函数定义域的基本求法 ppt课件

合集下载

函数完整版PPT课件

函数完整版PPT课件
16
三角函数图像变换规律
振幅变换
通过改变函数前的系数,实现对函数图 像的纵向拉伸或压缩。
周期变换
通过改变函数内的系数,实现对函数图 像的横向拉伸或压缩。
2024/1/28
相位变换
通过改变函数内的常数项,实现对函数 图像的左右平移。
上下平移
通过在函数后加减常数,实现对函数图 像的上下平移。
17
三角函数周期性、奇偶性和单调性
了直线在 $y$ 轴上的位置。
03
性质
当 $k > 0$ 时,函数单调递增 ;当 $k < 0$ 时,函数单调递
减。
8
二次函数表达式与图像
2024/1/28
二次函数表达式
$y = ax^2 + bx + c$($a neq 0$)
图像特点
一条抛物线,开口方向由 $a$ 决定($a > 0$ 时向上开口 ,$a < 0$ 时向下开口),对称轴为 $x = -frac{b}{2a}$ ,顶点坐标为 $left(-frac{b}{2a}, c frac{b^2}{4a}right)$。
对数函数性质
单调性、定义域、值域等 。
13
指数对数方程求解
指数方程求解
通过换元法、配方法等方法将指数方 程转化为代数方程求解。
指数对数混合方程求解
综合运用指数和对数的性质及运算法 则进行求解。
对数方程求解
通过换底公式、消去对数等方法将对 数方程转化为代数方程求解。
2024/1/28
14
04
三角函数及其性质
函数完整版PPT课件
2024/1/28
1
目录
2024/1/28
• 函数基本概念与性质 • 一次函数与二次函数 • 指数函数与对数函数 • 三角函数及其性质 • 反三角函数及其性质 • 复合函数与分段函数 • 参数方程与极坐标方程

定义域的求法

定义域的求法

定义域的求法一、定义域是函数y=f(x)中的自变量x 的范围。

求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。

( 6 )0x 中x 0≠例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( 解:①∵x-2=0,即x=2时,分式21-x 无意义,而2≠x 时,分式21-x 有意义,∴这个函数的定义域是{}2|≠x x .②∵3x+2<0,即x<-32时,根式23+x 无意义,而023≥+x ,即32-≥x 时,根式23+x 才有意义,∴这个函数的定义域是{x |32-≥x }.③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x-21同时有意义,∴这个函数的定义域是{x |1-≥x 且2≠x }另解:要使函数有意义,必须: ⎩⎨⎧≠-≥+0201x x ⇒ ⎩⎨⎧≠-≥21x x例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f③=)(x f x11111++④xx x x f -+=)1()(⑤373132+++-=x x y解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x∴函数14)(2--=x x f 的定义域为: [3,3-]②要使函数有意义,必须:⎩⎨⎧≠-≠-≤≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或4133≥-≤<--<⇒x x x 或或∴定义域为:{ x|4133≥-≤<--<x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧xx x ⇒2110-≠-≠≠⎪⎩⎪⎨⎧x x x ∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x R x 即 x<37- 或 x>37- ∴定义域为:}37|{-≠x x例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围 解:∵定义域是R,∴恒成立,012≥+-aax ax ∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于 例4 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域解:要使函数有意义,必须:43434543434514111411≤≤-⇒⎪⎩⎪⎨⎧≤≤-≤≤-⇒⎪⎩⎪⎨⎧≤-≤-≤+≤-x x x x x ∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。

函数定义域的求法

函数定义域的求法

函数定义域的求法一、含分式的函数在求含分式的函数的定义域时,要注意两点:(1)分式的分母一定不能为0;(2)绝对不能先化简后求函数定义域。

例1求函数f(x)=211x x -+的定义域二、含偶次根式的函数注意(1)求含偶次根式的函数的定义域时,注意偶次根式的被开方数不小于0,通过求不等式来求其定义域;(2)在研究函数时,常常用到区间的概念, 例1 求函数y =3-ax (a 为不等于0的常数)的定义域.三、复合型函数注意 函数是由一些基本初等函数通过四则运算而得到的,则它的定义域是各基本函数定义域的交集,通过列不等式组来实现.例1 求函数y =23-x +3323-+x x )(的定义域.1、求下列函数的定义域。

⑴y=xx -||1 ⑵y=3102++x x (3)y=||11x - ① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( (5)2143)(2-+--=x x x x f四、抽象函数 (一)、已知的定义域,求的定义域, 其解法是:若的定义域为,则中,从中解得的取值范围即为的定义域。

