2003Culturing and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots

合集下载

中国人类遗传资源DNA提取和纯化技术标准操作规程

中国人类遗传资源DNA提取和纯化技术标准操作规程

中国人类遗传资源DNA提取和纯化技术标准操作规程作者:张伟文章来源:本站原创点击数:753更新时间:2009-11-1923:25:58 扭Stan dard Operati on Procedure for Extracti on and Purificatio n of DNA (讨论稿)中国人类遗传资源平台项目组2006年1月I近10年来,现代分子生物学技术越来越广泛地被用于人类疾病研究的各个领域,运用DNA提取和纯化技术的人员数量与日俱增。

提取DNA的方法分为很多,根据不同类型标本或不同实验目的,DNA提取方法不尽相同。

商业化DNA提取和纯化试剂也名目繁多。

为了合理有效的利用我国人类遗传资源,结合实际工作需要,特制定一套行之有效、符合我国国情的DNA提取和纯化技术标准操作规程。

本规程包括实验室设置、工作区域功能和设备、样品的选择和保存、DNA提取、DNA质量签定、DNA标本保存、记录管理和注意事项及实验室安全。

本规程规定了人类遗传资源库DNA标本提取和纯化实验应遵守的操作规程。

本规程适用于所有向人类遗传资源库提交人基因组DNA标本的DNA实验室。

本规程适用于从人体体液、细胞、组织等标本大批量提取和纯化DNA ,并包括对DNA样本长期保存。

DNA提取和纯化技术标准操作规程1范围本规程规定了从人类血液、组织、体液、培养细胞中提取和纯化基因组DNA的系列方法,同时详细阐述了DNA提取的软硬件设备要求。

2规范性引用文件下列文件中的条款通过本规程的引用而成为本规程的条款。

凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规程,然而,鼓励根据本规程达成协议的各方研究是否可使用这些文件的最新版本。

凡是不注日期的引用文件,其最新版本适用于本规程。

GB/T 1.1-2000标准的结构和编写规则GB 19489-2004生物安全通用要求ISO 15189医学实验室质量和能力的专用要求ISO 9001:2000质量管理系统-要求WS 233-2002微生物和生物医学实验室生物安全通用准则《人类遗传资源管理暂行办法》中华人民共和国卫生部3术语和定义下列术语和定义适用于本规程3.1 DNA Deoxyribonucleic Acid即脱氧核糖核昔酸,是遗传信息储存及传递者。

2003 Extraction of proteins from plant tissues

2003 Extraction of proteins from plant tissues
1
207
Extraction of proteins from plant tissues for two-dimensional electrophoresis analysis
To increase the number of proteins detectable by two-dimensional electrophoresis (2-DE) in plants, we present a new procedure for extracting total proteins from plant tissue. This method avoids any loss of proteins in the course of sample preparation and results in two different fractions, one comprising mainly the cytoplasmatic proteins, the other one containing predominantly structure bond proteins. 2-DE patterns obtained from these two fractions show that the total number of different protein spots detected exceeds the degree of resolution commonly reported for plant proteins threefold.
2 Materials and methods
2.1 Plant material
The plant material used in these experiments was A. thaliana ecotype Columbia 0, provided by the research group of Dr. Julia Kehr from the Max Planck Institute for Plant Physiology in Golm, Germany. Green leaves and defoliated shot tissue from the primary stem were harvested from 56 days old plants washed with deionized water and dried with filter paper to remove residual water. The plant material was frozen in liquid nitrogen and stored at 2807C prior to protein extraction. 0173-0835/03/01-0201–207 $17.501.50/0

提取DNA 的方法

提取DNA 的方法
3.4 Real-time PCR (RT-PCR) amplification
Real-time PCR specific amplification was performed using the dsDNA binding dye SYBR GreenER and an ABI PRISM 7900 detector. PCR was carried out in a final volume of 20 μ L containing 1*SYBR GreenERTM PCR MasterMix (Invitrogen), 10 ng of extracted DNA and primers 150 nM.All PCRs were performed in triplicate. The reaction was incubated at 50℃ for 2 min and 95 ℃for 10 min. This was followed by 40 cyclesat 95 ℃ for 15 s and 61℃ for 1 min. At the end the instrument increases the temperature gradually from 60℃ to 95℃ with ramp rate of 0.2℃/s showing the Tm of the produced amplicons. The Tm of the amplicons
wash the pellet.The supernatant was then discarded ad the pellet was resuspended adding 50 μ L of micro-filtered water. For each set of extractions, a negative control (buffer only) was performed to monitor possible contamination during extraction procedures.

山羊绒毛干中线粒体DNA和核DNA的提取与PCR扩增

山羊绒毛干中线粒体DNA和核DNA的提取与PCR扩增

山羊绒毛干中线粒体DNA和核DNA的提取与PCR扩增耿荣庆;周光现;韩旭峰;李伟;李碧波;王小龙;陈玉林【摘要】本研究以PCR缓冲液、MgCl2溶液和蛋白酶K为裂解提取液,建立了一种从山羊绒毛干中快速提取DNA的方法.结果表明,该方法不仅能从山羊绒毛干中提取出线粒体DNA和核DNA,而且能够有效地进行线粒体基因和核基因组基因的PCR扩增,为拓展羊绒样品在个体识别、遗传资源评价、分子进化和分子标记辅助育种等研究领域中的应用奠定基础.【期刊名称】《家畜生态学报》【年(卷),期】2013(034)003【总页数】3页(P13-15)【关键词】山羊绒;线粒体DNA;核DNA;DNA提取;PCR扩增【作者】耿荣庆;周光现;韩旭峰;李伟;李碧波;王小龙;陈玉林【作者单位】西北农林科技大学动物科技学院,陕西杨凌712100;盐城师范学院生命科学与技术学院,江苏盐城224051;西北农林科技大学动物科技学院,陕西杨凌712100;西北农林科技大学动物科技学院,陕西杨凌712100;西北农林科技大学动物科技学院,陕西杨凌712100;西北农林科技大学动物科技学院,陕西杨凌712100;西北农林科技大学动物科技学院,陕西杨凌712100;西北农林科技大学动物科技学院,陕西杨凌712100【正文语种】中文【中图分类】S811.6动物毛发中不仅含有较为丰富的线粒体DNA(mtDNA),而且存在微量的核DNA(nuDNA)[1-3]。

因此,毛发可以作为在DNA分子水平上开展物种或个体鉴别、遗传多样性评估、分子进化分析等方面研究的重要生物材料。

羊绒是生长在山羊外表皮层,掩在山羊粗毛根部的一层薄薄的细绒,属于稀有的特种动物纤维。

羊绒来源丰富,可以在活体上通过非损伤性取样直接获得,是一种非常易于采集、运输和保存的样品。

有关羊绒DNA的研究主要集中在运用mtDNA 标记鉴别山羊绒与绵羊毛方面,尚无nuDNA提取与应用的相关报道[4-7]。

Microbial DNA Extract

Microbial DNA Extract

Microbial DNA ExtractMicrobial DNA extraction is a crucial process in the field of microbiology and genetics. It involves isolating and purifying DNA from microbial cells for various applications such as sequencing, PCR, and cloning. The extraction of microbial DNA is a complex and delicate procedure that requires careful attention to detail and adherence to specific protocols to ensure the purity and integrity of the extracted DNA. One of the main challenges in microbial DNA extraction is the presence of contaminants that can interfere with downstream applications. Microbial cells are often surrounded by tough cell walls or capsules, making it difficult to access and extract the DNA. Additionally, microbial communities can be highly diverse, with different species present in the same sample, further complicating the extraction process. Contaminants such as proteins, polysaccharides, and other cellular debris can co-purify with the DNA, affecting its quality and yield. To address these challenges, various methods and kits have been developed for microbial DNA extraction, each with its own advantages and limitations. These methods generally involve cell lysis to release the DNA, followed by purification steps to remove contaminants. Commonly used techniques include phenol-chloroform extraction, silica-based spin column purification, and magnetic bead-based purification. Each method has its own set of protocols and requirements, and the choice of method depends on the specific needs of the research project and the type of microbial sample being processed. In addition to the technical challenges, microbial DNA extraction also presents ethical considerations, particularly when working with environmental samples. It is important to ensure that the collection and extraction of microbial DNA are conducted in a responsible and sustainable manner, taking into account the potential impact on the environment and indigenous communities. Researchers must obtain proper consent and permits for sample collection, and follow ethical guidelines to ensure that their work does not cause harm or disruption to the ecosystem. From a practical standpoint, the cost and time required for microbial DNA extraction can also be significant factors to consider. High-quality DNA extraction kits and reagents can be expensive, particularly for large-scale or high-throughput projects. Additionally, the extraction process itself can be time-consuming, especially when working with complex microbial communities or low-biomass samples. Researchers must carefully plan and budget for these expenses to ensure that they can carry out their experiments effectively. Despite these challenges, microbial DNA extraction is a fundamental step in many areas of research, including environmental microbiology, medical microbiology, and biotechnology. The ability to isolate and analyze microbial DNA provides valuable insights into the diversity and function of microbial communities, and contributes to our understanding of various biological processes. As technology continues to advance, new methods and tools for microbial DNA extraction are constantly being developed, offering researchers improved efficiency and reliability in their work. Overall, while microbial DNA extraction presents several challenges, it is an essential process that continues to drive innovation and discovery in the field of microbiology.。

