第三章 线性代数方程组的共轭梯度法

线性代数第3章_线性方程组习题解答

习题3 3-1.求下列齐次线性方程组的通解: (1)?? ? ??=--=--=+-087305302z y x z y x z y x . 解 对系数矩阵施行行初等变换,得 ???? ? ??-----?→?????? ??-----=144072021 1873153211A )(000720211阶梯形矩阵B =???? ? ??-?→? ??? ?? ??-?→?0002720211)(000271021101行最简形矩阵C =????? ? ???→? , 与原方程组同解的齐次线性方程组为 ??? ??? ?=+=+02702 11 z y z x , 即 ??? ??? ?-=-=z y z x 272 11(其中z 是自由未知量), 令1=z ,得到方程组的一个基础解系 T )1,2 7,211(-- =ξ, 所以,方程组的通解为

,)1,2 7,211(T k k -- =ξk 为任意常数. (2)??? ??=+++=+++=++++0 86530543207224321 432154321x x x x x x x x x x x x x . 解 对系数矩阵施行行初等变换,得 ???? ? ??--?→?????? ??=21202014101072211086530543272211A )(7000014101072211阶梯形矩阵B =????? ??-?→? ???? ? ??-?→?70000141010211201 )(100000101001201行最简形矩阵C =???? ? ???→?, 与原方程组同解的齐次线性方程组为 ??? ??==+=++00 025 42431x x x x x x , 即 ??? ??=-=--=025 4 2431x x x x x x (其中43,x x 是自由未知量), 令34(,)T x x =(1,0)T ,(0,1)T ,得到方程组的一个基础解系 T )0,0,1,0,2(1-=ξ,T )0,1,0,1,1(2--=ξ, 所以,方程组的通解为

线性代数 第三章向量

n维向量部分 这部分逻辑性非常强,考生必须要相当熟悉教材中的重要定理。从历年考试情况来看,线性相(无)关、线性表出、极大无关组、向量组的秩及等价、向量空间(数一)等内容是考试经常会涉及到的内容。常出现在选择题中。 回顾: n维向量的运算 1.定义:设 ,,k为数域P中的数,定义 ,称为向量与的和; ,称为向量与数k的数量乘积. 2.向量运算的基本性质 1) 2) 3) 4) 5) 6) 7) 8),9),, 10)若,则即,若,则或 1 向量组的秩、极大无关组的相关题型 知识点 极大线性无关组定义:设为中的一个向量组,它的一个部分组若满足 i) 线性无关 ii) 对任意的,可经线性表出 则称为向量组的一个极大线性无关组(简称极大无关组). 向量组的秩 定义:向量组的极大无关组所含向量个数称为这个向量组的秩.性质: 1)一个向量组线性无关的充要条件是它的秩与它所含向量个数相同. 一个向量组线性相关的充要条件是它的秩<它所含向量个数.2)等价向量组必有相同的秩.(注意:反之不然.) 3)若向量组可经向量组线性表出,则 秩秩. 例1 设向量组 (1)求此向量组的秩; (2)求此向量组的一个极大无关组,并将其余向量用该极大无关组表示。

例2 选择题 若向量组的秩为 r,则() (A)必定r秩(向量组II) (C)秩(向量组I)<秩(向量组II) (D)不能确定秩(向量组I)与秩(向量组II)的大小关系 2 向量组的线性相关性的判定或根据向量相关性求参数 知识点:1对向量组,设 若如果存在不全为零的数,使上式成立,则向量组线性相关。 若当且仅当上式才成立,则线性无关。 2 设向量组I:可由向量组II:线性表现,若 r>s , 则向量组I线性相关。(注意它的逆否定理) 3 利用矩阵的秩或行列式 设有 s个n维列向量组,设A=(), 则当秩A=s时,线性无关;当秩A

数学实验“线性方程组的最速下降法与共轭梯度法解法”实验报告(内含matlab程序代码)

西京学院数学软件实验任务书

实验五实验报告 一、实验名称:最速下降法与共轭梯度法解线性方程组。 二、实验目的:进一步熟悉理解掌握最速下降法与共轭梯度法解法思路,提高matlab 编程能力。 三、实验要求:已知线性方程矩阵,应用最速下降与共轭梯度法在相关软件编程求解线性方程组的解。 四、实验原理: 1.最速下降法: 从某个初始点)0(X 出发,沿)(X f 在点)0(X 处的负梯度方向 )0()0()0()(AX b X f r -=-?= 求得)(X f 的极小值点)1(X , 即 )(min )0()0(0 r X f λλ+> 然后从)1(X 出发,重复上面的过程得到)2(X 。如此下去,得到序列{)(k X } )(...)()()()1()0(k X f X f X f >>> 可以证明,从任一初始点)0(X 出发, 用最速下降法所得到的序列{)(k X }均收敛于问题使X 最小化)(X f 的解,也就是方程组b AX =的解。其收敛速度取决于 1 1 λλλλ+-n n ,其中1λ ,n λ分别

