有理数的除法的方法题型解法易错

合集下载

有理数运算中的常见错误类型及原因分析

有理数运算中的常见错误类型及原因分析

有理数运算中的常见错误类型及原因分析1、违背运算顺序。

如例1 计算:8)87(87)8(⨯-÷⨯-错解:原式=1)7(7=-÷- 剖析:本题错误的原因在于违背了运算的顺序,乘除法应为同一级运算,应按照从左到右的顺序依次进行.正解:原式=648)78(87)8(=⨯-⨯⨯-.再如例2:-(-5)2错解:原式=52=25。

剖析:本题错误在于学生先算了相反数,再算乘方,应先算乘方,再取相反数。

正解应为:原式=-25。

像这样为求简便而违背运算顺序的错误是很普遍的。

2、概念不清。

如例 3 计算:32231432-÷⨯-。

错解:原式=18983434=-=-⨯⨯。

剖析:本题错误的原因在于对有理数乘方的意义理解不透彻,没有分清幂的底数,把22-误认为是2)2(-.正解:原式=178983434-=--=-⨯⨯-。

3、误用运算律例4 计算:)315141(23+-÷ 错解:原式=466911592323523423312351234123=+-=⨯+⨯-⨯=÷+÷-÷.剖析:本题错误的原因在于加、减法对于乘法有分配律,而除法是没有分配律的,应先算括号里的,再算除法. 正解:原式=60236023602323)602060126015(23=⨯=÷=+-÷ 4、符号错误例5 计算:)431(214)322(32-⨯--÷ 错解:原式=127314147214)83(32-=--=⨯--⨯.剖析:本题错误的原因在于把214前面的“-”号既作为运算符号,又作为性质符号.而在具体的运算过程中只能作为一种符号.正解:原式=1213141)47(214)83(32=+-=-⨯--⨯. 矫正有理数运算错误的教学策略。

1、培养学生正解的解题习惯和心态。

学生解题出现错误往往是没有认真读题,没有理解题意,理清运算顺序,就盲目动笔。

另外,在解题时粗心,遗漏运算符号造成错误。

七年级数学2.6有理数的乘法与除法有理数乘除错解例析

七年级数学2.6有理数的乘法与除法有理数乘除错解例析

有理数乘除错解例析在进行有理数乘除运算中,如果计算不细心,对于运算法则,运算顺序不熟练,就容易出现一些解题中的错误,现总结如下:一、混淆符号法则出错例1 计算:(211-)×(322-)×(-1) 错解:原式=(23-)×(38-)×(-1)=4 剖析:对乘法法则中“两数相乘,同号得正,异号得负”理解不透,三个有理数相乘,应根据负因数的个数确定符号,而不能只看是同号还是异号.正解:原式=(23-)×(38-)×(-1)=4- 二、违背运算顺序出错 例2 计算:(311-)÷(3-)×(31-) 错解:原式=(311-)÷1=311-剖析:没有按照“同级运算,从左到右”的顺序进行,掉进了出题人设计的“陷阱”,有理数运算,不能违背运算顺序.正解:原式=(34-)×(31-)×(31-)=274- 三、对负带分数理解不清出错例3 计算:251542⨯- 错解:原式=(2-+154)25⨯=252⨯-25154⨯+=32050+-=3143- 剖析:将负带分数1542-错误地理解为1542+-,负带分数的整数部分和分数部分都是负数,即 1542-=1542--. 正解:原式=(2--154)25⨯=252⨯-25154⨯-=32050--=3256- 四、违背去括号法则出错例4 计算:+---5[3(532.01⨯-)÷(2-)] 错解:原式=++-53(532.01⨯-)÷(2-)=2+⨯2522(21-)=2-2511=25141 剖析:错解的原因是去掉“-”和中括号时,没有将(532.01⨯-)改变符号。