历年考博专业课真题

历年考博专业课真题

中科院 2003 生化考博题 1.详述原核与真核生物基因在转录水平表达调控? 2.近年真核生物基因表达调控新进展? 3.四种分析蛋白质纯度方法原理? 4.七种重组体筛选方法,原理? 5.包含体? 6.一支痢疾杆菌和一支小鼠细胞株.如何分离出他们的二氢叶酸还原酶基因. 7.蛋白质一,二,三,四结构?用什么方法测定. 8.从 cDNA 文库中用特定一对引物利用 PCR 扩增一个酶蛋白基因.将该基因重组到一个通 用表达载体上进行表达. 对经过纯化的酶蛋白进行活性测定表明, 重组蛋白具有相应酶活性. 是否可以认为有关蛋白质基因表达纯化工作是否完成?为什么?复旦大学 2002 年试题(金融学) 1,分析发达国家设立政策性金融机构的原因和效果. (20 分) 2,试从投资成本效应和资产结构调整效应,评述我国最近几年降低利率的效果. (30 分) 3,什么叫可维持的国际收支结构,结合它来分析资本账户下货币自由兑换的条件. (20 分) 4, 全面阐述第一代和第二代货币危机模型, 并结合某国实际来比较分析这二代模型的优劣. (30 分)2004 年人大民法考博试题 民法: 1,论请求权 2,人格与人格权的区别以及人格权的民事权利的性质 3,相邻权与地役权的区别 4,论商业秘密权 民事诉讼: 1,论不要证事实 2,论当事人更换 3,论上诉审程序 4,破产申请要件 中国人民大学民商法专业考博试题 民法 93. 1.论合同自由 2.新闻监督与侵害名誉权 3.证券市场的现状与对策 94. 1.试论我国物权制度的建立与完善(40) 2.我国公司法中有限责任公司与股份有限 公司的异同(30) 3.侵权行为责任与不当得利返还责任之间的联系和区别(30)95. 1.论物权分类 2.企业法人与社团法人的关系 3.侵权行为与违约行为的异同 96. 1.评析民法通则 2.物上请求权与侵权行为请求权之间的联系与区别 3.缔约过失责 任与合同责任的联系与区别 4.评析人身保险合同(3,4 选一) 97. 1.论我国社会主义市场经济与我国民商立法 2.行使同时履行抗辩权和行使合同解除 权的区别 3.论典权的性质,典权与抵押,质押,买卖和租赁的法律关系 4.论保险合同中 当事人的基本权利义务 98. 1.国有企业改革中的民法适用问题 2.效力待定行为与可撤销行为之间的区别 3.试 析最高人民法院关于《民法通则》的解释 200 条 4.侵权民事责任与不当得利民事责任之间 的比较 99. 1.我国《民法通则》和其他有关于我国民事权利主体的分类及法律地位 2.用益物权 的种类及逐一评述 3.知识产权及其他财产权的异同,著作权与工业产权的异同 4.有限责 任公司与股份有限公司的异同 2000. 1, WTO 规则对我国民商事立法的影响 2, 论经营权 3, 论合同自愿原则 4, 网 络环境下的知识产权保护 2001. 1.法人有限责任 2.善意取得 3.表见代理 4.代位权行使的要件 2002. 1. 论民事法律行为的发展和完善 2. 论物权请求权 3. 合同成立和效力的关系 4. 知 识产权在民法中的地位 2003 1.论民法典制定中的法人制度的完善 2.评析物权行为理论 3.论信托法律关系中的受托 人的权利性质 4.辨析效力待定合同与无效合同 5.论知识产权的私权本质 2004 1,论民法请求权 2,从人格权和人格的关系论述人格权的民事法律性质 3,论相邻权 和地役权的关系 4,论商业秘密权 民诉 93. 1.论市场经济条件下民事诉讼法的完善. 2.论公示催告程序. 3.诉讼保全与债的 保全的关系 4.民事诉讼法中当事人制度的新的发展. 5.其他组织问题 94. 1. 试析我国民事诉讼法中保护当事人行使诉讼权利的优先及其在民事诉讼法条文中的 体现 2.财产保全与先予执行的异同 3.试述督促程序在适用中的问题及处理方法 4.试论 法院对涉外仲裁裁决执行的审查 95.1. 试析民事审判中重实体轻程序的现象 2. 申请代位执行的根据 3. 公示催告程序 4. 诉 权与起诉权的关系 96. 1.评严格执行民事诉讼法,确保案件公正审理 2.代位申请执行与代位权 3.当事人 查证与法院取证的根据 4.涉外民事诉讼中管辖权冲突的解决途径 97. 1.关于建立我国民事审判模式的理论思考 2.评析新民事诉讼法 3.论举证责任倒置 4.论民事诉讼法与仲裁法的关系 98. 1.建立我国诉讼标的理论 2.调解与审判分离理论 3.启动再审的三种方式间的关系 99. 1.试述程序公正与程序效益价值之间的关系 2.重塑我国再审程序制度的理论思考 3.论执行难及其解决途径 2000. 1.诉权在司法实践中的保护 2,诉讼程序与非讼程序的交叉适用 3,论执行的性质 4,论缺席判决 2001. 1.调解制度的完善 2.执行权性质及与裁判权的区别 3.诚信原则是否适用于民诉 举证责任的分配 2002. 1.评析民诉法关于审前准备的规定 2.法律推定与事实推定的效力 3.判决的形式 确定力与实质确定力 4.执行竞合及其解决 2003 1.论书证的分类及其法律意义 2.论检察机关在民事诉讼中的作用(地位) 3.论当事人能力与民事权利能力的一致与分离 4.辨析代位申请执行和代位权 2004 1,论民事诉讼法中的免予证明事实 2,论当事人变更 3,论二审对一审的裁判 4,论 破产申请提出的条件武汉大学 2004 年医学考博试题 消化内科试题 1 慢性腹泻的发病机制和病因 2 IBD 遗传易感性表现在那些方面 3 肝性胸水的发病机制 4 GERD 的诊断与治疗 5 肝性脑病与亚临床肝性脑病的诊断与治疗 6 NSAID 诱发溃疡的机制病生 试题一,简答题 1 简述凋亡的基本过程 2 水中毒的病因和对机体的影响 3 低钾血症对机体的影响 4 心肌肥大的基本特点 5 简述钙超载引起心肌损伤的机制 6 何为缺血预处理?它有哪些保护作用? 二,论述题 1 一例严重感染并发急性肾小管坏死的病人会出现哪些酸碱平衡紊乱,为什么? 2 何为自由基?试述它在体内的作用. 2004 年华中科技大学同济医学院骨科考博专业试题 一名解(原题为英文) 1.休克抑制期 2.骨不连 3.骨筋膜室综合征 4.非少尿型肾功衰 5.预存自体回输血二.问答题 1.创伤的检查与诊断方法 2.脑复苏的现代概念及主要治疗方法 3.腰椎间盘的分型 进展及治疗方法 4.周围神经损伤的分类及修复方法 5.股骨头缺血坏死的 FICAT 分期 6.你对骨肉瘤的最新看法 7.骨肿瘤保肢手术的适应征.协和 2003 年分子生物学专业试题(博士) 1, 近年来人们对真核基因调控理论有了深入的认识, 现在大家普遍接受"unified theory" 的理论,请你谈一谈对该理论的理解及其你的观点. 2,用微球菌核酸酶酶解染色质,然后进行电泳,发现 200bp,400bp,600bp,800bp... 的条带,试问从该现象可以得出什么结论?图 1 所示的条带不是非常狭窄,试解释其原因武汉大学 2001 比较文学与世界文学专题试题 一.20 分.AB 任选 A.莎士比亚的《麦克白》是怎样将主人公的内在心理感受和精神状态"外化"为舞台形象 的?表现主义文学(如奥尼尔的《琼斯皇》)又是如何系统的运用这类"外化"手法的? B. 以你熟悉的世界文学作品为例, 谈谈你对用喜剧性情节表达悲剧性内涵这一艺术手法的 见解.(说明:不限于戏剧,也可以举小说等为例.) 二.30 分.在你所涉猎的世界文学作品中,你对哪一部印象最深?描述你阅读它事的初始 感受,然后从理论上对你的这些感受进行反思,剖析和评价. 三.20 分.CD 任选 C.结合具体的作家和作品,论述中西诗歌的区别性基本特征. D.从 T.S.艾略特在《批评的功能》中所阐述的文学"总体论"出发,结合其他西方学 者的相关理论,论述民族文学,总体文学与比较文学的相互关系. 四.30 分.古希腊的柏拉图在《伊安篇》中提出了"迷狂说".中国宋代诗学家严羽在《沧 浪诗话.诗辨》中提出了"妙悟说".结合他们的具体论述,以"迷狂说与妙悟说"为题 ,从学说产生的时代与社会环境, 诗任的创作过程, 艺术心理的运动规律等层面进行比较和辨 析第四军医大学一九九二年攻读博士学位研究生入学试题 学科专业: 传染病学 考试科目: 免疫学 一. 名词解释(每题 4 分,共 32 分) 1. ICAM-1 2. interleukin 12(IL-12) 3. tumor infiltrating lymphocyte 4. TCR/CD3 complex 5. hematopoietin receptor family 6. individual idiotype(IdI) 7. integrin 8. colony-stimulatory factor (CSF) 二. 简答题(每题 8 分,共 32 分) 1. 免疫球蛋白重链的基因如何进行类别转换(class switching )? 2. 简述杀伤性 T 细胞(Tc)杀伤病毒感染靶细胞的机理. 3. 生物应答调节剂( biological response modifier,BRM)主要有哪几类?简要介绍在传染 性疾病防治中的作用. 4. 简述抗原提呈细胞(APC)与辅助性 T 细胞(Th)相互作用的关系. 三. 问答题(每题 18 分,共 36 分) 1. 试述干扰素的分类及其生物学作用特点. 主要可以治疗哪些传染性疾病?简述干扰素检测 的方法和原理. 2. 何为基因工程抗体?目前国内外在基因工程抗体研究中有哪些主要进展? 第四军医大学 一九九三年攻读博士学位入学考试试题 学科专业: 传染病学, 消化内科 考试科目: 免疫 学 一. 名词解释(每题 4 分,共 40 分) 1. CD4 2. T cell receptor(TCR) 3. immunoglobulin superfamily (IgSF) 4. selectin 5. anti-idiotypic antibody (αId)6. major histocompatibility complex(MHC) 7. immunotolerance 8. biological reponse modifier(BRM) 9. immune reponse gene (Ir gene) 10. reshaped antibody (or reconstituted antibody) 二. 简答题(每题 8 分,共 32 分) 1. 简述白细胞介素 6(IL-6)主要的生物学活性. 2. 细胞毒性 T 淋巴细胞(Tc 或 CTL)与抗体依赖的细胞介导的细胞毒(ADCC)杀伤机理有何不 同? 3. 简述第Ⅳ型(迟发型)变态反应的发生机理. 4. NK 细胞有哪些主要的表面标记?NK 细胞有哪些主要的生物学活性? 三. 问答题(每题 14 分,共 28 分) 供传染病学专业试题: 1. 机体有哪些免疫细胞和免疫分子参与抗病毒感染?它们是如何发挥病毒免疫作用的? 2. 目前单克隆抗体在病毒学中有哪些主要用途?今后可能有哪些主要的发展方向? 供消化内科专业试题: 1. 目前体内和体外检测肿瘤患者免疫功能的方法主要有哪些?分别叙述每种方法的原理和 结果测定? 2. 目前单克隆抗体在肿瘤学中有哪些主要的用途?今后可能有哪些主要的发展方向? 第四军医大学一九九四年攻读博士学位入学考试试题 学科专业: 传染病学, 消化内科 考试科目: 免疫学 一. 名词解释(每题 4 分,共 40 分) 1. CD8 2. T cell receptor α and β chain (TCRαβ ) 3. immunoglobulin fold(Ig fold) 4. cadherin (Ca-dependent cell adhesion moleculers) 5. idiotype-anti-idiotypic antibody immune network theory 6. HLA class II antigen 7. complementarity-determining region (CDR)8. perforin(or pore-forming protein ,PFP) 9. high affinity IL-2 receptor 10. artificial active immunization 二. 简答题(每题 8 分,共 32 分) 1. 简述白细胞介素 2(IL-2)主要的生物学活性及其在临床治疗中的应用. 2. 请比较第Ⅰ型(速发型)超敏反应与第Ⅳ型(迟发型)超敏反应的发病特点. 3. 试述分泌型 IgA(secretory IgA)的结构特点和合成分泌过程. 4. 试比较 T,B 淋巴细胞细胞膜表面分子(如表面抗原,表面受体等)的异同点. 三. 问答题(每题 14 分,共 28 分.请注意:每位考生只能从 1,2 题中选一题,3,4 题中选 一题,共答两题,多答者不计分.) 1. 目前检测细胞因子主要有生物学活性检测法和免疫学 检测法,请举例分别叙述两种方法的实验原理. 2. 为了避免 IgG 抗体 Fc 段非特异性作用,常应用胃蛋白酶水解的 F(ab')2 段,试问如何应 用 SDS-PAGE 方法对 F(ab')2 进行鉴定? 3. 试述抗肿瘤基因工程抗体的研究进展. 4. 试述抗病毒基因工程抗体的研究进展. 第四军医大学一九九五年攻读博士学位入学考试试题 学科专业:免疫学,传染病学,消化内科 考试科目:免疫学 一. 名词解释(每题 4 分,共 40 分) 1. immunoglobulin gene rearrangement 2. the common chain of cytokine receptor (or a cytokine receptor subunit shared by some cytokine receptors) 3. flow cytometry(FCM) 4. carrier effect 5. positive selection of T lymphocytes in thymus 6. mouse TH1(Th1) and TH2(Th2) subsets 7. perforin (pore-forming protein ,PFP) 8. ADCC(antibody-dependent cell-mediated cytotoxicity) 9. SH-2(src-homology region 2) 10. Ab2β (internal image) 二. 简答题(每题 8 分,共 32 分)1. 近年来在人类白细胞分化抗原(CD)研究领域中有哪些主要进展? 2. 参与活化 T 细胞与活化 B 细胞相互作用的分子主要有哪些?简述其结构和功能? 3. 试述 HLA 在临床上的主要应用. 4. 例举三种从人外周血单个核细胞(PBMC)中纯化 T 细胞的方法,分别叙述其实验原理和主 要操作步骤. 5. 评价红细胞生成素(EPO),干扰素(IFN)和集落刺激因子(CSF)在临床某些疾病的应用. 三. 选择问答题(每题 10 分,共 20 分.请按报考专业答题,如答非本专业题或多答题均视为 无效.) 免疫学专业: 1. 试述细胞因子受体中,Ig 超家族,造血因子受体超家族,神经生长因子受体超家族以及 趋化因子受体超家族的主要结构特点,每个超家族例举出 2 个成员. 2. 