为A 的最小,最大特征值。最速下降法迭代格式:给定初值)0(X , )(k X 按如下方法决定: ()) ()(1)(k )()()()(k ) ()(X ,,)(k k k k T k k T k k k k r X Ar r r r AX b X f r λλ+=> <><=-=-?=+ 2.共轭梯度法 其基本步骤是在点)(k X 处选取搜索方向)(k d , 使其与前一次的搜索方向)1(-k d 关于A 共轭,即 (1)()(1),0k k k d d Ad --<>= 然后从点)(k X 出发,沿方向)(k d 求得)(X f 的极小值点 )1(+k X , 即 )(min )() ()(0 )1(k d X f X f k k λλ+=>+ 如此下去, 得到序列{)(k X }。不难求得0,)1()(>=<-k k Ad d 的解为 ) () 1()1()()() () 1(,,k k k k k k k d Ad d d AX b X X > <>-<+=--+ 注意到)(k d 的选取不唯一,我们可取

最优化方法实验报告(2)

最优化方法实验报告Numerical Linear Algebra And Its Applications 学生所在学院:理学院 学生所在班级:计算数学10-1 学生姓名:甘纯 指导教师:单锐 教务处 2013年5月

实验三 实验名称: 无约束最优化方法的MATLAB 实现 实验时间: 2013年05月10日 星期三 实验成绩: 一、实验目的: 通过本次实验的学习,进一步熟悉掌握使用MATLAB 软件,并能利用该软件进行无约束最优化方法的计算。 二、实验背景: (一)最速下降法 1、算法原理 最速下降法的搜索方向是目标函数的负梯度方向,最速下降法从目标函数的负梯度方向一直前进,直到到达目标函数的最低点。 2、算法步骤 用最速下降法求无约束问题n R x x f ∈,)(min 的算法步骤如下: a )给定初始点)0(x ,精度0>ε,并令k=0; b )计算搜索方向)()()(k k x f v -?=,其中)()(k x f ?表示函数)(x f 在点)(k x 处的梯度; c )若ε≤)(k v ,则停止计算;否则,从)(k x 出发,沿)(k v 进行一维搜索, 即求k λ,使得)(min )()()(0 )()(k k k k v x f v x f λλλ+=+≥; d )令1,)()()1(+=+=+k k v x x k k k k λ,转b )。

(二)牛顿法 1、算法原理 牛顿法是基于多元函数的泰勒展开而来的,它将 )()]([-)(1)(2k k x f x f ??-作为搜索方向,因此它的迭代公式可直接写出 来: )()]([)(1)(2)()(k k k k x f x f x x ??-=- 2、算法步骤 用牛顿法求无约束问题n R x x f ∈),(min 的算法步骤如下: a )给定初始点)0(x ,精度0>ε,并令k=0; b )若ε≤?)()(k x f ,停止,极小点为)(k x ,否则转 c ); c )计算)()]([,)]([)(1)(2)(1)(2k k k k x f x f p x f ??-=?--令; d )令1,)()()1(+=+=+k k p x x k k k ,转b )。 (三)共轭梯度法 1、算法原理 共轭梯度法是利用目标函数梯度逐步产生共轭方向作为线搜索方向的方法,每次搜索方向都是在目标函数梯度的共轭方向,搜索步长通过一维极值算法确定。 2、算法步骤 a )给定初始点)0(x ,精度0>ε;

实验2 最速下降法和共轭梯度法的程序设计

实验2 最速下降法和共轭梯度法的程序设计 一、实验目的 1、熟悉无约束优化问题的最速下降算法和共轭梯度法。 2、培养matlab 编程与上机调试能力。 二、实验课时:2个课时 三、实验准备 1、预习无约束优化问题的最速下降算法和共轭梯度法。 2、熟悉matlab 软件的基本操作及程序编写。 四、实验内容 课堂实验演示 根据最速下降法编写程序,求函数 21222121342)(min x x x x x x x f -++-= 的极小值,其中初始点为()01,1T x = 算法步骤如下: Step1::给出初始点0x ,和精度1;0k ε<<=; Step2:计算()k f x ?,如果()k f x ε?≤,则停止迭代,输出结果;否则转step3; Step3:令下降方向()k k d f x =-?,计算步长因子k λ使得0()min ()k k k k k f x d f x d λλλ≥+=+,令1,1k k k k x x d k k λ+=+=+,转step2。 其程序如下: function [x,iter,val,dval] = Steepest_Descent_Method(x,eps) k = 1; dy = grad_obj(x); x_mat(:,1) = x;%存储每一次迭代得到的点x while norm(dy)>eps d = -dy; % 搜索方向 lambda = line_search(x,d);%步长 x = x + d*lambda; k = k + 1; x_mat(:,k) = x; dy = grad_obj(x); end iter = k - 1; val = obj(x);%目标函数在极值点处的函数值

线性代数习题[第三章] 矩阵的初等变换与线性方程组

习题 3-1 矩阵的初等变换及初等矩阵 1.用初等行变换化矩阵 1021 2031 3043 A - ?? ?? =?? ?? ?? 为行最简形. 2.用初等变换求方阵 321 315 323 A ?? ?? =?? ?? ?? 的逆矩阵. 3.设 412 221 311 A - ?? ?? =?? ?? - ?? , 3 22 31 - ?? ?? ?? ?? - ?? 1 B=,求X使AX B =. 4.设A是n阶可逆矩阵,将A的第i行与第j行对换后得矩阵B. (1) 证明B可逆(2)求1 AB-.

