓度变化的综合现象,需要利用各种火灾传感器检测和捕捉这些信息,我们可以根据具体的情况,选择两种或两种以上火灾传感器组来检测火灾状况。

本火灾预警报警系统采用了两级传感器信息融合,一级是局部(即象素级)融合,采用经典的自适应加权融合估计算法,克服了单个传感器的不确定性和局限性,获得被测对象的一致性解释与描述。

二级是在全局(即决策层)进行融合,采用证据理论。

Dempster-shafer(D-S)证据理论是概率论的推广,它允许人们对不确定性问题进行建模,并进行推理,能够更加客观的反映事物的不确定性。

在具体设计时,本文分三个模块进行处理,D-S 合成模块、BPA 模块、局部决策模块。

系统的结构示意图如图2-8所示。

图2-8 系统结构简图1.局部融合算法在局部融算法中采用自适应加权数据融合算法,不但可以优化传感器的数据,还能够有效剔除环境干扰信号,它的中心思想是根据各个传感器数据误差的大小,分配不同的权数,精度高的数据由于误差小,分配的权数较大,反之较小。

设有n 个传感器来检测某一火灾特征,它们的方差分别为n 22221...,σσσ,各传感器的测量值分别为n x x x ...,21,相互独立, 假定各传感器的加权因予别为n w w w ...,21,那么加权因子引入后,系统的传感器数据融合值为: ∑==ni i i x w x1ˆ (2-23) 式中11=∑=ni i w总均方差为:()[]()()()∑∑====--+-=-=ni nji j i jijii x x xx w w E x x w E xx E 1,1,12222ˆˆ2ˆˆσ (2-24)因为n x x x ...,21彼此相互独立,且是x 的无偏估计,所以:()()0ˆˆ=--j i x x xx E ()n j i j i ...2,1,,=≠ (2-25)则有:()∑∑==--=ni ni i i i w xx w 112222ˆσσ (2-26)上式中的σ是各加权因子i w 的多元二次函数,它的最小值的求取就是在加权因子n w w w ...,21满足归一化约束条件下多元函数极值的求取。

基于DS证据理论的不确定信息决策方法

基于DS证据理论的不确定信息决策方法
多模态医学影像融合:在医学影像分析中,将来 自不同模态(如CT、MRI)的影像信息进行融合 ,以提高疾病的诊断准确性和治疗效果评估。
多源情报融合:在军事、安全等领域,将来自不 同情报机构或来源的情报信息进行融合,以获得 对敌方意图、行动等的全面评估。
这些方法的应用都表明了基于DS证据理论的信息 融合方法在处理不确定信息决策中的有效性和实 用性。
局限性
基于模糊数学的决策方法:虽然可以处理模糊信息,但 往往对信息的模糊性有较强的假设,适用范围有限。
基于DS证据理论的不确定信息决策方法的优势
处理不完全信息:DS证据理论能 够融合多种来源的信息,减少信 息不确定性对决策的影响。
灵活性:DS证据理论对于信息的 模糊性和不确定性具有较强的适 应性,可以根据实际情况调整证 据的信任度和似真度。
决策规则
基于组合后的信任函数,DS证据理论采用一定的决策规则来 做出决策,常见的决策规则包括最大信任度规则、最小风险 规则等。
DS证据理论的应用范围
多传感器数据融合
DS证据理论可以应用于多传感器 数据融合中,将不同传感器提供 的冗余或互补信息进行融合,提
高整体系统的性能和鲁棒性。
智能决策支持系统
DS证据理论可用于构建智能决策 支持系统,通过综合考虑各种不 确定因素,辅助决策者做出更加
结合深度学习
鉴于深度学习在特征提取和模式识别方面的强大能力,未来的研究可以探索如何将DS证据理论与深度学习相结合,以处理更复杂的不确定信息决策问题。
实际应用价值与推广建议
实际应用价值
基于DS证据理论的不确定信息决策方法具 有广泛的应用前景,可以应用于风险管理、 投资决策、医疗诊断、环境评估等多个领域 。它可以帮助决策者更好地处理不确定性, 提高决策的准确性和效率。