试比较人 T,B 淋巴细胞细胞膜表面分子(表面标记)的异同点,它们分别参与哪些主要的 免疫功能? 传染病学专业: 1. 人类免疫缺陷病毒(HIV)感染人体后,免疫功能可发生哪些主要的变化?机理是什么?如 何进行相应的免疫学功能检测? 2. 请评述肾综合征出血热病毒(HFRSV)感染后机体免疫学变化的与病理损伤的关系. 消化专业: 1.试述与消化系统有关的肿瘤相关抗原研究的进展. 2.简述粘膜相关淋巴样组织(mucosal assiociated lymphoid tissue,MALT)的组成和功能特 点.分泌型 IgA 是如何进行合成和分泌的? 第四军医大学一九九六年攻读博士学位入学考试试题 免疫学试题 一. 名词解释(每题 4 分,共 40 分) 1. Fas(CD95)/FasL 2. common chain of cytokine receptor 3 . TCR/CD3 complex 4. negaive selection of thymocytes 5. artificial active immune 6. anti-idiotypic 7. IgSF 8. Integrin9. chemokine 10. B7/CD28 二. 问答题(每题 12 分,共 60 分) 1. 比较 MHCⅠ和 MHCⅡ类抗原参与的加工提呈抗原的过程. 2. 比较 CTL 和 NK 杀伤靶细胞时识别和杀伤机制的特点. 3. 比较免疫学检测法和生物学活性检测法检测细胞因子的优缺点. 4. 发现一种新的白细胞分化抗原或肿瘤相关抗原,并制备了单克隆抗体,试设计实验方案 克隆此基因. 5. 选择下述中一个专题,叙述我国在这一研究领域的现状及面临的挑战 src="./images/smilies/sad.gif" border=0 smilieid="2">1)肿瘤免疫;(2)基因治疗; (3)CD 抗原. 第四军医大学一九九七年博士研究生入学考试免疫学试题 一. 名词解释(每题 4 分,共 40 分) 1. B7/CD28 2. Th1 subset 3. seven predicated transmembrane domain receptor superfamily(STR superfamily) 4. antibody affinity maturation 5. AP-1 6. single chain variable fragment(ScFv) 7. NK cell receptor 8. Zinkernagel-Doherty phenomenon 9. Ig fold 10. CD40/CD40L 二. 问答题(每题 12 分,共 36 分) 1. 试述胸腺微环境对胸腺细胞的选择作用及其与 T 细胞功能性亚群形成的关系. 2. 试述体液免疫应答的规律,回忆反应和抗体类别转换的机制是什么? 3. 试从结构和功能等角度,阐述白细胞分化抗原(CD),粘附分子(integrin)和免疫球 蛋白超家族(IgSF)三类分子的相互关系.目前在这一领域中主要研究热点是什么? 三. 问答题(24 分,第 1 题为免疫学专业考生试题,第 2 题为血液病学科考生试题,第 3 题为消化内科考生试题,只允许答本专业试题)1. 试比较 TCR 和 BCR 结构及其识别抗原,淋巴细胞活化信号的分子机理. (免疫学专业). 2. 试述白血病免疫学分型理论和方法的研究进展.(血液病学专业). 3. 试述肿瘤疫苗的研究进展.(消化内科专业). 一九九八年博士研究生入学考试试题 (免疫学专业和专业基础) 一.名词解释(每题 3 分,共 45 分) 1.Co-stimulators (or co-stimulating molecules) 2.NK-kB 3.Immunoglobulin superfamily 4.antigen-presenting cell (APC) 5.death domain R and CXCR 7.Lectin (or mitogen) 8.Clusters of differentiation, CD) 9.B7 family 10.Cytotoxic T lymphocyte, CTL) 11.IL-15 and IL-15 receptor (IL-15R) 12.MHC restriction 13.Affinity-chromatography 14.Cyctosprin A, CsA 15.Antibody-dependent cell-mediated cytotoxicity, ADCC) 二.问答题(每题 10 分,共 30 分) 1.何为 Th1 和 Th2 亚群?如何检测?在临床上有何意义? 2.试述免疫球蛋白(Ig)的结构与功能的关系. 3.试比较 T 细胞受体(TCR/CD3)与 B 细胞受体(BCR)的组成,结构及其识别 抗原的特点. 三.选择问答题(各专业考生只答一道本专业试题,25 分) 免疫学专业: 1.试述 B7/CD28, CTLA-4,CD40/CD40L,LFA-1/ICAM-1,CD2/LFA-3 的结构,分布以及相互 作用后介导的主要生物学功能.消化内科: 2.肿瘤抗原分为哪几类?机体抗肿瘤免疫主要有哪些因素(机制)?简述提高 抗肿瘤免疫研究的略策. 血液病学专业: 3.何为白血病的免疫学分型?何为移植物抗宿主反应(GVHR)?GVHR 发 生的主要原因(条件)是什么? 一九九年九博士生入学考试试题 (专业基础: 免疫学) 一.名词解释(每题 5 分,共 45 分) 1. ADCC(antibody dependent cell-mediated cytotoxicity) 2. 环孢菌素(cyclosporin) 3. KIR(killer cell inhibitory receptor) 4. HLDA(human leucocyte differentiation antigen) 5. Interleukin 18(IL-18) 6. 整合素(integrin) 7. Fas/FasL 8. FcR(免疫球蛋白 Fc 段受体) 9. 细胞间粘附分子(ICAM) 10. Th1/Th2 11. 基因疫苗(DNA 疫苗) 12. chemokines and chemokine receptor 13. 免疫耐受 14. 共刺激分子 15. 死亡结构域(death domain) 二.问答题(第 1,2 题各 18 分,第 3 题 19 分) 1. 试比较杀伤性 T 细胞(CTL)与自然杀伤细胞(NK)在杀伤靶细胞过程中,识别细胞毒及介导 免疫功能有何不同? 2. 70 年代以来,有关 Ig 和体液免疫研究存在以下几项重大发现和突破而获得医学和生物学 诺贝尔奖,请分别阐述它们的理论意义及在医学实践中的应用. (1)1972 年:胃蛋白酶和木瓜蛋白酶水解 Ig,获得 Fab,Fc,F(ab')2 等片段 (2)1977 年:放射免疫法 (3)1984 年:淋巴细胞杂交瘤和单克隆抗体(4)1987 年: Ig 基因的结构 3. 近年来在肿瘤免疫研究领域中有哪些重要进展?试述当前 提高机体抗肿瘤免疫的主要策略. 一九九九年博士生入学考试试题(免疫学专业) 问答题(每题 25 分) 1. 试比较 T 细胞受体(TCR),B 细胞受体(BCR)和 NK 细胞受体(NKCR)的组成,识别配 体以及信号转导的异同点. 2. 以胸腺依赖抗原刺激机体产生抗体的免疫应答为例,T 细胞和 B 细胞是如何相互作用? 有哪些粘附分子和共刺激分子参与 T,B 细胞的相互作用? 3. 肾综合征出血热(HFRS)病毒的结构基因已经搞清楚,为了证实 HFRS 病毒感染机体(以 Balb/C 小鼠为例)可产生 HFRS 病毒核衣壳蛋白(NP)特异性 CTL,并在免疫防护中起重要作用, 请应用免疫学理论和方法,设计一系统实验,加以证实. 4. 例举二个近年来细胞和分子免疫 学研究中出现的新的热点,请分别评述其研究意义,发展趋势以及应用前景.中科院动物所博士生入学试题生物化学和高级生物化学 中国科学院动物研究所生物化学 1996 年博士研究生入学试题 1.蛋白质和蛋白质相互分离时主要根据它们之间的种有差别的 特征,这些差别特征有哪些方面?并举例说明. 2 试述三种粘多糖的名称,在动物体内的 主要分布, 主要构成单糖及其它糖类. 3 试举例说明蛋白质和它的前体的一级结构关系. 4 J. D. Watson 因其证明 DNA 的双螺旋结构,曾与 Crick 共获诺贝尔奖.这位科学泰头在他后 来一体名著中解释 DNA 形状时写过这样一段话:"Does DNAchain fold up into a regular configulation dominated by its regular backbone? If so, the configulation would most likely be a helical one in which all the sugar-phosphate groupl would have identical chemincal environments". 你认为他在这里用 configulation 一词描述 DNA 的三维结构确切吗?为什么? (此段英原文不必译出, 但须回答为什么, 否则无分) 中国科学院动物研究所生物化学 1998 年博士研究生入学试题一, 填充题 1 DNA 具有的两个重要功能是 , 核糖体的功能是 2 逆 转录酶是一种多功能酶,它兼有 指导的 DNA 聚合酶, 指导的 DNA 聚合酶. 3 能够用来 将外源的 DNA 片段转移到活细胞内部的 , 或 统称为克隆载体. 4 绝大多数真核生物信 使 RNA3'端有 . 5 证明 DNA 是遗传信息携带者的科学家是 . 6 蛋白质可与碱共热而水 解,碱水解引起 , , 和 的破坏. 7 蛋白质的三维构象也称 或 . 8 生物膜主要是由 和 两大类物质组成, 生物膜的基因结构形式是 . 膜两侧的物质和离子转运主要是通过 ,和 等 方式进行. 9 1997 年诺贝尔化学奖授予 , 主要是基于他们阐明了 反应机制分子结构及 酶 的作用机制. 10 脂肪和磷脂的合成主要是来自 和 . 11 糖蛋白的糖链,是由专一性很低 强的 ,从糖核苷酸上把单糖一个一个转移上去而形成的.二,解释名词和英文符号的科学 含义 1 △Gp 2 Q cycle 3ABC 4 Kcat 5 protomnotive force 6 Synonycodon 7 RT-PCR 8 genomic library 9 DNAfinger printing 10 DNAfoot printing 三,问答题 1 热力学第二定律证明任何体 系的它的外围环境必须不断增加它的熵, 然而活的生物体却从比较无序状态的物质不断建立 起高度有序的结构,这是否说明活的生物体不遵守热力学第二定律?为什么? 2 回答下述 问题是对或是错,假若是错请解释为什么? 1) 在底物饱和的条件下,酶的催化反应速率 与酶浓度成比例. 2) 在底物浓度成为反应限速因子是,酶的催化反应速率随反应时间而 下降. 3 举例简述生物体系中的氧化还原反应的重要意义. 4 在静息态的神经细胞中,胞内外的 K 与 Na 浓度的不同分布导致胞膜内侧表现为负电荷较大, 此种浓度梯差和电荷梯差 的总称是什么?假若以△G'代表在这种离子浓度梯差存在时的离子跨膜转运的能量变化, 其 反应表示为请解释上述充应式中的符号参量表示什么?其意义何在? 5 举例简述对细胞中 多种膜系统结构与功能的研究对神经系统疾病的重要性. 6 什么是回文结构(palindrome)? 请举例说明. 7 试述氨基酸顺序与三维结构构象的关系. 8 什么是核蛋白体(nucleoprotein) 比较重要的核蛋白体有那些? 9 举例说明三种糖蛋白的名称, 化学组成及其生理意义. 10 什么是终止密码子,已知的终止密码了有那些? 11 分子杂交是分子生物学重要的研究手 段,在核酸分子杂交中哪些参数是研究人员设计实验时必须考虑的基本参数? 中国科学院 动物研究所高级生物化学 1999 年博士研究生入学试题 一, 填充题 1 主动运输的主要特点 是 , , , , . 2 辅酶中 A 分子中含有 , , , . 3 线粒体 DNA 的复制方式是 , 其复制特点是 . 4 高能磷酸化物可分为 , , , . 5 糖类物质是含 和 化合物;常见 的糖有 和 ,它们分解后可分为 , , , . 6 蛋白质按其分子外型的对称程度可分为 和 蛋白质,按生物功能可分为 , , , , . 7 酶作为生物催化剂的特点是 , , , , . 二,解释基本概念 1 呼吸控制 2 DDRT-PCR 3 装配型质粒 4 翻译阻遏 5 离子载体 6 Seliwanoff 反应 7 茚三酮反应 8 萜类 9 蜡 10 同工酶 三,问答题(任选 7 题) 1 试述 逆转录酶的生物学意义. 2 简要介绍免疫系统中程序化细胞死亡. 3 简述生物膜运送的分 子机理. 4 写出 20 种常见氨基酸的中文名称和三字母符号. 5 分光光度计测定蛋白质含 量的基本原理是什么? 6 简述测定一种酶活力的基本原则. 7 说明磺胺药治病的基本原 理. 8 举例说明激素作用原理的四种不同方式. 9 根据你的生理学,细胞生物学和分子生 物学的知识, 构思一实验方案, 差异筛选和考虑克隆某器官或组织与发育或病理改变相关的 特异功能基因. 中国科学院动物研究所高级生物化学 2000 年博士研究生入学试题 一, 解 释基本概念 1 关向异构体 2 甘油三酯 3 花生四烯酸 4 溶菌酶 5 多酶体系 6 别构酶 7 辅酶 I 和辅酶 II 8 叶酸 9 激素 10 G-蛋白 11 叶绿素 12 前列腺素 13 脱氨基作用 14 转 氨酶 15 卟啉 16 密码子 17 质粒 18 基因文库 19 钙调蛋白 20 线粒体 二, 回答问题 (其 中 7,8 两题任选一题) 1 阐述糖蛋白及其生物功能. 2 阐述生物界蛋白质的多样性及其 在生物进化和生物功能中的意义. 3 RNA 在那些类型?比较它们的结构与功能. 4 阐述 生物大分子跨膜运送的方法及其作用机制. 5 试述脂蛋白的种类, 化学组成和生物功能. 6 说明真核生物的 DNA 聚合酶的种类及其生理功能. 7 根据你所掌握的知识阐述细胞质和 细胞核的相互关系.中国科学院发育生物学所博士研究生入学试题 中国科学院发育生物学所分子生物学 2000 年博士研究生入学试题 (一,二,三题为必答题,五和六可任选一题) 一, 请解释下列 名词,并写出它们的英文术词: 1 基因家族 2 持家基因 3 同形异位盒 4 基因沉默 5 功 能基因组学 6 信号肽 7 信号传递 8 细胞编程性死亡 二, 限制性内切酶是如何发现的? 限制性内切酶可分成几类?如何使用限制内切酶进行分子生物学的研究? 三, 请分别列出 用于蛋白质和核酸的电泳分析和分离的技术,并说明这些技术与蛋白质和核酸的性质的关 系. 四, 请比较植物和动物基因工程的异同,并在你所熟悉的生物(植物或动物)的范围 内探讨基因工程的前沿和瓶颈问题. 五, 获得一个功能未知的基因克隆后,怎样才能阐明 该基因的功能?请你根据自己熟悉的某种真核生物提出具体的研究方案. 六, 在真核生物 基因的 DNA 序列中,哪些部分的核苷酸序列的变异会影响其编码的蛋白质的结构和功能?。