习题 3-2 矩阵的秩 1.求矩阵的秩: (1)310211211344A ????=--????-?? (2)11121212221 2n n n n n n a b a b a b a b a b a b B a b a b a b ??????=??????01,2,,i i a b i n ≠????=?? 2.设12312323k A k k -????=--????-?? 问k 为何值,可使 (1)()1R A =; (2)()2R A =; (3)()3R A =.

3. 从矩阵A 中划去一行,得矩阵B ,则)(A R 与)(B R 的关系是 . .()()a R A R B = .()()b R A R B <; .()()1c R B R A >-; .()()()1 d R A R B R A ≥≥- 4. 矩阵???? ??????-------815073*********的秩R= . a.1; b . 2; c . 3; d . 4. 5. 设n (n ≥3)阶方阵????? ???????=111 a a a a a a a a a A 的秩R (A )=n -1,则a = . a . 1; b . n -11; c . –1; d . 1 1-n . 6.设A 为n 阶方阵,且2 A A =,试证: ()()R A R A E n +-=

线性代数习题[第三章]-矩阵的初等变换与线性方程组

习题3-1 矩阵的初等变换及初等矩阵 1.用初等行变换化矩阵 1021 2031 3043 A - ?? ?? =?? ?? ?? 为行最简形. 2.用初等变换求方阵 321 315 323 A ?? ?? =?? ?? ?? 的逆矩阵. 3.设 412 221 311 A - ?? ?? =?? ?? - ?? , 3 22 31 - ?? ?? ?? ?? - ?? 1 B=,求X使AX B =. 4.设A是n阶可逆矩阵,将A的第i行与第j行对换后得矩阵B. (1) 证明B可逆 (2)求1 AB-.

习题 3-2 矩阵的秩 1.求矩阵的秩: (1)310211211344A ?? ??=--?? ??-?? (2)111212122212n n n n n n a b a b a b a b a b a b B a b a b a b ?? ?? ??=???? ?? L L L L L L L 01,2,,i i a b i n ≠? ? ??=?? L 2.设12312323k A k k -?? ??=--?? ??-?? 问k 为何值,可使 (1)()1R A =; (2)()2R A =; (3) ()3R A =.

3. 从矩阵A 中划去一行,得矩阵B ,则)(A R 与)(B R 的关系是 . .()()a R A R B = .()()b R A R B <; .()()1c R B R A >-; .()()() 1.d R A R B R A ≥≥- 4. 矩阵???? ??????-------815073*********的秩R= . a.1; b . 2; c . 3; d . 4. 5. 设n (n ≥3)阶方阵????? ???????=111ΛΛΛΛΛΛΛΛa a a a a a a a a A 的秩R (A )=n -1,则a = . a . 1; b . n -11; c . –1; d . 1 1-n . 6.设A 为n 阶方阵,且2A A =,试证: ()()R A R A E n +-=

数值分析实验报告1——Hilbert矩阵的求解

数值分析课程实验报告 题目:病态线性方程组的求解 理论分析表明,数值求解病态线性方程组很困难。考虑求解如下的线性方程组的求解 Hx = b ,期中H 是Hilbert 矩阵,()ij n n H h ?=,1 1 ij h i j =+-,i ,j = 1,2,…,n 1. 估计矩阵的2条件数和阶数的关系 2. 对不同的n ,取(1,1,,1)n x =∈ ,分别用Gauss 消去,Jacobi 迭代,Gauss-seidel 迭代,SOR 迭代和共轭梯度法求解,比较结果。 3. 结合计算结果,试讨论病态线性方程组的求解。 解答过程 1.估计矩阵的2-条件数和阶数的关系 矩阵的2-条件数定义为:1 222 ()Cond A A A -=?,将Hilbert 矩阵带入有: 1222 ()Cond H H H -=? 调用自编的Hilbert_Cond 函数对其进行计算,取阶数n= 50,可得从1阶到50阶的2-条件数,以五位有效数字输出,其中前10项见表1。 表1.前十阶Hilbert 矩阵的2-条件数 从表1可以看出,随着阶数每递增1,Hilbert 矩阵的2-条件数都至少增加一个数量级,但难以观察出明显的相依规律。故考虑将这些数据点绘制在以n 为横轴、Cond (H )2为纵轴的对数坐标系中(编程用Hilbert_Cond 函数同时完成了这个功能),生成结果如图1。