正解:原式=-+-53(532.01⨯-)÷(2-) =2-⨯2522(21-)=2+2511=25112 五、应用乘法分配律时弄错符号出错 例5 计算:⨯-24(165127--) 错解:原式=12724⨯-6524⨯-124⨯-=-14-20-24=-58 剖析;在用-24乘以括号内每一个数时,混淆了运算符号和性质符号,正解:原式=12724⨯-⨯-24(65-)()124-⨯-=-14+20+24=30 六、乱用运算律出错例6 计算:(631-)÷(327291+-) 错解:原式=(631-)÷91-(631-)÷72+(631-)÷32 =42118171-+-=1263718-+-=91- 剖析;由于受乘法分配律a (b+c )=ab+ac 的影响,错误地认为a ÷(b+c )=a ÷b+a ÷c ,这是不正确的,事实上不存在除法分配律。

有理数加减乘除混合运算易错题

有理数加减乘除混合运算易错题

有理数加减乘除混合运算易错题有理数加减乘除混合运算是数学中的基础知识之一,对于学生来说是一个重要且常见的考点。

在进行这类题目时,往往容易出现错误。

本文将针对有理数加减乘除混合运算易错题进行详细的解析,希望能够帮助大家更好地掌握这部分知识。

首先,我们需要了解有理数的加减乘除规则。

在进行有理数的加减运算时,同号两数相加减,取相同的符号,绝对值相加减;异号两数相加减,取绝对值相减,结果的符号取绝对值大的数的符号。

在进行有理数的乘除运算时,同号得正,异号得负,绝对值相乘相除。

接下来,我们来看几个常见的易错题:1. 计算:(-3) + (-5) - 7 ÷ (-1)解析:首先计算括号内的除法,7 ÷ (-1) = -7,然后进行加减法运算,(-3) + (-5) = -8,-8 - 7 = -15,所以答案为-15。

2. 计算:(-2) × (-4) + 6 - 5 ÷ 1解析:首先计算乘法,(-2) × (-4) = 8,然后进行加减法运算,8 + 6 = 14,14 - 5 = 9,所以答案为9。

3. 计算:(-9) - 4 × 3 + 5 ÷ (-1)解析:首先计算乘法,4 × 3 = 12,然后进行加减法运算,(-9) - 12 = -21,-21 + 5 = -16,所以答案为-16。

4. 计算:(-6) ÷ 2 - 4 × (-3) + 5解析:首先计算除法,(-6) ÷ 2 = -3,然后计算乘法,4 × (-3) = -12,最后进行加减法运算,-3 - (-12) = 9,9 + 5 = 14,所以答案为14。

以上就是几个有理数加减乘除混合运算的易错题,希。

人教版七年级数学上册 第二章 有理数的运算易错训练(单元复习 6类易错)

人教版七年级数学上册  第二章 有理数的运算易错训练(单元复习 6类易错)