例1. 设函数的定义域为,则(1)函数的定义域为________。

(2)函数的定义域为__________。

练习1已知f(x)的定义域为[1,3],求f(x-1)的定义域. 2已知函数)x (f 的定义域为(0,1),则函数)1x 21(f -的定义域是________。

4.(江西卷3)若函数()y f x =的定义域是[0,2],则函数(2)()1f xg x x =-的定义域是(二)、已知的定义域,求的定义域。

其解法是:若的定义域为,则由确定的范围即为的定义域。

例2. 已知函数的定义域为,则的定义域为________。

1已知函数)4x2(f +的定义域为(0,1),则函数)x (f 的定义域是________。

2已知f(2x-1)的定义域为[-1,1],求)x (f 的定义域(三)、已知的定义域,求的定义域。

2012届高考数学(文)一轮复习课件5函数的定义域与值域(人教A版)

2012届高考数学(文)一轮复习课件5函数的定义域与值域(人教A版)

答案:B
2019/4/12
5.函数y=f(x)的值域是[-2,2],定义域是R,则函数y=f(x-2)的值域是( )
A.[-2,2]
C.[0,4]
B.[-4,0]
D.[-1,1]
答案:A
2019/4/12
类型一
函数的定义域
解题准备:(1)已知解析式求定义域的问题,应根据解析式中各部分
的要求,首先列出自变量应满足的不等式或不等式组,然后解这
2019/4/12
③当函数y=f(x)用解析式给出时,函数的值域由函数的定义域及其
对应关系唯一确定; ④当函数由实际问题给出时,函数的值域由问题的实际意义确定.
2019/4/12
考点陪练
2019/4/12
2019/4/12
考点陪练
1.(2010 湖北)函数 3 A. ,1 4 C.(1, )
2019/4/12
⑨抽象函数f(2x+1)的定义域为(0,1),是指x∈(0,1)而非0<2x+1<1;已
知函数f(x)的定义域为(0,1),求f(2x+1)的定义域时,应由0<2x+1<1 得出x的范围即为所求.
2019/4/12
【典例 1】求函数f x
lg ( x 2 2 x) 9 x
∴要使f(x2)有意义,则必有0≤x2≤1,
解得-1≤x≤1.
∴f(x2)的定义域为[-1,1].
2019/4/12
②由0≤ x 1≤1得1≤ x≤2.1≤x≤4(x≥0时, x才有意义) 函数f ( x 1)的定义域为1, 4 2 f lg x 1 的定义域为 0,9 , 0≤x≤9,1≤x 1≤10, 0≤lg x 1 ≤1 f x 的定义域为 0,1.由0≤2 x ≤1, 解得x≤0. f 2 x 的定义域为 , 0 .