图1.不同阶数下Hilbert矩阵的2-条件数分布 由图可见,当维数较小时,在y-对数坐标系中Cond(H)2与n有良好的线性关系;但n超过10后,线性趋势开始波动,n超过14后更是几乎一直趋于平稳。事实上,从n = 12开始,系统便已经开始提出警告:“Warning: Matrix is close to singular or badly scaled.Results may be inaccurate.”。也就是说,当n较大时,H矩阵已经接近奇异,计算结果可能是不准确的。通过查阅相关资料,我找到了造成这种现象的原因:在matlab中,用inv函数求条件数过大的矩阵的逆矩阵将是不可靠的。而调用系统自带的专门对Hilbert矩阵求逆的invhilb(n)函数则不存在这个问题,生成结果如图2。 图2. 修正后的不同阶数下Hilbert矩阵的2-条件数分布

线性方程组的最速下降法与共轭梯度法

共轭梯度法 一 共轭梯度法原理 对于线性方程组A b X =,即: 1111221n 12112222n 21122nn n n n n n n a x a x a x b a x a x a x b a x a x a x b +++=??+++=????++ += ? (1) 其中,()=ij n n a ?A 为对称正定矩阵,()1i n b b ?=,如何熟练地运 用最速下降法与共轭梯度法的求解线性方程组。 在求解线性方程组之前,首先用内积将问题转化为函数问题。 1 最速下降法 最速下降法是一种运用梯度与极值的性质,综合数值计算方法寻找局部极值。 基本思想:任一点的负梯度方向是函数值在该点下降最快的方向。将n 维问题转化为一系列沿负梯度方向用一维搜索方法寻优的问题,利用负梯度作为搜索方向,故称最速下降法。 具体步骤: 1、搜索方向:()k k d f x =-?,即最速下降方向。 2、搜索步长:k λ取最优步长,即满足: ()min ()k k k k k f x d f x d λ λλ+=+ 1 给定初始点0n x R ∈,允许误差0ε≥,令1k =。 2 计算搜索方向()k k d f x =-?。 3 若k d ε≤,则k x 为所求的极值点,否则,求解最优步长k λ,使得()min ()k k k k k f x d f x d λ λλ+=+。

4 令1k k k k x x d λ+=+,1k k =+ 最速下降方向是反映了目标函数的局部性质,它只是局部目标函数值下降最快的方向。 2 共轭梯度法 对于1 min ()2T T f x x Ax b x =+ 其中,0n x R ∈,A 是对称正定矩阵。 基本思想:将共轭性与最速下降法相结合利用已知迭代点的梯度方向构造一组共轭方向,并沿此方向搜索,求出函数的极小值。 具体步骤: 1 取初始点(0)x ,取第一次搜索方向为(0)(0)()d f x =-?。 2 设已求得(1) k x +,若(1) ()0k f x +?≠,令(1) ()()k g x f x +=? ,则下一个 搜索方向 (1)()1k k k k d g d β++=-+ (1) 由于(1) k d +与() k d 关于A 共轭,所以给(1)两边同时乘以()T k d A , 即: ()(1)()()()10T T T k k k k k k k d d d g d d β++A =-A +A = 解得:()1()() k T k k k T k d A g d Ad β+= (2) 3 搜索步长的确定,已知迭代点()k x ,和搜索方向()k d ,确定 步长k λ,即:()()min ()k k f x d λ λ+ 记 ()()()()k k f x d φλλ=+, 令 ()()()()()0k k T k f x d d φλλ'=?+= 既有:()()()[()]0k k T k A x d b d λ++=

第三章线性代数方程组

第3章 线性代数方程组 3.1.1 矩阵秩的定义 定义1 矩阵A 的k 阶子式 在n m ?矩阵A 中任取k 行,k 列()()n m k ,m in 1≤≤,位于这k 行,k 列交叉点处的元素按原来次序组成的行列式,称为A 的一个k 阶子式。 定义2矩阵A 的秩 设在矩阵A 中有一个不等于零的r 阶子式D ,且所有的r +1阶子式(如果有的话)全等于零,那么D 称为矩阵A 的最高阶非零子式,数r 称为矩阵A 的秩,记为)(A rank ,简记为()A r 。 定义3 满秩阵 设A 为n 阶方阵,若()A r =A ,则称A 为满秩阵。 3.1.2 矩阵秩的性质 (1)()();A r A r T = (2)()(),A r A r =λ其中0≠λ; (3)()0=A r 等价于0=A ; (4)()()n m A r n m ,m in ≤?; (5)设A ,B 为同阶矩阵,则 ()()()B r A r B A r +≤+ (1) 设A 为n m ?矩阵,B 为s n ?矩阵,则 ()()()() ()()()n B r A r AB r B r A r AB r -+≥≤,min 特别当AB =0时,()()n B r A r ≤+成立。 (7)()()()()()()B r A r B D A r B r A r B C A r B r A r B A r +≥?? ????+≥??????+=??????0000 3.1.3 矩阵秩的有关结论 (1)初等变换不改变矩阵的秩,即 若A ∽B,则()()B r A r =