d-s 法

d-s 法

D-S证据理论,也称为Dempster-Shafer证据理论,是一种处理不确定信息的方法。

D-S证据理论的主要特点是满足比贝叶斯概率论更弱的条件,并具有直接表达“不确定”和“不知道”的能力。

在D-S证据理论中,由互不相容的基本命题(假定)组成的完备集合称为识别框架,表示对某一问题的所有可能答案。

该框架的子集称为命题,分配给各命题的信任程度称为基本概率分配(BPA,也称m函数),m(A)为基本可信数,反映着对A的信度大小。

信任函数Bel(A)表示对命题A的信任程度,似然函数Pl(A)表示对命题A非假的信任程度。

D-S方法的推理结构是自上而下的,分三级:第一级为目标合成,第二级为推断,第三级为更新。

《基于DS证据理论的多传感器数据融合算法研究与应用》范文

《基于DS证据理论的多传感器数据融合算法研究与应用》范文

《基于DS证据理论的多传感器数据融合算法研究与应用》篇一一、引言随着科技的进步,多传感器数据融合技术已经成为现代信息处理领域的重要研究方向。

该技术能够通过综合不同传感器的信息,提高系统的决策和判断能力。

在众多数据融合算法中,基于DS(Dempster-Shafer)证据理论的数据融合算法因其独特的推理机制和良好的适用性,受到了广泛关注。

本文将深入探讨基于DS证据理论的多传感器数据融合算法的研究与应用。

二、DS证据理论概述DS证据理论是一种基于概率的推理方法,它通过组合不同证据的基本概率分配(BPA)来得出结论。

该理论能够处理不确定性和不完全性信息,具有灵活的模型结构和强大的推理能力。

在多传感器数据融合中,DS证据理论能够将来自不同传感器的数据信息进行综合分析,提高决策的准确性和可靠性。

三、多传感器数据融合算法研究基于DS证据理论的多传感器数据融合算法主要包括以下几个步骤:1. 数据预处理:对来自不同传感器的原始数据进行清洗、滤波和标准化处理,以消除噪声和干扰。

2. 特征提取:从预处理后的数据中提取出有用的特征信息,为后续的融合提供基础。

3. 证据建模:根据提取的特征信息,建立各传感器的证据模型,并计算各证据的基本概率分配(BPA)。

4. 融合决策:利用DS证据理论,将各传感器的BPA进行组合,得出最终的决策结果。

在研究过程中,需要关注算法的优化和改进。

例如,可以通过调整证据模型的权重、引入新的特征信息、改进BPA计算方法等方式,提高算法的准确性和鲁棒性。

四、应用分析基于DS证据理论的多传感器数据融合算法在多个领域得到了广泛应用。

例如,在智能交通系统中,可以通过融合雷达、摄像头、激光等传感器的数据信息,实现车辆的精准定位和智能导航;在安全监控领域,可以通过融合人脸识别、指纹识别、声音识别等生物特征信息,提高安全监控的准确性和可靠性;在医疗诊断中,可以通过融合不同医疗设备的检测结果,提高疾病的诊断准确率。