Simple DNA Extraction Method for Dried Blood

J OURNAL OF C LINICAL M ICROBIOLOGY,Jan.2004,p.16–20Vol.42,No.1 0095-1137/04/$08.00ϩ0DOI:10.1128/JCM.42.1.16–20.2004Copyright©2004,American Society for Microbiology.All Rights Reserved.Simple DNA Extraction Method for Dried Blood Spots andComparison of Two PCR Assays for Diagnosis of VerticalHuman Immunodeficiency Virus Type1Transmissionin RwandaA.Fischer,1*C.Lejczak,mbert,1J.Servais,2N.Makombe,2J.Rusine,2T.Staub,3R.Hemmer,1,3F.Schneider,1,4J.C.Schmit,1,3and V.Arendt1,3Retrovirology Laboratory,CRP-Sante´,1National Service of Infectious Diseases,Centre Hospitalierde Luxembourg,3and Laboratoire National de Sante´,4Luxembourg,and Treatment andResearch AIDS Center,Kigali,Rwanda2Received4April2003/Returned for modification10July2003/Accepted27September2003Dried blood spots(DBS)onfilter paper facilitate the collection,transport,and storage of blood samples forlaboratory use.A rapid and simple DNA extraction procedure from DBS was developed and evaluated for thediagnosis of human immunodeficiency virus type1(HIV-1)infection in children by an in-house nested-PCRassay on three genome regions and by the Amplicor HIV-1DNA prototype assay version1.5(Roche MolecularSystems).A total of150samples from children born to HIV-1-infected mothers were collected in Kigali,Rwanda,in parallel as DBS and as peripheral blood mononuclear cell(PBMC)pellets.The results obtainedon DBS by the two PCR assays were compared to the results of nested PCR on PBMCs.Of150PBMC samples,10were positive,117were negative,and23were indeterminate for HIV-1infection.In DNA extracted fromfilterpapers and amplified by using the in-house nested PCR,9of these10positive samples(90%)were found to bepositive,and1was found to be indeterminate(only the pol region could be amplified).All of the negativesamples and all of the23indeterminate samples tested negative for HIV-1infection.When we used theAmplicor DNA test on DBS,all of the10PBMC-positive samples were found to be positive and all of the23indeterminate samples were found to be negative.Of the PBMC-negative samples,115were found to benegative and2were found to be indeterminate.We conclude that this simple rapid DNA extraction method onDBS in combination with both detection methods gave a reliable molecular diagnosis of HIV-1infection inchildren born to HIV-infected mothers.Vertical transmission of human immunodeficiency virus type 1(HIV-1)leads to a high level of infant mortality,especially during thefirst2years of life(19).It is therefore necessary to make an early diagnosis of HIV-1infection in newborns to initiate therapy of infected infants as early as possible.Sero-logical tests are not useful,since maternal antibodies can be present in children until the age of18months(17).Virologic tests such as virus cultures(14)and RNA(20)or DNA PCRs result in an earlier diagnosis.However,virus cultures are time-consuming,require a biosecurity laboratory,and have a poor sensitivity,and data regarding HIV RNA PCR sensitivity are limited.P24antigen detection is an alternative method to detect the presence of the virus,but the sensitivity is still lower than that of PCR(15).For these reasons,amplification of the integrated viral ge-nome by PCR has been the preferred method for the diagnosis of HIV infection in children for many years(11).However,this method requires venipuncture in newborns for blood sampling and preparation of lymphocyte pellets,both of which are dif-ficult to perform,particularly in developing country settings. Dried blood spot(DBS)samples are an interesting alterna-tive for lymphocyte pellets since only a few droplets of blood are required and can be directly collected on afilter paper. Storage and shipment offilter papers is easy since they can be kept at room temperature and DNA has a good stability in dried samples.Finally,DBS have been used for the detection of HIV-1genome by PCR since1991(3–5)with good sensi-tivity and specificity.However,previous studies on DNA detection in DBS often applied labor-intensive protocols with multiple extraction steps (6,7,9,16)that cannot easily be performed in thefield.A recent study used the DBS directly as a template for PCR,with a sensitivity of95.4%(2).The extraction steps were therefore simplified,but a commercial washing buffer was still needed. More importantly,only one region of the pol gene was ampli-fied.We present here part of a study on vertical transmission of HIV-1infection in Kigali,Rwanda.Our goals were(i)to de-velop an easy and rapid method to extract DNA from DBS and (ii)to compare two PCR assays:an in-house nested PCR and Amplicor DNA prototype assay version1.5,which has already been shown to be sensitive in detecting HIV-1DNA in whole blood in EDTA and in cell pellets(13).MATERIALS AND METHODSA total of150blood samples were obtained from139children born to HIV-1-seropositive mothers in Kigali,Rwanda.Samples were collected as whole blood*Corresponding author.Mailing address:Retrovirology Labora-tory,Centre Hospitalier de Luxembourg,Clinique Pe´diatrique,2e`meE´tage,L-1210Luxembourg.Phone:(352)44-11-61-12.Fax:(352)44-11-61-13.E-mail:fischer.a@retrovirology.lu.16on EDTA and as DBS when the children were between2and26months old.The age distribution of the samples was as following:71samples were collected when the children were less than4months old,44samples were collected when the children were between5and12months old;and35samples were collected when the children were between13and26months old.From July2002,patient follow-up was more efficient,and11children could be sampled twice.Nine of these sample pairs were collected thefirst time at between2and4months and the second time at between6and8months;samples from one child were collected at6and at11months,and the last sample pair was collected when the child was14and18months old.Sample preparation.For each sample,four drops of ca.50␮l of blood were spotted onfilter paper(Isocode Card;Schleicher&Schuell,Dassel,Germany) by direct application from a heel stick.The DBS were dried at room tempera-ture,stored in separated plastic bags,and shipped to the Retrovirology Labora-tory in Luxembourg for processing.Positive DBS controls were generated with ACH2cells(which contain a singleintegrated copy of HIV-1HXB2strain per cell),diluted in HIV-negative EDTA-blood to yield25,50,100,and500proviral copies per50␮l,dropped ontofilter papers,and dried at room temperature.Negative DBS controls were obtained by spotting ca.50␮l of the same HIV-negative whole blood.Peripheral blood mononuclear cells(PBMCs)were isolated from ca.1ml of venous EDTA-blood by density gradient centrifugation(LymphoPrep;AXIS-SHIELD Poc AS,Oslo,Norway),washed in phosphate-buffered saline,and resuspended in5ml of medium(88%RPMI1640,10%heat-denatured fetal bovine serum,1%penicillin-streptomycin[10,000U/ml and10,000␮g/ml,re-spectively],and1%L-glutamine at200mM).The cell concentration was deter-mined by cell counting in a Coulter ZF cell counter(Analis,Namur,Belgium). PBMCs were then diluted in medium to a concentration of106cells/ml and spun to obtain pellets of106cells.Pellets were stored atϪ80°C and shipped to Luxembourg for processing.Positive cell pellet controls were obtained by diluting ACH2cells in the same medium as the PBMCs to obtain25and50ACH2cells in106uninfected MT4 cells to reproduce the situation in blood,in which most of the cells are unin-fected.Negative cell pellet controls consisted in pellets of106MT4cells. DNA extractions.DNA extraction of PBMC pellets and of ACH2control pellets was performed with the QIAamp mini kit(Westburg,Leusden,The Netherlands),according to the manufacturer’s instructions except for the elution, which was performed in100␮l of elution buffer instead of200␮l.Samples were immediately used for PCR or stored atϪ20°C.For DNA extraction of the DBS,one spot of DBS or of positive or negative DBS control was put into a1.5-ml Eppendorf tube;the cap was used to detach the spot to avoid cross-contamination.Spots were washed twice in1ml of phosphate-buffered saline–0.1%Tween during10min at room temperature with shaking.Spots were then transferred to2-ml screw-caps tubes and200␮l of Chelex-100resin(biotechnology grade;Bio-Rad,Nazareth,Belgium)diluted at 5%in H2O was added.Elution was carried out for30min at60°C,followed by boiling at100°C for30min.The samples were then quick-spun to collect the Chelex in the bottom of the tube,and the supernatant was immediately used for PCR or stored atϪ20°C.After extraction,DNA from PBMC samples and DBS were processed in the same way.In-house nested PCR.A total of10␮l of DNA solution extracted from PBMCs or from DBS was used for nested PCR to amplify parts of the HIV-1pol,gag,and env genes.(i)gag region.The primers were H1G777and H1P202(12)and the cycle protocol on a Perkin-Elmer GeneAmp9600thermocycler was2min at94°C and 35cycles of30s at94°C,30s at50°C,and90s at72°C,followed by7min at72°C. Then,2␮l of outer PCR product was used for the inner PCR with the primers H1gag1584and G17(12),and the cycle protocol was1cycle of2min at94°C, followed by35cycles of30s at94°C,30s at50°C,and60s at72°C,and then1 cycle of7min at72°C.(ii)env region.Primers ED5and ED12(8)were used for outer PCR,and primers ES7and ES8(8)were used for nested PCR.The cycling conditions for both reactions were as follows:2min at94°C,followed by3cycles of60s each at94,55,and72°C;followed by32cycles of15s at94°C,45s at55°C,and60s at72°C,withfinal extension for7min at72°C.(iii)pol region.Primers A1and A2(11)were used,and the cycle protocol was 60s at94°C,followed by35cycles of30s at94°C,15s at50°C,and45s at72°C, withfinal extension for10min at72°C.For nested PCR,the primers were A3and A4(11),and the cycling conditions were60s at94°C,followed by25cycles of30s at94°C,15s at50°C,and30s at72°C,withfinal extension for10min at72°C. (iv)Extraction and inhibition control.To test for the presence of PCR inhib-itors,the human␤-globin(HuBG)gene was amplified in a single PCR assay with the primers PC03and KM38(18)under the same conditions as described above for the outer pol fragment.Nested-PCR products were visualized after electrophoresis on an ethidium bromide-stained2%agarose gel by transillumination at250nm.If the␤-globin fragment was not present,the sample result was scored as indeterminate for HIV.If the␤-globin gene was amplified,results were analyzed as following:if two or more amplifications of the pol,gag,and env genes were positive,the samples were considered HIV positive;if only one region was amplified,the results were reported as indeterminate for HIV;and if none of the three regions were amplified,the samples were considered HIV negative.Evaluation of the Amplicor DNA prototype assay(v1.5).To compare the prototype test with the in-house PCR,we adapted the Amplicor DNA prototype assay v1.5(Roche Molecular Diagnostics)to use directly the DNA extracted from DBS:amplification of a142-bp fragment of the gag gene was performed in a100-␮l mixture containing3.6␮l of internal control DNA diluted to1/5in distilled water,50␮l of DNA extracted from DBS,and50␮l of a master mix containing dATP,dCTP,dGTP,dUTP,AmpErase,AmpliTaq polymerase,salts, and the biotinylated gag primers SK145and SKCC1B.The cycling conditions were2min at50°C,followed by5cycles of10s at95°C,10s at55°C,and10s at72°C,and then followed by30cycles of10s at90°C,10s at60°C,and10s at 72°C.Amplicons were totally denatured with100␮l of denaturation solution for 10min at room temperature.A25-␮l sample of denatured product was then transferred in a control plate coated with internal control specific probe CP35to check the presence of PCR inhibitors and in the HIV-1detection plate coated with HIV-1-specific probe SK102.Colorimetric revelation was performed as indicated by the manufacturer. Appropriate positive and negative controls provided in the kit were added in each assay.ACH2DBS-positive controls were also tested to evaluate the detec-tion limit of the test.Interpretation of the results was done as previously described(21).In brief, when the optical density at450nm(OD450)in the control plate wasϽ0.2,the presence of PCR inhibitors was detected,and the sample could not be analyzed. When the OD in the control plate wasՆ0.2,the sample was considered HIV negative if the OD in the HIV-1detection plate wasϽ0.2,HIV indeterminate if the OD wasՆ0.2butϽ0.8,and HIV positive if the OD wasՆ0.8.All negative controls should have an OD ofϽ0.2,and positive controls should have an OD of Ն1.5.RESULTSDetection limit of HIV-1DNA extracted from DBS.To eval-uate the detection limit of HIV,PCR was performed on10␮l of DNA eluate extracted from DBS containing25,50,100,or 500ACH2cells in50␮l of whole blood.With the in-house nested PCR,the25ACH2standard could be detected in9of 12tests(75%),the50ACH2standard could be detected in15 of18tests(83.3%),the100ACH2standard could be detected in20of23tests(87%),and the500ACH2standard could be detected in6of6tests(100%).The results are summarized in Table1.We chose to use a50ACH2and a100ACH2standard as positive controls for each DNA extraction from the DBS. The Amplicor DNA test was able to detect50and100ACH2 cells/spot in100%of the tests,corresponding to calculated TABLE1.Detection limit of nested PCR on DBSNo.of ACH2cells/spot aEluate vol forPCR(␮l)No.of HIV proviralcopies/PCR b%Positive 2510 1.25755010 2.583.3 100105875001025100a Each spot consisted of50␮l of HIV-negative whole blood spiked with ACH2 cells.b The number of HIV proviral copies per PCR was calculated by the following equation:(number of ACH2cells per spot/elution volume[200␮l])ϫeluate volume used for PCR.V OL.42,2004TWO PCR ASSAYS FOR DIAGNOSIS OF HIV-1TRANSMISSION17amounts of12.5and25HIV proviral copies,respectively,in the50␮l of eluate used per PCR.Sensitivity of nested PCR in DBS and PBMCs.Nested PCR was performed on150DBS samples,and the results were compared to amplifications obtained in the corresponding PBMC samples.Among the150samples tested in duplicate,the HuBG genecould not be amplified in23PBMC samples(15.3%)and in7 DBS(4.6%).These samples were considered indeterminate for HIV infection.No repeat could be performed on PBMCs since the number of pellets available for each patient was limited.After a new DNA extraction from a second spot,six of seven indeterminate DBS samples tested negative for HIV (and positive for HuBG)and one sample remained indetermi-nate because of HuBG amplification