(2)矩阵乘上一个可逆阵不改变原矩阵的秩,即当A 可逆时,有 ()()B r AB r =;()()B r BA r = (3) 设A 为n 阶方阵,则其转置伴随阵的秩为 () ()()()?? ? ??-≤-===2 011 *n A r n A r n A r n A r (4)设A 为方阵,则()n A r A =?≠0。 3.1.4 矩阵秩的求法 (1)用定义求矩阵的秩。 (2)用初等变换法求矩阵的秩。 (3)用性质求矩阵的秩。 (4)用有关结论求矩阵的秩。 (5)用齐次线性方称组的基础解系讨论矩阵的秩。 3.1.5 系数矩阵可逆的线性代数方程组的求解 问题:求b Ax =的解,其中0≠A 。 方法(1) 克莱娒法则 ()n i A D x i i ,2,1== ,其中i D 为右端列b 取代A 的第i 列所构成的行列式。 方法(2)逆矩阵法 b A x 1 1 --=,其中A A A *1 =-或用()()1-?→?A I I A 行求1 -A 。 方法(3) G 法 将增广矩阵()b A 经过行初等变换化为行梯形阵,回代求解。 方法(3)G -J 法 将增广矩阵()b A 经过行初等变换化为行标准形后得解。 3.1.6 齐次线性方程组 0=?x A n m (1)齐次线性方程组有解的条件 0=x 为0=Ax 的平凡解。 当()n A r =时,0=Ax 只有零解。 ()n A r 时,0=Ax 有含()A r n -个参数的无穷多组解。 注0=Ax 有非零解()n A r ?。 (2)齐次线性方程组解的求法

肌组织实验报告

竭诚为您提供优质文档/双击可除 肌组织实验报告 篇一:表面肌实验报告 武汉理工大学 现代数字信号处理在前沿学科中的应用实验报告 基于semg时域特征的动作识别 学院:信息工程学院 学号:姓名: 班级:电子154 实验基于semg时域特征特的动作识别 一、实验目的 1.了解肌电信号常用的时域分析方法; 2.利用mATLAb对肌电信号进行去噪、特征提取及动作识别; 二、实验设备 1.wi-Fi表面肌电信号采集卡; 2.32位windowsxp台式机(matlab7.0软件); 3.802.11b/g无线网卡;

三、实验内容 (1)学习信号的基本去噪方法,并用mATLAb实现; (2)学习肌电信号常用的时域特征并利用matlab来进行波形长度(wL)符号改变数(ssc)、过零点(Zc)、威尔 逊赋值(wAmp)等特征的提取; (3)学习神经网络信号处理方法,掌握bp神经网络的用法,将其用于肌电信号的动作识别。 学习以上三个部分,最终完成一整套肌电信号去噪、特征提取(选取一种特征)、基于特征的动作识别的mATLAb程序。 四、实验原理 (1)小波去噪 小波去噪方法是一种建立在小波变换基础上的新兴算法,基本思想是根据噪声在不同频带上的小波分解系数具有不同强度分布的特点,将各频带上的噪声对应的小系数去除,保留原始信号的小波分解系数,然后对处理后系数进行小波重构,得到纯净信号。 小波去噪的基本原理图如下 (2)特征提取 时域分析是将肌电信号看成均值为零,而方差随着信号强度的变化而变化的随机信号。时域特征的计算复杂度低,提取比较方便。

最常用的方法有:方差,过零点数(Zerocrossing,Zc),willison幅值(willisonAmplitude,wAmp),绝对值平均值(meanAbsoluteValue,mAV)和波形长度(wavelength,wL)等。在实际应用中,为了让特征可以包含更多的信息,往往选择用不同的时域特征组合形成联合特征向量。我们主要介绍一下几种方法: 过零率(Zc):为波形通过零线的次数,从一定程度上反映了信号的频率特性。为了降低零点引入的噪声,往往会引入一个阈值δ。计算方式如下: sgn(?xk?xk?1),(xk?xk?1??)(1)willison幅值:是由willison提出一种对表面肌电信号的幅值变化数量进行计 算的方法,经过后人的研究,对willison幅值的阈值有了明确的范围限定,目前认为50~100?V是最合适的阈值范围。其数学表示公式如公式(3-3)。 wAmp??fxi?xi?1 t?1n(2) ?1f(x)???0其中:ifx?阈值otherwise 波形长度(wL):它是对某一分析窗中的波形长度的统计,波长可以体现该样本的持续时间、幅值、频率的特征。 1n?1 wL??x(i?1)?x(i)ni?1(3)符号改变斜率(ssc):为信号的的频率性能提供了一些附加信息,对于3个连续的采样

共轭梯度实验报告

竭诚为您提供优质文档/双击可除 共轭梯度实验报告 篇一:共轭梯度法实验报告 数值代数实验报告 一、实验名称:用共轭梯度法解线性方程组。 二、实验目的:进一步熟悉理解掌握共轭梯度法解法思路,提高matlab编程能力。三、实验要求:已知线性方程 矩阵,应用共轭梯度法在相关软件编程求解线性方程组的解。 四、实验原理: 1.共轭梯度法: 考虑线性方程组 Ax?b 的求解问题,其中A是给定的n阶对称正定矩阵,b是 给定的n维向量,x是待求解的n维向量.为此,定义二次泛 函 ?(x)?xTAx?2bTx. 定理1设A对称正定,求方程组Ax?b的解,等价于求二次泛函?(x)的极小值点.定理1表明,求解线性方程组问题