函数的定义域及求法讲解

函数的定义域及求法讲解

函数一、函数的定义域及求法1、分式的分母≠0;偶次方根的被开方数≥0;2、对数函数的真数>0;对数函数的底数>0且≠1;3、正切函数:x ≠ kπ + π/2 ,k∈Z;余切函数:x ≠ kπ ,k∈Z ;4、一次函数、二次函数、指数函数的定义域为R;5、定义域的相关求法:利用函数的图象或数轴法;利用其反函数的值域法;6、复合函数定义域的求法:推理、取交集及分类讨论.例题:1、求下列函数的定义域3、已知函数y=lgmx2-4mx+m+3的定义域为R,求实数m的取值范围.解析:利用复合函数的定义域进行分类讨论当m=0时,则mx2-4mx+m+3=3,→ 原函数的定义域为R;当m≠0时,则 mx2-4mx+m+3>0,①m<0时,显然原函数定义域不为R;②m>0,且△=-4m2-4mm+3<0 时,即0<m<1,原函数定义域为R, 所以当m∈0,1 时,原函数定义域为R.4、求函数y=logx + 1 x≥4 的反函数的定义域.2解析:求原函数的值域由题意可知,即求原函数的值域,x≥2∴y≥3∵x≥4,∴log2所以函数y=logx + 1 x≥4 的反函数的定义域是3,+∞.2x的定义域.5、函数f2x的定义域是-1,1,求flog2解析:由题意可知2-1≤2x≤21→ fx定义域为1/2,2→ 1/2≤logx≤2→ √ ̄2≤x≤4.2x的定义域是√ ̄2,4.所以flog2二、函数的值域及求法1、一次函数y=kx+bk≠0的值域为R;2、二次函数的值域:当a>0时,y≥-△/4a ,当a<0时,y≤-△/4a ;3、反比例函数的值域:y≠0 ;4、指数函数的值域为0,+∞;对数函数的值域为R;5、正弦、余弦函数的值域为-1,1即有界性;正切余切函数的值域为R;6、值域的相关求法:配方法;零点讨论法;函数图象法;利用求反函数的定义域法;换元法;利用函数的单调性和有界性法;分离变量法.例题::求下列函数的值域解析:1、利用求反函数的定义域求值域先求其反函数:f-1x=3x+1/x-2 ,其中x≠2,由其反函数的定义域,可得原函数的值域是y∈{y∈R|y≠2}2、利用反比例函数的值域不等于0由题意可得,因此,原函数的值域为1/2,+∞4、利用分离变量法和换元法设法2x=t,其中t>0,则原函数可化为y=t+1/t-1 → t=y+1/y-1 >0∴y>1或y<-1 5、利用零点讨论法由题意可知函数有3个零点-3,1,2, ①当x<-3时,y=-x-1-x+3-x-2=-3x ∴y>9 ②当-3≤x<1时,y=-x-1+x+3-x-2=-x+6 ∴5<y≤9 ③当1≤x<2时,y=x-1+x+3-x-2=x+4 ∴5≤y<6 ④当x ≥2时,y=x-1+x+3+x-2=3x ∴y≥6 综合前面四种情况可得,原函数的值域是5,+∞6、利用函数的有界性三、函数的单调性及应用1、 A为函数fx定义域内某一区间,2、单调性的判定:作差fx1-fx2判定;根据函数图象判定;3、复合函数的单调性的判定:fx,gx 同增、同减,fgx 为增函数,fx,gx一增、一减,fgx 为减函数.例题:2、设a>0且a≠1,试求函数y=loga4+3x-x2的单调递增区间.解析:利用复合函数的单调性的判定由题意可得原函数的定义域是-1,4,设u=4+3x-x2 ,其对称轴是 x=3/2 ,所以函数u=4+3x-x2 ,在区间-1,3/2 上单调递增;在区间3/2 ,4上单调递减.u 在其定义域内为增函数,由x↑→u↑→y↑ ,得函数①a>1时,y=loga4+3x-x2的单调递增区间.u=4+3x-x2的单调递增区间-1,3/2 ,即为函数y=loga②0<a<1时,y=logu 在其定义域内为减函数,由x↑→u↓→y↑ ,得a4+3x-x2的单调递增区间.函数u=4+3x-x2的单调递减区间3/2 ,4,即为函数y=loga2-ax 在0,1上是x 的减函数,求a的取值范围;3、已知y=loga解析:利用复合函数的单调性的判定由题意可知,a>0.