failure.Of the127PBMC samples in which the␤-globin gene could be amplified,10were positive(7.8%)and117were negative for HIV.Among the10positive samples,one was a duplicate sample2months after thefirst sample from one child,so there were nine different children positive for HIV-1infection. For the10positive samples,HIV provirus was also detected in9by nested PCR in DBS.The remaining sample was con-sidered indeterminate since only the pol region could be am-plified,despite repeated testing.The23␤-globin-negative PBMC samples were HIV negative on DBS.The initial results and after repeated tests are shown in Table2.Compared to PBMCs,the overall sensitivity of nested PCR on DBS was90%,and the specificity after repeat of indeter-minate samples was99%.Table3shows the results according to the children’s age at collection time:of the10PBMC positive samples,4were collected before4months of age,2were collected at between 4and12months,and4were collected at between12and26 months.The sensitivity of nested PCR on DBS was100%for children less than4months old,100%for children between4 and12months,and75%for children between12and26 months old.Evaluation of the Amplicor DNA prototype test.The150 DBS samples were analyzed with the Amplicor DNA proto-type assay version1.5,and the results were compared to those obtained with nested PCR on PBMCs.The results obtained are summarized in Table4.The23␤-globin-negative PBMC samples were found to be HIV neg-ative and10of10HIV-positive PBMC samples were found to be positive with the commercial test.Of the117HIV-negative PBMC samples,2were indeterminate for HIV,106were HIV negative,and9were detected as HIV-positive with the Am-plicor test.After repeated testing,the two indeterminate sam-ples remained indeterminate,with an OD450of between0.2 and0.8,and the nine presumed falsely HIV-positive samples were found to be HIV negative.According to these results,the sensitivity of this test was100%,and the specificity was98% after repeated testing(Table4).Table5summarizes the results by age.HIV infection in four of four children less than4months old could be detected by the Amplicor DNA test,so the sensitivity of the test in thefirst 4months of life is equivalent to that in thefirst26months of life.For the11children who could be sampled twice at least at a 2-month interval,all of the results obtained by nested PCR and with the Amplicor DNA prototype test were concordant with thefirst samples.DISCUSSIONThe DBS extraction procedure described here is rapid and easy to perform.Indeed,this procedure requires only two buffers that are easy to prepare and relatively little laboratory material.Therefore,it can be performed underfield condi-tions.TABLE2.Sensitivity and specificity of nested PCR on DBS aNested PCR on PBMCs (no.of samples)Nested PCR on DBS(no.of samples)First test b Repeat cϩϪIndϩϪIndϩ(10)901901Ϫ(117)0110701161Ind(23)02300230 aϩ,HIV-positive result;Ϫ,HIV-negative result;Ind,indeterminate result for HIV.b Sensitivity,90%;specificity,94%.c Sensitivity,90%;specificity,99%.TABLE3.Results of nested PCR on DBS distributed by age atsample collection aInfant age(mo)Nested PCR on PBMCs(no.of samples)Nested PCR on DBS(no.of samples)ϩϪInd Յ4bϩ(4)400Ϫ(62)0611Ind(5)050Ͼ4toՅ12cϩ(2)200Ϫ(31)0310Ind(11)0110Ͼ12toՅ26dϩ(4)301Ϫ(23)0230Ind(7)070 aϩ,HIV-positive result;Ϫ,HIV-negative result;Ind,indeterminate result for HIV.b Sensitivity,100%;specificity,98%.c Sensitivity,100%;specificity,100%.d Sensitivity,75%;specificity,100%.TABLE4.Sensitivity and specificity of the Amplicor DNA teston DBS aPBMC nested PCR result a(no.of samples)Amplicor DNA test v1.5on DBS(no.ofsamples)First test b Repeat cϩϪIndϩϪInd ϩ(10)10001000Ϫ(117)9106201152Ind(23)02300230 aϩ,HIV-positive result;Ϫ,HIV-negative result;Ind,inderminate result for HIV.b Sensitivity,100%;specificity,90%.c Sensitivity,100%;specificity,98%.18FISCHER ET AL.J.C LIN.M ICROBIOL.The detection limit of the nested PCR on DBS was deter-mined to be25ACH2cells in50␮l of whole blood,which were detected in75%of the tests.Since this corresponds to a value of1.25proviral copy in10␮l of eluate used for the PCRs,we do not expect to improve this limit,unless by an increase in the volume of eluate used for each PCR.The number of indeterminate samples probably due to the presence of PCR inhibitors was significantly higher(P valueϽ0.01[chi-square test])in the nested PCR on PBMCs(15.3%) than in the nested PCR or in the Amplicor test on DBS(4.6 and0%,respectively).These results suggest that lymphocyte pellets are probably difficult to prepare in thefield,and we suppose that the presence of the PCR inhibitors could be due to hemoglobin remaining in the pellets.The DBS avoid the separation of lymphocytes;moreover,the elution with Chelex-100should eliminate the potential PCR inhibitors,since Chelex is a cation-chelating resin:the positively charged ions are captured by the resin,whereas the DNA,negatively charged,remains free in the solution.The sensitivities of the Amplicor DNA test and of the nested PCR on DBS were similar(100and90%,respectively),but nested PCR is theoretically more stringent since three different regions of the HIV-1genome are amplified,whereas the com-mercial test amplifies only one region.Moreover,the specific-ity of the nested PCR is significantly better than the specificity of the Amplicor DNA test,which presented a number of false-positive results(7.1%,PϽ0.01[chi-square test])in thefirst run,even if all false-positive results could be corrected after a repeated test.Nested PCR on DBS presented no false-positive samples but did present a number of indeterminate results in thefirst run,probably because of the presence of PCR inhib-itors,as suggested by the failure to amplify the␤-globin gene. All of these samples were HIV negative in a repeated test. Compared to nested PCR,which is time-consuming and re-quires good technical experience in PCR,the commercial test is rapid,requires less equipment,and is easy to perform. The nested-PCR primers were able to amplify fragments of 175,700,and460bp from the pol,env,and gag regions,re-spectively,confirming that DNA fragments from different sizes can be amplified from DBS.These fragments could potentially be used for other applications,such as sequencing. Previous results have shown that most of the patients in Rwanda are infected with HIV-1subtype A(1).Therefore,one can speculate that both the nested PCR and the Amplicor DNA test could be used for HIV-1detection in regions where non-B subtypes are predominant.In conclusion,the DNA extraction method from DBS de-veloped here is rapid,is easy to perform,and permits reliable diagnosis of HIV-1infection when combined with nested PCR or with the Amplicor DNA prototype assay.Both PCR meth-ods have a sensitivity superior to90%and a high specificity (Ͼ98%)and seem to be able to detect patients infected with non-B subtypes.Moreover,no difference of sensitivity was observed in the assays in children up to4months old compared to assays with children up to26months.The most ideal time to perform HIV-1diagnosis would be the neonatal period when both mother and child are still in the hospital,but even the DNA PCR on PBMCs has a sensitivity of only38%at48h of life.The sensitivity then increases rapidly to93%at2weeks of age(10).In any case,children also have to be tested when they are between2and4weeks old.The choice of one test instead of the other depends on the setting in which it is to be used:if screening of a large number of children is needed in a short time in difficult laboratory conditions,the Amplicor test is preferable,but nested PCR might be better in studies involving a reduced number of sam-ples and laboratory technicians experienced in PCR. Further evaluation of this test is currently ongoing in Kigali in1-month-old children to evaluate the sensitivity of the test in younger children.Moreover,the entire procedure(sample col-lection,DNA extraction,and PCR)is now being performed in Kigali to confirm that it can be done underfield conditions.ACKNOWLEDGMENTSThis study was supported by the Centre de Recherche Public Sante´and the Fondation Recherche sur le SIDA(Luxembourg)and Roche Molecular Systems,which provided the prototypes assays.REFERENCES1.Bachmann,M.H.,E.L.Delwart,E.G.Shpaer,P.Lingenfelter,R.Singal,and J.I.Mullins.1994.Rapid genetic characterization of HIV type1strains from four World Health Organization-sponsored vaccine evaluation sites using a heteroduplex mobility assay:W.H.O.isolation and characterization.AIDS Res.Hum.Retrovir.10:1345–1353.2.Beck,I.,K.D.Drennan,A.J.Melvin,K.M.Mohan,A.M.Herz,J.Alarco´n,J.Piscoya,C.Vel␣zquez,and L.M.Frenkel.2001.Simple,sensitive,and specific detection of human immunodeficiency virus type1subtype B DNA in dried blood samples for diagnosis in infants in thefield.J.Clin.Microbiol.39:29–33.3.Cassol,S.A.,ponite,T.Salas,C.Hankins,M.Arella,M.Fauvel,G.Delage,M.Boucher,J.Samson,J.Charest,M.L.Montpetit,and M.V.O’Shaughnessy.1992.Diagnosis of vertical HIV-1transmission using the polymerase chain reaction and dried blood spot specimens.J.Acquir.Im-mune Defic.Syndr.5:113–119.4.Cassol S.A.,B.G.Weniger,P.G.Babu,M.O.Salminen,X.Zheng,M.ThetHtoon,A.Delaney,M.O’Shaughnessy,and C.Y.Ou.1996.Detection of HIV type1env subtypes A,B,C,and E in Asia using dried blood spots:a new surveillance tool for molecular epidemiology.AIDS Res.Hum.Retro-vir.12:1435–1441.5.Cassol,S.A.,S.Read,B.G.Weniger,P.Gomez,pointe,C.Y.Ou,andP.G.Babu.1996.Dried blood spots collected onfilter papers:an interna-tional resource for the diagnosis and genetic characterization of human immunodeficiency virus type-1.Mem.Inst.Oswaldo Cruz91:351–358.eau,A.M.,H.W.Hsu,M.Schwerzler,G.Mushinsky,E.Walter,L.Hofman,and G.F.Grady.1993.Identifying human immunodeficiency virusTABLE5.Results of Amplicor DNA test on DBS distributed byage at sample collection aInfant age(mo)Nested PCR on PBMCs(no.of samples)Amplicor DNA test v1.5on DBS(no.ofsamples)ϩϪIndՅ4bϩ(4)400Ϫ(62)0611Ind(5)050Ͼ4toՅ12cϩ(2)200Ϫ(31)0301Ind(11)0110Ͼ12toՅ26dϩ(4)400Ϫ(23)0230Ind(7)070aϩ,HIV-positive result;Ϫ,HIV-negative result;Ind,indeterminate result forHIV.b Sensitivity,100%;specificity,98%.c Sensitivity,100%;specificity,97%.d Sensitivity,100%;specificity,100%.V OL.42,2004TWO PCR ASSAYS FOR DIAGNOSIS OF HIV-1TRANSMISSION19infection at birth:application of polymerase chain reaction to Guthrie cards.J.Pediatr.123:252–258.eau,A.M.,J.Pitt,G.V.Hillyer,ndesman,J.Bremer,B.H.Chang,J.Lew,J.Moye,G.F.Grady,and K.McIntosh.1996.Early detection of human immunodeficiency virus on dried blood spot specimens:sensitivity across serial specimens.J.Pediatr.129:111–118.8.Delwart,E.L.,E.G.Sphaer,J.Louwagie,F.E.McCutchan,M.Grez,H.Ru¨bsamen-Waigmann,and J.I.Mullins.1993.Genetic relationships deter-mined by a DNA heteroduplex mobility assay:analysis of HIV-1genes.Science262:1257–1261.9.DeVange Panteleeff,D.,G.John,R.Nduati,D.Mbori-Ngacha,B.Richard-son,J.Freiss,and J.Overbaugh.1999.Rapid method for screening dried blood samples onfilter paper for human immunodeficiency virus type1 DNA.J.Clin.Microbiol.37:350–353.10.Dunn,D.T.,C.D.Brandt,A.Krivine,S.A.Cassol,P.Roques,V.Borkowsky,A.De Rossi,E.Denamur,A.Ehrnst,and C.Loveday.1995.The sensitivityof HIV-1DNA polymerase chain reaction in the neonatal period and the relative contributions of intra-uterin and intra-partum transmission.AIDS 9:F7–F11.11.Fransen,K.,P.Zhong,H.De Beenhouwer,G.Carpels,M.Peeters,J.Lou-wagie,W.Janssens,P.Piot,and G.van der Groen.1994.Design and evaluation of new,highly sensitive and specific primers for polymerase chain reaction detection of HIV-1-infected primary lymphocytes.Mol.Cell.Probes 8:317–322.12.Heyndrickx L.,W.Janssens,L.Zekeng,R.Musonda,S.Anagonou,G.Vander Auwera,S.Coppens,K.Vereecken,K.De Witte,R.Van Rampelbergh, M.Kahindo,L.Morison,F.E.McCutchan,J.K.Carr,J.Albert,M.Essex, J.Goudsmit,B.Asjo¨,M.Salminen,A.Buve´,Study group on heterogeneity of HIV epidemics in african cities,and G.Van der Groen.2000.Simplified strategy for detection of recombinant human immunodeficiency virus type1 group M isolates by gag/env heteroduplex mobility assay.J.Virol.74:363–370.13.Jackson,B.J.,J.S.Parsons,L.S.Nichols,N.Knoble,S.Kennedy,and E.M.Piwowar.1997.Detection of human immunodeficiency virus type1(HIV-1) antibody by Western blotting and HIV-1DNA by PCR in patients with AIDS.J.Clin.Microbiol.35:1118–1121.14.McIntosh,K.,J.Pitt,D.Brambilla,S.Carroll,C.Diaz,E.Handelsman,J.Moye,and K.Rich.1994.Blood culture in thefirst6months of life for the diagnosis of vertically transmitted human immunodeficiency virus infection.J.Infec.Dis.170:996–1000.15.Nesheim,S.,F.Lee,M.L.Kalish,C.Y.Ou,M.Sawyer,S.Clark,L.Meadows,V.Grimes,R.J.Simonds,and A.Nahmias.1997.Diagnosis of perinatal human immunodeficiency virus infection by polymerase chain re-action and p24antigen detection after immune complex dissociation in an urban community hospital.J.Infec.Dis.175:1333–1336.16.Nyambi,P.,K.Fransen,H.De Beenhouwer,E.N.Chomba,M.Temmerman,J.O.Ndinya-Achola,P.Piot,and G.Van Der Groen.1994.Detection of human immunodeficiency virus type1(HIV-1)in heel prick blood onfilter paper from children born to HIV-1-seropositive mothers.J.Clin.Microbiol.32:2858–2860.17.Rakusan,T.A.,R.H.Parrott,and J.L.Sever.1991.Limitations in thelaboratory diagnosis of vertically acquired HIV infection.J.Acquir.Immune Defic.Syndr.4:116–121.18.Saiki,R.K.,C.A.Chang,C.H.Levenson,T.C.Warren,C.D.Boehm,H.H.Kazazian,Jr.,and H.A.Erlich.1988.Diagnosis of sickle cell anemia and beta-thalassemia with enzymatically amplified DNA and non-radioactive allele-specific oligonucleotide probes.N.Engl.J.Med.319:537–541.19.Spira R.,P.Lepage,P.Msellati,P.Van de Perre,V.Leroy,A.Simonon,E.Karita,and F.Dabis.1999.Natural history of human immunodeficiency virus type1infection in children:afive-year prospective study in Rwanda.Pediatrics104:e56.[Online.]20.Steketee,R.W.,E.J.Abrams,D.M.Thea,T.M.Brown,mbert,S.Orloff,J.Weedon,M.Bamji,E.E.Schoenbaum,J.Rapier,and M.L.Kalish.1997.Early detection of perinatal human immunodeficiency virus(HIV) type1infection using HIV RNA amplification and detection.J.Infect.Dis.175:707–711.21.Zijenah,L.S.,J.Humphrey,K.Nathoo,L.Malaba,P.Zvandasara,A.Mahomva,P.Iliff,and M.T.Mbizvo.1999.Evaluation of the prototype Roche DNA amplification kit incorporating the new SSK145and SKCC1B primers in detection of human immunodeficiency virus type1DNA in Zimbabwe.J.Clin.Microbiol.37:3569–3571.20FISCHER ET AL.J.C LIN.M ICROBIOL.。