就转化为求二次泛函?(x)的极小值点问题.求解二次函数极 小值问题,通常好像盲人下山那样,先给定一个初始向量x0,确定一个下山方向p0,沿着经过点x0而方向为p0的直线 x?x0??p0找一个点 x1?x0??0p0, 使得对所有实数?有 ??x0??0p0????x0??p0?, 即在这条直线上x1使?(x)达到极小.然后从x1出发, 再确定一个下山的方向p1,沿着直 线x?x1??p1再跨出一步,即找到?1使得??x?在 x2?x1??1p1达到极小: ??x1??1p1????x1??p1?. 重复此步骤,得到一串 ?0,?1,?2, x?xk??pk上确定步长?k使 和p0,p1,p2, , 称pk为搜索方向,?k为步长.一般情况下,先在xk点 找下山方向pk,再在直线 ??xk??kpk????xk??pk?, 最后求出xk?1?xk??kpk.然而对不同的搜索方向和步长,得到各种不同的算法.

最优化方法课程实验报告

项目一 一维搜索算法(一) [实验目的] 编写加步探索法、对分法、Newton 法的程序。 [实验准备] 1.掌握一维收搜索中搜索区间的加步探索法的思想及迭代步骤; 2.掌握对分法的思想及迭代步骤; 3.掌握Newton 法的思想及迭代步骤。 [实验内容及步骤] 编程解决以下问题: 1.用加步探索法确定一维最优化问题 1 2)(min 30 +-=≥t t t t ? 的搜索区间,要求选取2,1,000===αh t . 加步探索法算法的计算步骤: (1)选取初始点 ]) 0[)(0[max 00t t t ,或,∈?∞+∈,计算 )(00t ??=.给出初始步长0 >h , 加步系数1α>,令0=k 。 (2) 比较目标函数值.令k k k h t t +=+1,计算 )(11++=k k t ??,若k k ??<+1,转(3),否则转(4)。 (3) 加大探索步长.令 k k h h α=+1,同时,令,k t t =,1+=k k t t 1k k =+,转(2)。 (4) 反向探索.若0=k ,转换探索方向,令,k k h h -=1+=k t t ,转(2)。否则,停止迭代,令 11min{}max{}k k a t t b t t ++==,,,。 加步探索法算法的计算框图

程序清单 加步探索法算法程序见附录1 实验结果 运行结果为: 2.用对分法求解 )2()(min +=t t t ?, 已知初始单谷区间]5,3[],[-=b a ,要求按精度3.0=ε,001.0=ε分别计算. 对分法迭代的计算步骤: (1)确定初始搜索区间],[b a ,要求'()0'()0a b ??<>,。 (2) 计算],[b a 的中点)(2 1 b a c +=. (3) 若0)(<'c ?,则c a = ,转(4);若0)(='c ?,则c t =* ,转(5);若0)(>'c ?,则c b = ,转(4). (4) 若ε<-||b a ,则)(2 1* b a t +=,转(5);否则转(2). (5) 打印* t ,结束 对分法的计算框图

大型复线性方程组预处理双共轭梯度法

万方数据

万方数据

大型复线性方程组预处理双共轭梯度法 作者:张永杰, 孙秦, ZHANG Yong-jie, SUN Qin 作者单位:西北工业大学航空学院,西安,710072 刊名: 计算机工程与应用 英文刊名:COMPUTER ENGINEERING AND APPLICATIONS 年,卷(期):2007,43(36) 被引用次数:1次 参考文献(6条) 1.Wu J P;Wang z H;Li X M High-performanco solution and paral lel computation of sparse linear equations 2004 2.Xu S F Theories and Methods on matrix computations 1995 3.Jin J M The finite element method in electromagneties 2002 4.Zhang Yongjie;Sun Qin A new ICCG method of large scale sparse linear equations[期刊论文]-Journal on Numerical Methods and Computer Applications 2007(02) 5.Betmmens Robert Itemtive solution methods 2004 6.Wu J P;Wang Z H Problems and improvements to the incomplete Cholesky decomposition with thresholds [期刊论文]-Journal on Numerical Methods and Computer Applications 2003(03) 引证文献(1条) 1.明星.苑秉成.刘建国基于共轭梯度的宽带相关处理快速算法[期刊论文]-系统工程与电子技术 2010(12) 本文链接:https://www.360docs.net/doc/8217419048.html,/Periodical_jsjgcyyy200736007.aspx

表面肌实验报告

武汉理工大学 现代数字信号处理在前沿学科中的应用实验报告基于sEMG时域特征的动作识别 学院:信息工程学院 学号: 1049731503279 姓名:吴志勇 班级:电子154