多传感器信息融合DS证据理论

多传感器信息融合DS证据理论

m1({a,b})m2({b,c}) m1({b,c})m2({a,b})] 1(00.4 0 00.6 0.50 0 0.50 0.50.4 0)
0.2
1 (m1 m2)({c}) 1 K1 [m1({c})m2({a,c}) m1({c})m2({b,c}) m1({a,c})m2({a,c})
❖ A(0.25,0.85):由于Bel(A)=0.25,说明对A为真有0.25的信任度;由
于 Bel(A) 1 Pl(A) 1 0.85 0.15 ,说明对A为假有0.15的信任度。所以A
(0.25,0.85)表示对A为真的信任度比对A为假的信任度稍高一些.
二、Dempster组合规则
证据理论给出了多源信息的组合规则,即所 谓的Dempster组合规则。它综合了来自多源的基 本概率赋值,得到了一个新的基本概率赋值作为 输出。组合规则称作正交和规则,用 表示。
Pl(A) m(B) 1 Bel(A) m(B)
AB
AB
1[Bel(A) m(B)] AB
1[ m(C) m(B)]
CA
AB
1 m(E) ED
0
Pl(A) m(B) AB
4、信任函数与似真函数的关系
Pl(A) Bel(A)
证明: Bel(A) Bel(A) m(B) m(C)
D-S证据理论
证据理论
证据理论是由德普斯特(Dempster)首先提出,并由他的学 生沙佛(Shafer)进一步发展起来的一种处理不确定性的理 论,因此又称为D-S理论。
❖ 证据理论与Bayes理论区别: ❖ Bayes理论: ❖ 需要有统一的识别框架、完整的先验概率和条件概率知识,
只能将概率分派函数指定给完备的互不包含的假设,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[18] Yaghlane, B. B., et al. Belief function independence: II. The conditional case. International Journal of Approximate Reasoning, 2002, 31: 31-75.
本章的主要参考文献(续4)
浙江大学研究生《人工智能》课件
第五章 D-S证据理论
(Chapter5 D-S Evidential Theory )
徐从富(Congfu Xu) PhD, Associate Professor
Email: xucongfu@ Institute of Artificial Intelligence, College of Computer Science, Zhejiang University, Hangzhou 310027, P.R. China
March 10, 2002第一稿 September 25, 2006第四次修改稿
Outline