茶树DNA的快速抽提法

茶树DNA的快速抽提法作者:陈志辉钟秋生林郑和游小妹陈常颂来源:《湖北农业科学》2011年第23期摘要:使用简化改良的CTAB法抽提茶树(Camelliasinensis)鲜叶DNA,通过电泳和PCR检测所提取DNA的质量。

实验结果表明,改良的CTAB法提取茶树DNA,步骤减少、抽提过程简单、时间短、效率高,用嫩叶和成熟叶均能抽提出高质量的DNA。

关键词:茶树(Camelliasinensis);DNA快速抽提;CTAB法;鲜叶保存中图分类号:S571.1;Q523文献标识码:A文章编号:0439-8114(2011)23-4962-03ASimpleandRapidDNAExtractionMethodofTeaCHENZhi-hui,ZHONGQiu-sheng,LINZheng-he,YOUXiao-mei,CHENChang-song( Tea Research Instituteof Fujian Academyof A gricultural Science,Fuan355000,Fujian,China)Abstract:CTABmethodwassimplifiedandmelioratedtoextractgenomeDNAfromtealeaves,andtheproductwasexaminedbyelectrophoresisandPCR.ResultsshowedthatpreservationtimeofbranchesinwaterhadnoobviouseffectonthequalityofDNAextracted.ThemodifiedCTABmethodwassimpleandfastasDNAwithhighqualitycouldbeobtainednotonlyfromtenderleavesbutalsofrommatureandoldleaves.Keywords:tea(Camelliasinensis);DNArapidextraction;CTAB method;preservationoffreshleaves茶树(Camelliasinensis)DNA抽提技术是茶树分子生物学研究的基础[1-3],茶树富含多酚和多糖等多种次生代谢物质,使得提取高质量的DNA较为困难。

安捷伦200600 DNA提取试剂盒 使用说明书

DNA Extraction KitINSTRUCTION MANUALCatalog #200600Revision C.0For Research Use Only. Not for use in diagnostic procedures. 200600-12L IMITED P RODUCT W ARRANTYThis warranty limits our liability to replacement of this product. No other warranties of anykind, express or implied, including without limitation, implied warranties of merchantability orfitness for a particular purpose, are provided by Agilent. Agilent shall have no liability for anydirect, indirect, consequential, or incidental damages arising out of the use, the results of use, orthe inability to use this product.O RDERING I NFORMATION AND T ECHNICAL S ERVICESUnited States and CanadaAgilent TechnologiesStratagene Products Division11011 North Torrey Pines RoadLa Jolla, CA 92037373-6300Telephone(858)424-5444Order Toll Free (800)Technical Services(800) 894-1304Internet************************World Wide Web EuropeServices Location Telephone Fax TechnicalAustria 0800 292 499 0800 292 496 0800 292 498Belgium 00800 7000 7000 00800 7001 7001 00800 7400 74000800 15775 0800 15740 0800 15720France 00800 7000 7000 00800 7001 7001 00800 7400 74000800 919 288 0800 919 287 0800 919 289 Germany 00800 7000 7000 00800 7001 7001 00800 7400 7400********************************* Netherlands 00800 7000 7000 00800 7001 7001 00800 7400 74000800 023 0446 +31 (0)20 312 5700 0800 023 0448 Switzerland 00800 7000 7000 00800 7001 7001 00800 7400 74000800 563 080 0800 563 082 0800 563 081 United Kingdom 00800 7000 7000 00800 7001 7001 00800 7400 7400********************************* All Other CountriesPlease contact your local distributor. A complete list of distributors is available at .C ONTENTSMaterials Provided (1)Storage Conditions (1)Introduction (1)DNA Extraction Kit Specifications (1)Protocol I: Extraction from Whole Blood (2)Protocol II: Extraction from Whole Tissue (3)Protocol III: Extraction from Cultured Cells (4)References (5)Endnotes (5)MSDS Information (5)Quick-Reference Protocol (8)M ATERIALS P ROVIDEDMaterials provided a Amount Storagetemperature BuffersSolution1Solution 2Solution3c 500 ml of 3× concentrate b420 ml150 mlroom temperatureroom temperatureroom temperatureRNase 1 ml 10 mg/ml stock –20°CPronase 2 ml 225 mg/ml stock –20°Ca The DNA Extraction Kit contains enough reagents to isolate DNA from 35 blood samples (10 ml/sample), 35 tissueculture pellets (1 × 108 cells/pellet) or 30 solid tissue samples (250 mg tissue/sample).b Dilute concentrate to 1× final concentration with sterile, deionized water.c Solution 3 is a saturated solution of NaCl, and some precipitation may occur during storage. This precipitation isnormal and will not affect DNA extraction.S TORAGE C ONDITIONSEnzymes: –20°CSolutions: Room TemperatureI NTRODUCTIONThe DNA Extraction Kit provides a simple, nontoxic method for efficientlyisolating high-molecular-weight DNA from tissue, whole blood and culturedcells. Depending on the starting material, the entire extraction takes onlytwo to three hours to complete and does not require phenol or chloroform.DNA isolated with the DNA Extraction Kit is free from contaminants andmay be used directly for restriction digests, cloning, Southern blotting, PCRamplification, and other DNA analysis techniques.The DNA Extraction Kit1is a modification of a procedure based onseparating contaminating protein from DNA by salt precipitation.2 Theprocedure involves digestion of cellular proteins, subsequent removal of theproteins by “salting out” using standard sodium chloride, precipitation of theDNA with ethanol and resuspension in the buffer of choice. The number ofsamples that may be processed simultaneously using this technique islimited only by the centrifuge space available.DNA Extraction Kit SpecificationsSource QuantityYieldSize(kb)Time Whole blood 5 ml >30 μg 100–500 2hours Whole tissue 1 gm >250 μg 50–100 2 hours, 45 minutesTissue cultured cells 108 cells >600μg 50–100 2 hours, 15 minutesRevision C.0 © Agilent Technologies, Inc. 2015.P ROTOCOL I:E XTRACTION FROM W HOLE B LOODSample Volume: 5–10 ml of Whole BloodFresh blood extractions yield 30–100 μg of DNA. The yield depends on thesource and freshness of blood. Lower yields will occur with blood that hasbeen stored for a few days.1. Add 40–45 ml of 1× Solution 1 (prepared by mixing 15 ml of 3×concentrate and 30 ml of ddH2O) to the blood sample to yield a finalvolume of 50 ml.2. Incubate the sample on ice for 2 minutes.3. Spin the sample for 15 minutes at 350 × g (1500 rpm using a BeckmanJS-5.2 rotor) at 4°C. Discard the supernatant and save the pellet; whileremoving the supernatant, be careful to not discard the gelatinous-appearing pellet.4. Resuspend the pellet in 11 ml of Solution 2.5. Add pronase (0.44 μl stock/ml sample) to the suspension to yield afinal concentration of 100 μg/ml.6. Incubate with shaking at 60°C for 1 hour, or at 37°C overnight.7. Chill the tube on ice for 10 minutes.8. Add 4 ml of Solution 3 to the tube. Invert several times to mix, thenplace the sample on ice for 5 minutes.Note A precipitate may be visible in solution 3. This precipitationis normal and will not affect DNA extraction.9. Pellet the protein precipitate by spinning for 15 minutes at 2000 × g(3400 rpm using a Beckman JS-5.2 rotor) at 4°C.10. Using a large-bore pipet, carefully transfer the supernatant to a sterile50-ml conical tube.Note Avoid removing any flocculent material when transferring thesupernatant.11. Add RNase (2 μl stock/ml sample) to the supernatant to yield a finalconcentration of 20 μg/ml.12. Incubate at 37°C for 15 minutes.13. Precipitate the DNA by adding 2 volumes of 100% ethanol to thesupernatant. Gently invert until the DNA precipitates (strands of awhite, flocculent material will form).14. Remove the DNA by spooling with a sterile glass rod.15. Rinse the DNA while still on the rod with 70% ethanol. Dry thespooled DNA by briefly touching to a Kimwipe.®16. Carefully resuspend the DNA in 500 μl of 10 mM Tris, 0.1 mM EDTAbuffer, by gently inverting the tube. Do not vortex or pipet sample.Store at 4°C.17. To calculate yield and concentration of your DNA sample,1 OD260 = 50 μg/ml.Note To avoid shearing the genomic DNA, use wide-bore tipsduring manipulations.P ROTOCOL II:E XTRACTION FROM W HOLE T ISSUESample Size: ~250 mg of TissueWhole tissue extractions yield 250–1100 μg of DNA per gram of tissue.Note Tissue should be kept on dry ice before adding Solution 2.1. Add 14 ml of Solution 2 to the tissue sample.2. Homogenize the tissue with a Dounce homogenizer or with amechanical homogenizer at medium setting.3. Add pronase (0.44 μl stock/ml sample) to homogenate to yield a finalconcentration of 100 μg/ml.4. Incubate with shaking at 55°C for 2 hours or 37°C overnight.5. Chill on ice for 10 minutes.6. Add 5 ml of Solution 3. Invert several times to mix.Note A precipitate may be visible in solution 3. This precipitationis normal and will not affect DNA extraction.7. Incubate on ice for 5 minutes.8. Pellet the precipitate for 15 minutes at 2000 × g (3400 rpm with aBeckman JS-5.2 rotor) at 4°C.9. Carefully transfer the supernatant with a large-bore pipet to a sterile50-ml conical tube.Note Avoid removing any flocculent material when transferring thesupernatant.concentration of 20 μg/ml.11. Incubate at 37°C for 15 minutes.12. Proceed to steps 13–17 in Protocol I.P ROTOCOL III:E XTRACTION FROM C ULTURED C ELLSSample Size: 1 x 108 Cells per ExtractionCultured cell extractions yield 600–1000 μg DNA per 108 cells.1. Harvest the cells from the culture vessel.2. Pellet the cells at 350 × g (1500 rpm with a Beckman JS-5.2 rotor) at4°C for 15 minutes.3. Discard the supernatant and resuspend the cells in 20 ml of phosphatebuffered saline.4. Repeat steps 2 and 3.5. Discard the supernatant. Add 11 ml of Solution 2 to the cell pellet.6. Homogenize the pellet as described in Protocol II, step 2.7. Add pronase (0.44 μl stock/ml sample) to the homogenized pellet toyield a final concentration of 100 μg/ml.8. Incubate with shaking at 60°C for 1 hour or at 37°C overnight.9. Chill on ice for 10 minutes.10. Add 4 ml of Solution 3. Invert several times to mix.Note A precipitate may be visible in solution 3. This precipitationis normal and will not affect DNA extraction.11. Incubate on ice for 5 minutes.12. Pellet the precipitate for 15 minutes at 2000 × g (3400 rpm with aBeckman JS-5.2 rotor) at 4°C.13. Carefully transfer the supernatant using a large-bore pipet to a sterile50-ml conical tube.Note Avoid removing any flocculent material when transferring thesupernatant.concentration of 20 μg/ml.15. Incubate at 37°C for 15 minutes.16. Proceed to steps 13–17 in Protocol I.Note If the DNA does not visibly precipitate upon adding ethanol,place the tube at –20°C for a minimum of 2 hours, orovernight. Then pellet the DNA by spinning at 2000 ×g for20 minutes.R EFERENCES1. Grafsky, A. J., Deely, D. and Braman, J. C. (1990) Strategies 3(2):27–28.2. Miller, S. A., Dykes, D. D. and Polesky, H. F. (1988) Nucleic Acids Res 16(3):1215.E NDNOTESKimwipes® is a registered trademark of Kimberly-Clark Corporation.MSDS I NFORMATIONThe Material Safety Data Sheet (MSDS) information for Stratagene products is provided on the web at /MSDS/. Simply enter the catalog number to retrieve any associated MSDS’s in a print-ready format. MSDS documents are not included with product shipments.DNA Extraction KitQ UICK-R EFERENCE P ROTOCOLWhole BloodRequired Steps Procedure Time1–3 Wash and concentrate cells 25 minutes4–7 Lyse cells 75 minutes8–10 Isolate nucleic acids from proteins 30 minutes11–16 Purify DNA 30 minutesWhole TissueRequired Steps Procedure Time1–2 Homogenize tissue 10 minutes3–5 Lyse cells 2 hours6–9 Isolate nucleic acids from proteins 30 minutes10–12 Purify DNA 30 minutesCultured CellsRequired Steps Procedure Time1–3 Concentrate cells 30 minutes4–5 Wash cells 30 minutes6–9 Lyse cells 1.5 hours10–13 Isolate nucleic acids from proteins 30 minutes14–16 Purify DNA 30 minutes。