实验基于sEMG时域特征特的动作识别 一、实验目的 1.了解肌电信号常用的时域分析方法; 2.利用MATLAB对肌电信号进行去噪、特征提取及动作识别; 二、实验设备 1.Wi-Fi表面肌电信号采集卡; 2.32位Windows XP台式机(Matlab 7.0软件); 3.802.11b/g无线网卡; 三、实验内容 (1)学习信号的基本去噪方法,并用MATLAB实现; (2)学习肌电信号常用的时域特征并利用Matlab来进行波形长度(WL)符号改变数(SSC)、过零点(ZC)、威尔逊赋值(WAMP)等特征的提取; (3)学习神经网络信号处理方法,掌握BP神经网络的用法,将其用于肌电信号的动作识别。 学习以上三个部分,最终完成一整套肌电信号去噪、特征提取(选取一种特征)、基于特征的动作识别的MATLAB程序。 四、实验原理 (1)小波去噪 小波去噪方法是一种建立在小波变换基础上的新兴算法,基本思想是根据噪声在不同频带上的小波分解系数具有不同强度分布的特点,将各频带上的噪声对应的小系数去除,保留原始信号的小波分解系数,然后对处理后系数进行小波重构,得到纯净信号。 小波去噪的基本原理图如下 (2)特征提取

时域分析是将肌电信号看成均值为零,而方差随着信号强度的变化而变化的随机信号。时域特征的计算复杂度低,提取比较方便。 最常用的方法有:方差,过零点数(Zero Crossing, ZC ),Willison 幅值(Willison Amplitude, WAMP ),绝对值平均值 (Mean Absolute Value, MAV )和波形长度(Wave length ,WL )等。在实际应用中,为了让特征可以包含更多的信息,往往选择用不同的时域特征组合形成联合特征向量。我们主要介绍一下几种方法: 过零率(ZC ):为波形通过零线的次数,从一定程度上反映了信号的频率特性。为了降低零点引入的噪声,往往会引入一个阈值δ。计算方式如下: )(),sgn(11δ≥-+-++k k k k x x x x (1) Willison 幅值:是由Willison 提出一种对表面肌电信号的幅值变化数量进行计算的方法,经过后人的研究,对Willison 幅值的阈值有了明确的范围限定,目前认为V μ100~50 是最合适的阈值范围。其数学表示公式如公式(3-3)。 ∑=+-=N t i i x x f WAMP 1 1 (2) 其中: ?? ?>=otherwise x if x f 阈值 01 )( 波形长度(WL ):它是对某一分析窗中的波形长度的统计,波长可以体现该样本的持续时间、幅值、频率的特征。 ∑-=-+= 1 1 ) ()1(1N i i x i x N WL (3) 符号改变斜率(SSC ):为信号的的频率性能提供了一些附加信息,对于3个连续的采样点,给定阈值ω,通过下面的公式计算波峰波谷的个数。 ()()()N i x x x x i i i i ,,1,11Λ=≥-?-+-ω (4) (3) 神经网络 BP 神经网络又称误差反向传播(Back Propagation ),它是一种多层的前向型神经网络。在BP 网络中,信号是前向传播的,而误差是反向传播的。所谓的反向传播是指误差的调整过程是从最后的输出层依次向之前各层逐渐进行的。标准的BP 网络采用梯度下降算法,与Widrow-Hoff 学习规则相似,网络权值沿着性能函数的梯度反向调整。 前向型神经网络通常具有一个或多个由sigmoid 神经元构成的隐层,以及一个由线性神经元构成的输出层。多个具有非线性传递函数的神经元层使得网络可以学习输入和输出之间的非线性关系,而线性输出层使得网络可以产生[-1,+1]之外的输出值。

最优化理论与应用实验报告

最优化理论与应用实验报告 季晓南 实验目的: 实践所学的最优化方法。 工程描述: 本工程使用编写,主要包括以下几个文件: : 实现最优化方法的基本步骤 : 实现非精确一维搜索 : 实现基本函数操作 : 工程的基本配置 : 主要函数的声明 具体请参考每个函数的注释。 ● 代码可读性高,模块化强,采用了一致的代码规范,尽管这在一定程度上牺牲了效率, 但本着实验的目的,作者坚持这样做了。 ● 用户可以通过改变中的( )和( )来改变输入函数。 ● 对于不同的标准,如非精确一维搜索和,校正以及共轭梯度法中的和公式,用户都可以 通过改变中的宏定义实现。 ● 每次实验的结果和参数都会自动保存,这样有助于分析数据。 数据分析: 给定二次函数 ()x 22121f()=x +3x 2 (一)一维搜索 1. 非精确一维搜索参数对迭代次数的影响 由准则: T k k k k k f(x +s f(x +g s ρ≤)) ()1 (1)T k k k k k f(x +s f(x +g s ρ≥-)) ()2 可知:越大的ρ对应着越精确的搜索区间,取0.3ρ=使用再开始的共轭梯度法求解,得到迭代次数为,取0.4ρ=得到迭代次数为次,见同文件夹下的数据文件。 2. 准则与准则的比较 由准则 T T k+1k k k g d g d σ≥ ()' 2