本章的主要参考文献 证据理论的发展简况 经典证据理论 关于证据理论的理论模型解释 证据理论的实现途径 基于DS理论的不确定性推理 计算举例
本章的主要参考文献
[1] Dempster, A. P. Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics, 1967, 38(2): 325-339. 【提出 证据理论的第一篇文献】 [2] Dempster, A. P. Generalization of Bayesian Inference. Journal of the Royal Statistical Society. Series B 30, 1968:205-247. [3] Shafer, G. A Mathematical Theory of Evidence. Princeton University Press, 1976. 【证据理论的第一本专著,标志其正式成为一门理论】 [4] Barnett, J. A. Computational methods for a mathematical theory of evidence. In: Proceedings of 7th International Joint Conference on Artificial Intelligence(IJCAI-81), Vancouver, B. C., Canada, Vol. II, 1981: 868-875. 【第一篇将证据理论引入AI领域的标志性论文】
[10] Smets, P, and Kennes, R. The transferable belief model. Artificial Intelligence, 1994, 66: 191-234.
本章的主要参考文献(续2)
[11] Voobraak, F. A computationally efficient approximation of DempsterShafer theory. International Journal of Man-Machine Study, 1989, 30: 525-536.
2、证据理论的诞生和形成
诞生:源于20世纪60年代美国哈佛大学数学家A. P. Dempster在利用上、下限概率来解决多值映射问题方面的 研究工作。自1967年起连续发表了一系列论文,标志着证 据理论的正式诞生。
形成:Dempster的学生G. Shafer对证据理论做了进一 步的发展,引入信任函数概念,形成了一套基于“证据” 和“组合”来处理不确定性推理问题的数学方法,并于 1976年出版了《证据的数学理论》(A Mathematical Theory of Evidence),这标志着证据理论正式成为一种处理不确定 性问题的完整理论。
本章的主要参考文献(续1)
[5] Zadeh, L. A. Review of Shafer’s a mathematical theory of evidence. AI Magazine, 1984, 5:81-83. 【对证据理论进行质疑的经典文献之一】 [6] Shafer, G. Perspectives on the theory and practice of belief functions. International Journal of Approximate Reasoning, 1990, 4: 323-362. [7] Shafer, G. Rejoinder to comments on “Perspectives on the theory and practice of belief functions”. International Journal of Approximate Reasoning, 1992, 6: 445-480. [8] Voorbraak, F. On the justification of Dempster’s rule of combination. Artificial Intelligence, 1991, 48:171-197. [9] Smets, P. The combination of evidence in the transferable model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(5): 447-458.
[12] Dubois, D, Prade, H. Consonant approximations of belief functions. International Journal of Approximate Reasoning, 1990, 4: 279-283.
[13] Tessem, B. Approximations for efficient computation in the theory of evidence. Artificial Intelligence, 1993, 61:315-329. 【注:文献10-12均为证 据理论近似计算方法】 [14] Simard, M. A., et al. Data fusion of multiple sensors attribute information for target identity estimation using a Dempster-Shafer evidential combination algorithm. In: Proceedings of SPIE-International Society for Optical Engineering, 1996, Vol.2759: 577-588. 【提出了一种实现证据理论的“修 剪算法”】
[24] 刘大有 等. 广义证据理论的解释. 计算机学报, 1997, 20(2): 158-164.
[25] 刘大有 等. 凸函数证据理论模型. 计算机研究与发展, 2000, 37(2): 175-181.
本章的主要参考文献(续5)
[26] 杨莹 等. 对一种基于证据理论的不确定性处理模型的重要扩充. 计算机学报, 1990, (10): 772-778. [27] 刘大有 等. 一种简化证据理论模型的研究. 计算机研究与发展, 1999, 36(2): 134-138. [28] 肖人彬 等. 相关证据合成方法的研究. 模式识别与人工智能, 1993, 6(3): 227-234. [29] 孙全 等. 一种新的基于证据理论的合成公式. 电子学报, 2000, 28(8): 117-119. [30] 曾成, 赵保军, 何佩昆. 不完备框架下的证据组合方法. 电子与信息 学报, 2005, 27(7): 1043-1046. [31] 王永庆. 人工智能原理与方法. 西安交通大学出版社, 1998. pp. 185-197. (第5章第5.5节 “证据理论”)
适用领域:信息融合、专家系统、情报分析、法律 案件分析、多属性决策分析,等等。
4、证据理论的局限性
要求证据必须是独立的,而这有时不易满足
证据合成规则没有非常坚固的理论支持,其合理 性和有效性还存在较大的争议
计算上存在着潜在的指数爆炸问题
5、证据理论的发展概况
“Zadeh悖论”:对证据理论的合成公式的合理性进行 质疑。 例子:利用Dempster证据合成规则对两个目击证人 (W1, W2)判断某宗“谋杀案” 的三个犯罪嫌疑人(Peter, Paul, Mary)中究竟谁是真正的凶手,得到的结果(认定Paul 是凶手)却违背了人的常识推理结果,Zadeh认为这样的结果 无法接受。 m1() Peter Paul Mary 0.99 0.01 0.00 m2() 0.00 0.01 0.99 m12() 0.00 1.00 0.00
3、证据理论的核心、优点及适用领域
核心:Dempster合成规则,这是Dempster在研究 统计问题时首先提出的,随后Shafer把它推广到更为一 般的情形。 优点:由于在证据理论中需要的先验数据比概率推 理理论中的更为直观、更容易获得,再加上Dempster合 成公式可以综合不同专家或数据源的知识或数据,这使 得证据理论在专家系统、信息融合等领域中得到了广泛 应用。
[19] 段新生. 证据理论与决策、人工智能. 中国人民大学出版社, 1993. [20] 徐从富 等. Dempster-Shafer证据推理方法理论与应用的综述. 模 式识别与人工智能, 1999, 12(4): 424-430. [21] 徐从富 等. 面向数据融合的DS方法综述. 电子学报, 2001, 29(3): 393-396. [22] 徐从富 等. 解决证据推理中一类“0绝对化”问题的方法. 计算机 科学, 2000, 27(5): 53-56. [23] 李岳峰 等. 证据理论中的近似计算方法. 吉林大学自然科学学报, 1995, (1):28-32.
相关文档
最新文档