设u=gx=2-ax,则gx在0,1上是减函数,且x=1时, =2-a .gx有最小值umin=2-a>0则可,得a<2.又因为u=gx=2-ax>0,所以, 只要 umin又y=log2-ax 在0,1上是x 减函数,u=gx在0,1上是减函数,au是增函数,故a>1.即x↑→u↓→y↓ ,所以y=loga综上所述,得1<a<2.4、已知fx的定义域为0,+∞,且在其上为增函数,满足fxy=fx+fy,f2=1 ,试解不等式fx+fx-2<3 .解析:此题的关键是求函数值3所对应的自变量的值由题意可得,f4=f2+f2=2 ,3=2+1=f4+f2=f4×2=f8又fx+fx-2=fx2-2x所以原不等式可化成fx2-2x<f8所以原不等式的解集为{x|2<x<4}四、函数的奇偶性及应用1、函数fx的定义域为D,x∈D ,f-x=fx → fx是偶函数;f-x=-fx→是奇函数2、奇偶性的判定:作和差f-x± fx=0 判定;作商fx/f-x= ±1,fx≠0 判定3、奇、偶函数的必要条件是:函数的定义域关于原点对称;4、函数的图象关于原点对称奇函数;函数的图象关y轴对称偶函数5、函数既为奇函数又为偶函数 fx=0,且定义域关于原点对称;6、复合函数的奇偶性:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.例题:解析:①利用作和差判断由题意可知,函数的定义域是R,设x为R内任意实数,即,fx = -fx ,∴原函数是奇函数.②利用作商法判断由题意可知,函数的定义域是R,设x为R内任意实数,2∵fx 的图象关于直线x=1对称,∴ f1-1-x=f1+1-x ,x∈R ,即fx =f2-x ,又∵ fx在R上为偶函数,→ f-x=fx=f2-x=f2+x∴ fx是周期的函数,且2是它的一个周期.五、函数的周期性及应用1、设函数y=fx的定义域为D,x∈D,存在非0常数T,有fx+T=fx → fx为周期函数,T为fx的一个周期;2、正弦、余弦函数的最小正周期为2π,函数y=Asinωx+φ和y=Acosωx+φ的最小正周期是T = 2π/|ω| ;3、正切、余切函数的最小正周期为π,函数y=Atanωx+φ和y=Acotωx+φ的周期是T=π/|ω| ;4、周期的求法:定义域法;公式法;最小公倍数法;利用函数的图象法;5、一般地,sinωx 和cosωx类函数加绝对值或平方后周期减半,tanωx 和cotωx类函数加绝对值或平方后周期不变如:y=|cos2x| 的周期是π/2 ,y=|cotx|的周期是π.例题:1、求函数 y = |sinx|+|cosx|的最小正周期.解析:利用周期函数的定义y = |sinx|+|cosx|=|-sinx|+|cosx|=|cosx + π/2|+|sinx + π/2|即对于定义域内的每一个x,当x 增加到x + π/2时,函数值重复出现,因此函数的最小正周期是π/2 .3、 求函数y=sin3x+tan2x/5 的最小正周期.解析:最小公倍数法和公式法,设fx 、gx 是定义在公共集合上的两上三角周期函数,T 1、、T 2分别是它们的周期,且T 1≠T 2,则fx± gx 的最小正周期等于T 1、、T 2的最小公倍数.注:分数的最小公倍数 = 分子的最小公倍数/分母的最大公约数.由题意可知,sin3x的周期是T1= 2π/3,tan2x/5的周期是T2=5π/2,∴原函数的周期是T=10π/1 =10π .4、求函数y=|tanx|的最小正周期.解析:利用函数的图象求函数的周期函数y=|tanx|的简图如图:由函数y=|tanx|的简图可知,其最小正周期是π.5、设fx是-∞,+∞上周期为2的奇函数,当0≤x≤1时,fx=x,求f解析:利用周期函数的定义由题意可知,f2+x = fx∴ f =f =f =-f =-0.5。