σ=,打开宏,可以发现使用再开始共轭梯度法时,两次迭代就得到解。 在中修改0.5 见同文件夹下的数据文件。 3.非精确一维搜索参数对一维搜索速度的影响 对二次函数,参数的选择对一维搜索的参数选择是不敏感的。 (二)不同方法的比较 .最速下降法 最速下降法的效率是最低的,因为测试函数的等值线是一个椭球,搜索方向形成锯齿状曲线,故收敛速度慢。 2.共轭梯度法 若选择合适的参数,使用共轭梯度法,具有二次收敛性。在准则下,分别采用和公式生成共轭方向,发现要比的效果好。 3.拟牛顿方法 因拟牛顿法也是共轭方向法,故选择合适的参数,拟牛顿法也有二次收敛性。在准则下,分别采用和校正,发现要比要好。

数学实验“线性方程组的最速下降法与共轭梯度法解法”实验报告(内含matlab程序代码)

西京学院数学软件实验任务书 课程名称数学软件实验班级数0901 学号0912020107姓名李亚强 实验课题线性方程组的最速下降法与共轭梯度法 实验目的熟悉线性方程组的最速下降法与共轭梯度法 实验要求 运用Matlab/C/C++/Java/Maple/Mathematica等其中 一种语言完成 实验内容线性方程组的最速下降法线性方程组的共轭梯度法 成绩教师

实验五实验报告 一、实验名称:最速下降法与共轭梯度法解线性方程组。 二、实验目的:进一步熟悉理解掌握最速下降法与共轭梯度法解法思路,提高matlab 编程能力。 三、实验要求:已知线性方程矩阵,应用最速下降与共轭梯度法在相关软件编程求解线性方程组的解。 四、实验原理: 1.最速下降法: 从某个初始点)0(X 出发,沿)(X f 在点)0(X 处的负梯度方向 ) 0()0()0()(AX b X f r -=-?=求得)(X f 的极小值点)1(X ,即 )(min )0()0(0 r X f λλ+>然后从)1(X 出发,重复上面的过程得到)2(X 。如此下去, 得到序列{)(k X } ) (...)()()()1()0(k X f X f X f >>>可以证明,从任一初始点)0(X 出发,用最速下降法所得 到的序列{)(k X }均收敛于问题使X 最小化)(X f 的解,也就是方程组b AX =的解。其收敛速度取决于1 1λλλλ+-n n ,其中1λ,n λ分别

为A 的最小,最大特征值。最速下降法迭代格式:给定初值)0(X ,)(k X 按如下方法决定: ()) ()(1)(k )()()()(k ) ()(X ,,)(k k k k T k k T k k k k r X Ar r r r AX b X f r λλ+=> <><=-=-?=+2.共轭梯度法 其基本步骤是在点)(k X 处选取搜索方向)(k d ,使其与前一次的搜索方向)1(-k d 关于A 共轭,即 (1)()(1),0 k k k d d Ad --<>=然后从点)(k X 出发,沿方向)(k d 求得)(X f 的极小值点)1(+k X ,即 ) (min )()()(0)1(k d X f X f k k λλ+=>+如此下去,得到序列{)(k X }。不难求得0,)1()(>=<-k k Ad d 的解为 )()1()1()()() ()1(,,k k k k k k k d Ad d d AX b X X ><>-<+=--+注意到)(k d 的选取不唯一,我们可取

共轭梯度法实验报告

数值代数实验报告 一、实验名称:用共轭梯度法解线性方程组。 二、实验目的:进一步熟悉理解掌握共轭梯度法解法思路,提高matlab 编程能力。 三、实验要求:已知线性方程矩阵,应用共轭梯度法在相关软件编程求解线性方程组的解。 四、实验原理: 1.共轭梯度法: 考虑线性方程组 Ax b = 的求解问题,其中A 是给定的n 阶对称正定矩阵,b 是给定的n 维向量,x 是待求解的n 维向量.为此,定义二次泛函 ()2T T x x Ax b x ?=-. 定理1 设A 对称正定,求方程组Ax b =的解,等价于求二次泛函()x ?的极小值点. 定理1表明,求解线性方程组问题就转化为求二次泛函()x ?的极小值点问题.求解二次函数极小值问题,通常好像盲人下山那样,先给定一个初始向量0x ,确定一个下山方向0p ,沿着经过点0x 而方向为0p 的直线00x x p α=+找一个点 1000x x p α=+, 使得对所有实数α有 ()()00000x p x p ?α?α+≤+, 即在这条直线上1x 使()x ?达到极小.然后从1x 出发,再确定一个下山的方向1p ,沿着直 线11x x p α=+再跨出一步,即找到1α使得()x ?在2111x x p α=+达到极小: ()()11111x p x p ?α?α+≤+. 重复此步骤,得到一串 012,,,αααL 和 012,,,p p p L , 称k p 为搜索方向,k α为步长.一般情况下,先在k x 点找下山方向k p ,再在直线 k k x x p α=+上确定步长k α使 ()(),k k k k k x p x p ?α?α+≤+ 最后求出1k k k k x x p α+=+.然而对不同的搜索方向和步长,得到各种不同的算法.

相关文档
最新文档