紫罗兰基因组DNA_快速提取方法的研究

收稿日期:2022-10-24基金项目:江西省教育厅科学研究项目(GJJ211433);江西省自然科学基金项目(20212BAB215002)作者简介:张海梅(1997 ),女,云南曲靖人,硕士,主要从事紫罗兰遗传育种,E-mail:zhm1726@㊂通信作者:谭晨(1988 ),男,湖北天门人,讲师,博士,主要从事园林植物遗传育种研究,E-mail:tanchen2020@㊂文献著录格式:张海梅,陈道宗,谭晨.紫罗兰基因组DNA 快速提取方法的研究[J].浙江农业科学,2023,64(10):2454-2457.DOI:10.16178/j.issn.0528-9017.20221067紫罗兰基因组DNA 快速提取方法的研究张海梅,陈道宗,谭晨∗(赣南师范大学生命科学学院,江西赣州㊀341000)㊀㊀摘㊀要:紫罗兰是一种极具观赏和经济价值的植物㊂基因组DNA 的提取是紫罗兰分子育种的基础,但常用的十六烷基三甲基溴化铵法(CTAB 法)存在操作繁琐㊁试剂毒性大等缺点,不利于在大规模育种实践中的应用㊂因此,建立一种简单㊁快速㊁安全的紫罗兰基因组DNA 提取方法是十分必要的㊂本研究建立了一种适合紫罗兰基因组DNA 快速提取的方法,约30min 即可获得能够用于PCR 反应的DNA㊂该方法提取时间短㊁操作步骤简单,是一种简单㊁安全㊁高通量和低成本DNA 提取方法,为紫罗兰分子育种奠定了基础㊂关键词:紫罗兰;DNA;PCR;快速法中图分类号:S681.2㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:0528-9017(2023)10-2454-04㊀㊀紫罗兰[Matthiola incana (L.)R.Br.]是十字花科紫罗兰族紫罗兰属植物,原产于欧洲大陆地中海沿岸,其花色丰富㊁花量大㊁花期长㊁株型多样㊁耐低温㊁应用场景多样[1-2],是一种市场前景良好的观赏植物㊂目前,紫罗兰的优良品种主要依赖进口,国产优良品种极少㊂因此,国产紫罗兰新品种的培育亟待加强㊂紫罗兰的现代化遗传育种研究离不开基因组DNA 的提取,比如分子标记定位㊁分子标记辅助选择㊁遗传多样性研究等㊂根据研究目的不同,对基因组DNA 的质量和数量要求也不同,常用的DNA 基因组的提取方法有十六烷基三甲基溴化铵法(CTAB 法)[3-4]㊁十二烷基苯磺酸钠(SDS )法[5-6]㊁碱处理法[7]㊁高温水煮法[8-9]等,其中,CTAB 法因其提取的DNA 产量高㊁纯度好而被广泛使用,但其提取过程繁琐㊁耗时耗力,且用到了氯仿等有毒有害试剂,不能满足育种实践中大样本量的实验需求㊂现已报道了在拟南芥㊁水稻㊁玉米㊁小麦等植物中的快速基因组提取方法[9-14],可以用于大规模基因组DNA 的提取㊂借鉴已有的快速提取植物基因组DNA 的方法[8-10],本研究对高温水煮法进行了简化处理,建立了一种适用于紫罗兰基因组DNA 快速提取的方法(即快速法),可以简单㊁快速地大规模提取可高效扩增的紫罗兰基因组DNA,为紫罗兰分子育种奠定了基础㊂1㊀材料与方法1.1㊀实验材料㊀㊀本研究所用材料有和谐系列紫罗兰色紫罗兰(样品1)㊁辉煌系列桃粉色紫罗兰(样品2)和凯斯系列紫色紫罗兰(样品3),3个实验材料均在植物光照培养箱种植(温度:23ħ;光照:16h;黑暗:8h),播种后约3周取幼嫩的真叶为实验材料㊂1.2㊀紫罗兰基因组DNA 提取方法1.2.1㊀CTAB 法㊀㊀取0.1g 新鲜的叶片于2.0mL 离心管中,加600μL 2%CTAB 提取液[NaCl 81.9g,Tris-HCl(1.0mol ㊃L -1,pH 值为8.0)100mL,EDTA(0.5mol㊃L -1,pH 值为8.0)40mL 和20g CTAB定容至1000mL]充分研磨;于65ħ水浴锅中水浴60min,每10~15min 轻轻摇晃一次;冷却后加入600μL 体积比为24ʒ1的氯仿/异戊醇,轻轻摇匀,12000r㊃min-1离心10min;吸取300mL上清液于1.5mL 的离心管中,加600μL 的冰乙醇,-20ħ静置30min,12000r㊃min -1离心5min,弃上清;加500μL 75%的乙醇漂洗,12000r㊃min-1离心5min,重复3次,弃上清,晾干;加100μL 1%RNA酶溶液溶解,置于37ħ恒温箱中1h以上,其间时常摇晃,测其浓度以及用琼脂糖凝胶电泳检查基因组DNA㊂1.2.2㊀高温水煮法㊀㊀参照许明等[9]介绍方法,并作部分改动㊂取0.1g新鲜的叶片于2.0mL离心管中,加600μL DNA提取缓冲液(100mmol㊃L-1Tris,pH值为8.0;50mmol㊃L-1EDTA;500mmol㊃L-1NaCl)充分研磨;沸水煮10min,12000r㊃min-1离心10min;吸取300μL上清液于1.5mL的离心管中,加600μL的冰乙醇,-20ħ静置30min, 12000r㊃min-1离心5min,弃上清;加500μL75%的乙醇漂洗,12000r㊃min-1离心5min,重复3次,弃上清,晾干;加100μL1%RNA酶溶液溶解,置于37ħ恒温箱中1h以上,期间时常摇晃,测其浓度以及用琼脂糖凝胶电泳检查所提DNA㊂1.2.3㊀快速法㊀㊀取0.1g新鲜的叶片于2.0mL离心管中,加600μL DNA提取缓冲液(100mmol㊃L-1Tris,pH 值为8.0;50mmol㊃L-1EDTA;500mmol㊃L-1 NaCl)充分研磨;沸水煮10min,12000r㊃min-1离心10min;吸取100μL上清液于1.5mL的离心管中,稀释20倍,即可用作PCR反应的DNA 模板㊂1.3㊀DNA质量检测方法1.3.1㊀DNA浓度及纯度测定㊀㊀用超微量分光光度计(Nanodrop2000C)测定提取的紫罗兰基因组DNA的浓度和光谱数据㊂1.3.2㊀琼脂糖凝胶电泳检测㊀㊀CTAB法和高温水煮法提取的紫罗兰基因组DNA,样品1㊁样品2和样品3各取4μL,加2μL Loading buffer,用1%的琼脂糖凝胶电泳,通过凝胶成像仪观测结果㊂1.3.3㊀PCR扩增㊀㊀采用10μL的反应体系进行PCR扩增,反应体系中:2ˑTaq master mix(Vazyme)5μL㊁DNA模板DNA(约50ng㊃μL-1)2μL㊁紫罗兰内参基因Actin引物[15]上游引物(5ᶄ-GTGAGATACACCATCAC CAGAATC-3ᶄ)和下游引物(5ᶄ-TAAAGTATCCAA TCGAGCATGGTA-3ᶄ)各0.5μL(10μmol㊃L-1), ddH2O2μL㊂扩增体系为:95ħ预变性5min; 94ħ变性30s,58ħ退火30s,72ħ延伸30s, 35个循环;最后72ħ延伸10min㊂PCR产物在1%琼脂糖凝胶电泳,凝胶成像仪下观测结果并拍照㊂2㊀结果与分析2.1㊀高温水煮法提取的DNA产量和纯度分析㊀㊀为了探究高温水煮法提取的紫罗兰DNA产量和纯度,以CTAB法为对照进行了比较,两种方法提取的紫罗兰基因组DNA的浓度和光谱数据如表1所示,尽管实验组高温水煮法提取的DNA浓度显著低于对照组CTAB法提取的(P<0.05),但其浓度也均大于1000ng㊃μL-1,平均达到1982.3 ng㊃μL-1,能够满足一般分子生物学实验要求㊂超微量分光光度计检测结果显示,对照组CTAB法提取的紫罗兰基因组DNA的D260/D280均大于1.8, D260/D230均在2.00~2.20,说明DNA纯度高㊂高温水煮法提取的DNA光谱数据与对照组相当,表明所获得的DNA没有蛋白质或酚类物质的影响,也没有碳水化合物㊁盐(胍盐)等污染物㊂表1㊀紫罗兰基因组DNA检测结果方法样品浓度/(ng㊃μL-1)D260/D280D260/D230 CTAB法样品12976.5 1.97 2.09样品24313.6 1.98 2.18样品34003.0 1.98 2.18高温水煮法样品12616.6 1.98 2.08样品22246.1 1.94 2.05样品31084.2 1.96 2.01 2.2㊀DNA质量分析㊀㊀将提取的紫罗兰基因组DNA进行琼脂糖凝胶电泳检测,结果如图1所示㊂从图中可以看出,对照组CTAB法提取的紫罗兰基因组DNA中,条带清晰,无明显拖带现象,表明DNA完整性较好㊂实验组高温水煮法提取的DNA中,条带4和5明亮清晰,表明DNA浓度较高;无明显拖带现象,表明完整性好;条带6较暗,可能是DNA浓度较低,与表1浓度结果一致,也无明显拖带现象,表明完整性也较好㊂因此,高温水解法提取的基因组DNA完整性与对照组CTAB法相当㊂2.3㊀PCR分析㊀㊀将提取的紫罗兰基因组DNA稀释至50ng㊃μL-1后,采用紫罗兰内参基因Actin引物进行PCR 扩增,PCR产物的琼脂糖凝胶电泳结果如图2所示㊂从图中可以看出,实验组高温水煮法和对照组CTAB法提取的DNA的PCR扩增结果相同,电泳M表示marker;1~3表示样品1~3CTAB法提取物;4~6表示样品1~3高温水煮法提取物㊂图1㊀CTAB法与高温水煮法提取物琼脂糖凝胶电泳检测结果条带均清晰㊁稳定,条带大小均在250~500bp,与预期片段大小一致,表明高温水煮法提取的DNA成功用于PCR反应㊂M表示marker;1~3表示样品1~3CTAB法提取物;4~6表示样品1~3高温水煮法提取物㊂图2㊀CTAB法与高温水煮法提取DNA的PCR扩增结果以上结果表明,与对照组CTAB法相比,实验组高温水煮法能够获得产量足够,且质量相当的紫罗兰基因组DNA㊂此外,在操作步骤上,高温水煮法只需沸水浴10min后即可进行后续的离心㊁吸上清液㊁沉淀㊁漂洗等步骤,而CTAB法则需要水浴(65ħ)60min后加入氯仿/异戊醇溶液后再进行离心㊁吸上清液㊁沉淀㊁漂洗等步骤(详见实验方法)㊂因此,与对照组CTAB法相比,实验组高温水煮法操作更简单㊁所需时间更短,且无需使用有毒有害的试剂,产生的废液也更少㊂2.4㊀快速法提取DNA的PCR扩增效果㊀㊀为了建立更加简洁㊁高效的基因组DNA提取方法,对高温水煮法进行了进一步简化,整个提取过程大概耗时30min,称为快速法㊂快速法主要是减少了DNA提取过程中的沉淀和漂洗环节,这样势必会降低DNA的纯净度,超微量分光光度计检测结果也证实了这一点(表2),即D260/D230均很小,表明溶液中还有较多的碳水化合物㊁盐类或有机化合物,但其浓度较高(平均1171.3ng㊃μL-1)㊂因此,将其稀释20倍后再作为DNA模板进行PCR扩增,这样既降低了杂质的含量,又可以使DNA浓度达到PCR模板的要求㊂随后,以快速法提取的DNA的20倍稀释液为模板来扩增内参基因Actin的片段,并用CTAB法提取的DNA为对照,PCR产物的琼脂糖凝胶电泳如图3所示㊂结果表明,快速法提取的DNA稀释液作模板能扩增出与对照组一致的清晰稳定的条带,且条带大小符合预期(250~500bp)㊂说明用快速法提取紫罗兰基因组DNA稀释20倍后能很好地满足一般PCR 反应的需求㊂表2㊀快速法提取紫罗兰基因组DNA原液检测结果样品浓度/(ng㊃μL-1)D260/D280D260/D230样品1829.3 1.840.47样品21418.7 1.590.60样品31266.0 1.970.621表示CTAB法提取物;2~4表示样品1~3;M表示Marker㊂图3㊀DNA稀释20倍后的PCR扩增结果2.5㊀快速法提取DNA的保存时间㊀㊀为了探究快速法提取的DNA的保存时间,将在-20ħ冰箱保存了3个月后的DNA原液稀释20倍后进行PCR扩增,结果显示,其仍然可扩增出清晰可见的条带(图4)㊂表明快速法提取的紫罗兰基因组DNA在-20ħ下至少能够保存3个月,完全能够满足一般分子实验的周期要求㊂3㊀讨论㊀㊀CTAB法是抽提基因组DNA最常用的方法,该方法提取的DNA产量高㊁纯度好[4];但其提取过程中使用了有毒有害试剂氯仿等,且抽提过程需在通风橱中进行,提取过程操作繁琐㊁耗时较长㊂而高温水煮法提取DNA过程中没有用到有毒有害M表示Marker;1表示CTAB法提取物;2~4表示样品1~3㊂图4㊀保存3个月后DNA稀释20倍的PCR扩增结果的试剂,且提取过程耗时相对较短,因此,该方法可用于对DNA纯度要求不高的实验中,用其来取代CTAB法中对人体有害的试剂的提取方法[9-10]㊂本研究中,以CTAB法为对照,比较了高温水煮法提取紫罗兰基因组DNA的产量和质量,结果表明,高温水煮法提取的DNA产量低于CTAB法,但质量相当㊂因此,可以用无危险试剂㊁操作简单的高温水煮法来替代有危险试剂㊁操作繁琐的CTAB法提取紫罗兰基因组DNA㊂进一步,本研究简化了高温水煮法,即舍弃沉淀和漂洗的过程,建立了快速法,缩短了提取的时间,操作步骤简单㊁耗时少㊂提取紫罗兰基因组DNA稀释20倍后,PCR扩增结果与CTAB法提取的DNA扩增结果一致㊂快速法在高温水煮法的基础上减少了沉淀和漂洗的过程,缩短了提取的时间,操作步骤简单㊁耗时少,可大幅节约时间,提高工作效率[12-13];也减少了试剂的使用,节约成本㊂此外,快速法提取的紫罗兰基因组DNA保存时间较久,可以满足一般实验周期的要求㊂因此,快速法特别适用于样本量大的基因型鉴定类的实验,如分子标记辅助选择育种㊁转基因阳性苗鉴定等;此外,利用高通量磨样机㊁96孔板及相关配套设备等可实现规模化的DNA提取[14]㊂参考文献:[1]㊀徐怀亮.特种油料植物遗传资源紫罗兰的研究[D].成㊀㊀都:四川大学,2001.[2]㊀刘璇.含无机盐的保鲜剂对紫罗兰切花的保鲜效应[D].武汉:华中师范大学,2016.[3]㊀GAHLON H L.A brief history and practical applications inDNA extraction[J].Chimia,2020,74(11):907-908.[4]㊀ABDEL-LATIF A,OSMAN parison of three genomicDNA extraction methods to obtain high DNA quality from maize[J].Plant Methods,2017,13:1.[5]㊀单志,吴宏亮,李成磊,等.改良SDS法提取多种植物基因组DNA研究[J].广东农业科学,2011,38(8):113-115.[6]㊀XIA Y M,CHEN F S,DU Y,et al.A modified SDS-basedDNA extraction method from raw soybean[J].BioscienceReports,2019,39(2):BSR20182271.[7]㊀KLIMYUK V I,CARROLL B J,THOMAS C M,et al.Alkalitreatment for rapid preparation of plant material for reliable PCRanalysis[J].The Plant Journal:for Cell and MolecularBiology,1993,3(3):493-494.[8]㊀THOMSON D,HENRY R.Single-step protocol for preparationof plant tissue for analysis by PCR[J].BioTechniques,1995,19(3):397,400.[9]㊀许明,程祖锌,黄志伟,等.一种适于转基因水稻PCR检测的微量DNA快速提取法[J].生物技术通报,2010(3):128-130.[10]㊀柴建芳,刘旭,贾继增.一种适于PCR扩增的小麦基因组DNA快速提取法[J].植物遗传资源学报,2006,7(2):246-248.[11]㊀余海霞,罗聪,徐趁,等.一种简单高效提取高质量转基因拟南芥和烟草DNA的方法[J].分子植物育种,2016,14(6):1436-1440.[12]㊀高玉峰,张攀,郝晓敏,等.一种快速提取玉米大群体基因组DNA的方法[J].中国农业大学学报,2011,16(6):32-36.[13]㊀李琳,罗淋淋,罗光宇,等.一种植物基因组DNA快速提取方法的建立与评估[J].深圳大学学报(理工版),2020,37(1):1-8.[14]㊀YU D S,ZHANG J,TAN G X,et al.An easily-performedhigh-throughput method for plant genomic DNA extraction[J].Analytical Biochemistry,2019,569:28-30. [15]㊀NAKATSUKA T,KOISHI K.Molecular characterization of adouble-flower mutation in Matthiola incana[J].PlantScience,2018,268:39-46.(责任编辑:董宇飞)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Road, Victoria, BC V8Z 5J3, Canada