函数的定义域求法

函数的定义域求法

函数的定义域求法高中数学函数的定义域求法四川省万源市第三中学校赵宾竹函数—中学数学的灵魂,它在整个高中,对数学的学习与理解起着决定性的作用. 函数的定义域是构成的三大要素之一,看似简单,但在解决问题中稍不注意,就会使学生误入歧途. 在高中数学学习中,我们尤其要注重函数的学习. 笔者现将函数定义域的求法作简单说明.函数的形式多样,有已知解析式的基本初等函数,还有复合函数、分段函数. 我们通过举例来浅析函数定义域的求法.1常规型函数的定义域例1求函数f (x ) =lg x 2-2x 的定义域.2⎧⎧x >2或x 0解:要使函数有意义,只需要:⎧,即,故定义域是⎧2⎧⎧-30(-3, 0) (2, 3) .说明:求函数的定义域,我们常常可以从以下三个方面来考虑:若有分母则分母不为零;若有偶次根式则被开方数大于或等于零;若有对数式,则真数大于零,底数大于零且不等于1. 求函数的定义域,实质上就是求由以上不等式组成的不等式组的解集.2 抽象型函数的定义域对于复合函数y =f (g (x ))、令t =g (x )、y =f (t ),分清内外函数与复合函数的关系是关键,只有这样才能很好地解决复合函数问题. 若内函数的值域是外函数的定义域,则内函数的定义域为复合函数的定义域,外函数的值域为复合函数的值域. 复合函数由内外函数共同决定.例2 :已知函数f (x )的定义域为[-2,4],求f (x 2-3x )的定义域. 解:由题意可知-2≤x 2-3x ≤4,则-1≤x ≤1或2≤x ≤4,故函数的定义域为[-1, 1] [2, 4].说明:本题实质上是求复合函数的定义域,我们把y =f (x 2-3x )看成是由y =f(u )、u =x 2-3x 两个函数复合而成的,因为-2≤u ≤4,则-2≤x 2-3x ≤4,进而求出x 的范围. 另外,对不等式进行倒数运算时,应注意不等式两边必须同号,取倒数后不等式的方向改变,这里也是学生运算时常常容易发生错误的地方,应加以重视.例3 已知f (2x +1) 的定义域为[1,2],求f (x ) 的定义域.解∵1≤x ≤2,∴2≤2x ≤4,∴3≤2x +1≤5,即函数f (x ) 的定义域是{x 3≤x ≤5}.说明:已知f [g (x )]的定义域是[a , b ],求f (x ) 定义域的方法是:由a ≤x ≤b 求g (x ) 的值域,即所求f (x ) 的定义域.3 分段函数型的定义域例4 若对于任何实数x ,不等式x -+2x -2>a 恒成立,求实数a 的取值范围.解:令f (x )=x -+2x -2,去绝对值号把f (x )表示成分段函数后为⎧5-3x , x⎧3x -5, x >2⎧y =f (x )的图像,如图所示,由此可知f (x )的最小值为1,f (x )>a 对一切实数x 恒成立,则a说明:本题看上去是一个不等式的问题,若用去绝对值分类讨论的方法来求解,则比较繁琐,而如果注意到不等式左边是一个关于x 的函数,只要利用数形结合的思想求出此函数的最小值就能很快解决问题了,这种解题思想应该引起我们的注意. 另外对于函数f (x )=x -+2x -2,只要把它写成分段函数的形式,作出函数的图像,则该函数的所有性质,包括函数的单调区间、值域等一切问题都迎刃而解了.4 在实际问题中,我们把实际问题转化为函数模型例5 用长为L 的铁丝弯成下部为矩形上部为半圆的框架,如图,若矩形底边长为2x ,求此框架围成的面积y 与x 的函数关系式,并求定义域.解:由题意知,此框架围成的面积是由一个矩形和一个半圆组成的图形的面积,如图:因为CD =AB =2x ,⌒ =πx ,所以AD =(L -AB -CD ⌒ ) ÷2=(L -2x -πx ) ÷2,故所以CDπL -2x -πx πx 2=-(2+) x 2+Lx . y =2x ⋅+2222x >0⎧L ⎧L -2x -πx 00π+2⎧2⎧L π) . 故函数的解析式为y =-(2+) x 2+Lx ,定义域(0, π+22说明:这里函数的定义域除满足解析式外,还要注意问题的实际意义对自变量的限制,这点要加倍注意,并形成意识. 要确定定义域,就是要确定实际问题中自变量应满足的范围. 这类问题需要我们在解题时足够细心,一定不能遗忘定义域的优先法则,忘记这一点,后面就会出现一连串问题,所以务必要细心,谨记定义域优先是关键.总之,函数的定义域是高考经常考的内容,既是重点也是难点,特别是在高中引入了函数的新的概念,让学生用集合这一概念来重新理解定义域,是比较困难的. 因此在教学过程中应该结合学生的特点来进行.。

高考数学复习考点知识讲解课件6 函数的定义域与值域

高考数学复习考点知识讲解课件6 函数的定义域与值域
知识梳理 1.函数的定义域 (1)求定义域的步骤 ①写出使函数式有意义的不等式(组). ②解不等式(组). ③写出函数定义域.(注意用区间或集合的形式写出)
— 返回 —
— 4—
(新教材) 高三总复习•数学
(2)基本初等函数的定义域 ①整式函数的定义域为 R. ②分式函数中分母_不___等__于__0__. ③偶次根式函数被开方式__大__于__或__等__于___0___. ④一次函数、二次函数的定义域均为 R. ⑤函数 f(x)=x0 的定义域为__{_x_|x_≠__0_}__. ⑥指数函数的定义域为____R______. ⑦对数函数的定义域为_(_0_,__+__∞__)_.
0<2-x<1, ⇒x≠32
1<x<2, ⇒x≠32.
所以函数的定义域为1,32∪32,2.
— 14 —
(新教材) 高三总复习•数学
— 返回 —
角度 2:求抽象函数的定义域 【例 2】 已知函数 f(2x+1)的定义域为(0,1),则 f(x)的定义域是___(1_,_3_)__. [思路引导] 由已知得 x∈(0,1)→求 2x+1 的范围→得 f(x)的定义域.
2
— 返回 —
— 13 —
(新教材) 高三总复习•数学
— 返回 —
[解析] (1)要使原函数有意义,
-x2+9x+10≥0, 则x-1>0,
x-1≠1,
解得 1<x≤10 且 x≠2,所以函数 f(x)= -x2+9x+10-
lnx2-1的定义域为(1,2)∪(2,10],故选 D.
(2)要使函数有意义,则log12 2-x>0, 2x-3≠0
— 11 —
— 返回 —

函数的概念与表示法课件(共19张PPT)

函数的概念与表示法课件(共19张PPT)

( x 1) 1 x 的定义域为_____ (2)函数 y ( x 1)
解题回顾:求函数f(x)的定义域,只需使解析式有 意义,列不等式组求解.
抽象函数定义域问题:
抽象函数 :没有给出具体解析式的函数 2. (1)已知函数 y
1 y f ( x 1) 的定义域为______ 2
探究提高: 分段函数是一类重要的函数模型.解决分段函数问题,
关键要抓住在不同的段内研究问题.
如本例,需分x>0时,f(x)=x的解的个数
和x≤0时,f(x)=x的解的个数.
“分段函数分段考察”
五 抽象函数
定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),
f(1)=2,则f(-3)等于( C ) A.2 B.3 C.6
推广,函数是一种特殊的映射,要注意构成函数 的两个集合A、B必须是非空数集.
典型例题:
一:函数的基本概念:
1.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面 的4个图形中,能表示集合M到集合N的函数关系的有 ( )
A.①②③④
B.①②③
C.②③
D.②
解析:由函数的定义,要求函数在定义域上都有图 象,并且一个x对应着一个y,据此排除①④,选C.
A
B
x
f ( x)
(2)函数的定义域、值域: 在函数 y f ( x ), x A 中,x叫做自变量,x的取 值范围A叫做函数的定义域;与x的值相对应的y值 叫做函数值,函数值的集合f ( x) x A 叫做函数的 值域。 (3)函数的三要素:定义域、值域和对应法则 . (4)相等函数:如果两个函数的定义域和对应法则完 全一致,则这两个函数相等,这是判断两函数相等的 依据.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”
4
函数定义域的基本求法:
➢具体函数定义域的求法 ➢抽象函数定义域的求法
2020/12/27
5
➢具体函数定义域的求法 使式子“有意 义”
1. 如果f(x)是整式,那么函数的定义域是实数集R;
2. 如果f(x)是分式,那么函数的定义域是使分母不等于零 的实数的集合;
,
3 2

2020/12/27
11
小结:
➢ 具体函数定义域求法
➢ 抽象函数定义域求法
1. 整式(R) 2. 分母不为零 3. 偶次根式大于等于0
明确:
1. 定义域——自变量 x的取值
集合;
4. 0次幂的底数不为0
2. 对应关系 f 的作用对象可变,
5. 几个式子构成的,每个都有意
但 的作f 用范围始终不变。
函数定义域的基本求法
2020/12/27
1
回顾: • 函数的定义域是什么?
自变量x的取值集合
• 函数的三要素是什么?
定义域 对应法则 值域
2020/12/27
2
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
始终不变。
f (x)
f (g(x))
2020/12/27
9
【例2】 已知 f (x)的定义域为 1,0,求 f2x1的定
义域。
析:由 f x的定义域为 1,0 , 可得 f 的作用范围为 1,0 ,
则 12x10 , 解得 0 x 1 ,
2
所以 f2x1的定义域为 0 , 1 。 2
2020/12/27
10
【例3】 已知 fx1的定义域为 1,2, 求 g x f3 x 2 f5 2 x 的定义域。
析: fx1的定义域为 1,2 ,
可得 1 x 2 2 x 1 3 ,
f 的作用范围为 2,3,
则 2 2 5 3x22 x 3 33 4x2 3 ,
所以
gx
的定义域为
x
4 3

6. 实际问题有意义
2020/12/27
12
2020/12/27
13
3. 如果f(x)是偶次根式,那么函数的定义域是使根号内的 式子大于或等于零的实数的集合;
2020/12/27
6
4. 如果f(x)中含有0次幂因式,则要求0次幂的底数不为0; 5. 如果f(x)是由几部分数学式子构成的,那么函数的定
义域是使各部分式子都有意义的实数集合;(即求各 集合的交集) 6. 如果f(x)是由实际问题抽象出来的函数,则函数的定 义域满足实际问题有意义。
2020/12/27
7
【例1】 求下列函数的定义域 (1) f(x)2x2 201 x6
x1
析: 2 x0 1 10 x 60 x ,11,2016
(2) f (x) 1 (x2)0
1 1 x
析:1x1x00x,11,00,22,的求法
明确两点: 1. 定义域——自变量x的取值集合; 2. 对应关系f 的作用对象可变,但f 的作用范围
相关文档
最新文档