Summary
Author for correspondence: Mary L. Berbee Tel: (604) 822 2019 Fax: (604) 822 6809 Email: berbee@interchange.ubc.ca Received: 28 March 2003 Accepted: 3 June 2003 doi: 10.1046/j.1469-8137.2003.00885.x
• This study compares DNA and culture-based detection of fungi from 15 ericoid mycorrhizal roots of salal (Gaultheria shallon), from Vancouver Island, BC Canada. • From the 15 roots, we PCR amplified fungal DNAs and analyzed 156 clones that included the internal transcribed spacer two (ITS2). From 150 different subsections of the same roots, we cultured fungi and analyzed their ITS2 DNAs by RFLP patterns or sequencing. We mapped the original position of each root section and recorded fungi detected in each. • Phylogenetically, most cloned DNAs clustered among Sebacina spp. (Sebacinaceae, Basidiomycota). Capronia sp. and Hymenoscyphus erica (Ascomycota) predominated among the cultured fungi and formed intracellular hyphal coils in resynthesis experiments with salal. • We illustrate patterns of fungal diversity at the scale of individual roots and compare cloned and cultured fungi from each root. Indicating a systematic culturing detection bias, Sebacina DNAs predominated in 10 of the 15 roots yet Sebacina spp. never grew from cultures from the same roots or from among the > 200 ericoid mycorrhizal fungi previously cultured from different roots from the same site. Key words: fungal ericoid mycorrhizal fungi, fungal diversity, fungal detection, Sebacina, Capronia, Hymenoscyphus, Ericaceae. © New Phytologist (2003) 160: 255–272
primarily fungi in the Ascomycota, this sequence-based approach found that about half of the fungi were in the Basidiomycota or Zygomycota, rather than the Ascomycota and several of the sequences could not be classified into a familiar fungal order (Vandenkoornhuyse et al., 2002). Like the roots of grasses, ericoid mycorrhizae offer a relatively simple biological environment where fungal DNA sequence diversity can conveniently be assayed. No one had previously studied the diversity of fungal DNAs from these roots. However, the DNAs from the roots could be matched against an extensive database of sequences from fungi cultured from ericoid and epacrid mycorrhizae from around the world (McLean et al., 1999; Bergero et al., 2000; Berch et al., 2002; Cairney & Ashford, 2002). Our interest in ericoid mycorrhizal fungi has its origin in a biological problem, but is also linked to an economic problem. Conifer seedlings used in reforestation of some sites previously occupied by cedar-hemlock (Thuja plicata Donn./Tsuga heterophylla (Raf.) Sarg.) forests on Vancouver Island, British
© New Phytologist (2003) 160: 255 –272
255
256 ReseБайду номын сангаасrch
Columbia, Canada turn yellow and fail to grow while the ericaceous shrub salal thrives. Colonized with fungal mutualists, the roots of the salal may be able to access nutrients, especially nitrogen, that may be otherwise unavailable (Read, 1991; Perotto et al., 2002). To contribute to an understanding of the biology underlying the conifer growth check problem, Xiao & Berch (1996, 1999), Monreal et al. (1999), and Berch et al. (2002) have been investigating the diversity and functioning of some of the mycorrhizal fungi collected from salal roots from the Salal Cedar Hemlock Integrated Research Project (SCHIRP) trial site at Port McNeil, Vancouver Island, British Columbia. Through their series of studies, a succession of different techniques have revealed different mycorrhizal fungi. Using culturing and morphological identification, Xiao & Berch (1996) recognized four groups of fungi among over 200 mycorrhizal fungal cultures from salal from the SCHIRP site. Two groups could be identified by their sporulation patterns, while two remained unidentified and were nicknamed ‘Unknown 1’ and ‘Unknown 2’. Monreal et al. (1999) determined ITS2 sequences from all fungi that had been confirmed as ericoid mycorrhizal symbionts, including ‘Unknown 1’ and ‘Unknown 2.’ Among additional fungi cultured from the Vancouver Island SCHIRP site, Monreal et al. (1999) found isolates with sequences matching the well-characterized ericoid mycorrhizal fungus Hymenoscyphus ericae. Lynn Sigler (personal communication) later used conidial morphology to confirm Monreal’s isolates as H. ericae. Berch et al. (2002) discussed the phylogenetic relationships of sequences from cultured or cloned fungi from about 800 salal root tips from the Vancouver Island SCHIRP site and noted which of the cultured fungi produced mycorrhizae in resynthesis experiments with salal. Berch et al. (2002) discovered that isolates similar to most of the ericoid mycorrhizal fungi grown in pure culture from salal roots from our Vancouver Island SCHIRP site were also found in Europe or Australia. All the ericoid mycorrhizae from pure cultures from salal were from ascomycetous fungi. However, Berch et al. (2002) also reported that the predominant fungal clones from PCR amplifications of DNA extracts from salal mycorrhizae were from basidiomycetes closest to inconspicuous jelly fungi in the genus Sebacina. Our objective in this study was to analyze the patterns of fungal diversity, as detected by culturing and by cloning, at the scale of individual roots. We planned to analyze the fungal DNAs that we could detect by direct DNA extraction and
相关文档
最新文档