第二章有理数的运算易错训练01易错总结目录易错题型一有理数加减法中的拆项法计算 (1)易错题型二有理数乘除法中的倒数法计算 (2)易错题型三有理数中乘除混合运算易错 (4)易错题型四含乘方的有理数混合运算 (5)易错题型五有理数的混合运算中的新定义型问题................................................................................................5易错题型六有理数运算中的错题复原问题............................................................................................................602易错题型易错题型一有理数加减法中的拆项法计算例题:(23-24七年级上·河南郑州·期中)阅读下面文字:对于3131312210252⎛⎫⎛⎫-+-++ ⎪ ⎪⎝⎭⎝⎭可以如下计算:原式3131312210252⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦()()3122⎡⎤=-+-+++⎣⎦______0=+______=______.上面这种方法叫拆项法.(1)请补全以上计算过程;(2)类比上面的方法计算:235120242023202220213467⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭.巩固训练1.(24-25七年级上·全国·假期作业)折项法计算:3221554410014334⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.2.(24-25七年级上·全国·假期作业)拆项法.计算:75120222021140442486⎛⎫⎛⎫⎛⎫-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.3.(23-24七年级上·四川成都·阶段练习)阅读计算5231591736342⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭的方法,再用这种方法计算2个小题.【解析】原式5231(5)(9)17(3)6342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦5231[(5)(9)17(3)]6342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1101144⎛⎫=+-=- ⎪⎝⎭,上面这种解题方法叫做拆项法.(1)计算:231117161523432⎛⎫⎛⎫-++-- ⎪ ⎪⎝⎭⎝⎭;(2)计算522120001999400016332⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.易错题型二有理数乘除法中的倒数法计算例题:(24-25七年级上·全国·随堂练习)阅读材料,回答问题.计算:1155311⎛⎫⎛⎫-÷ ⎪ ⎪⎭-⎝⎝⎭.解:方法一:原式13521151515211515⎛⎫⎛⎫⎛⎫⎛⎫=÷-=-÷-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎭-⎝.方法二:原式的倒数为:()()()111111151515352311553535⎛⎫⎛⎫⎛⎫-÷=-⨯-=⨯--⨯-=-+= ⎪⎝- ⎪ ⎪⎝⎭⎝⎭⎭故原式12=.用适当的方法计算:121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭.巩固训练1.(23-24七年级上·安徽阜阳·阶段练习)阅读材料:计算:121123031065⎛⎫÷-+- ⎪⎝⎭.分析:利用通分计算211231065-+-的结果很麻烦,可以采用以下方法进行计算.解:原式的倒数211213106530⎛⎫=-+-÷ ⎪⎝⎭21123031065⎛⎫=-+-⨯ ⎪⎝⎭21123030303031065=⨯-⨯+⨯-⨯10=.故原式110=.请你根据对材料的理解,选择合适的方法计算:11572241216243⎛⎫÷-+- ⎪⎝⎭.2.(23-24六年级上·山东威海·期中)【阅读材料】计算:123120542⎛⎫÷-+ ⎪⎝⎭.分析:利用倒数的意义,可以先求原式的倒数,再得出计算的结果.解:由于231123120354220542⎛⎫⎛⎫-+÷-+⨯= ⎪ ⎪⎭⎝⎭=⎝,所以12311205423⎛⎫÷-+= ⎪⎝⎭.【问题解决】根据上述方法,计算:123112346⎛⎫⎛⎫-÷+- ⎪ ⎪⎝⎭⎝⎭.3.(23-24七年级上·河南南阳·阶段练习)阅读下列材料:计算111503412⎛⎫÷-+ ⎪⎝⎭.解法一:原式11150505050350450125503412=÷-÷+÷=⨯-⨯+⨯=.解法二:原式4312505050630012121212⎛⎫=÷-+=÷=⨯= ⎪⎝⎭.解法三:原式的倒数为111503412⎛⎫-+÷ ⎪⎝⎭111111111113412503504501250300⎛⎫=-+⨯=⨯-⨯+⨯= ⎪⎝⎭.故原式300=.(1)上述得出的结果不同,肯定有错误的解法,你认为哪个解法是错误的.(2)请你选择两种合适的解法解答下列问题:计算:113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭易错题型三有理数中乘除混合运算易错例题:(2024·辽宁鞍山·一模)计算:()()1255-÷-⨯=.巩固训练1.(23-24七年级上·江苏连云港·阶段练习)计算:113333⎛⎫⎛⎫-⨯÷⨯-= ⎪ ⎪⎝⎭⎝⎭.2.(23-24六年级下·上海·期中)计算:111321342⎛⎫⎛⎫⎛⎫-⨯-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.3.(23-24六年级下·上海黄浦·期中)计算:17424122535⎛⎫⎛⎫⎛⎫-÷⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.易错题型四含乘方的有理数混合运算例题:(23-24七年级上·广东湛江·期中)计算:()3202351241⨯-++--.巩固训练1.(23-24六年级下·上海长宁·期中)计算:229125111683⎛⎫⎛⎫-÷-⨯- ⎪ ⎪⎝⎭⎝⎭;2.(23-24六年级下·全国·假期作业)计算:(1)34(2)5(0.64)4+-⨯--÷.(2)21(2)31(0.2)4-+-⨯-÷---.3.(23-24六年级下·全国·假期作业)计算下列各题:(1)22222(3)(6)(2)-+⨯-+-⨯-(2)42112(3)6⎡⎤--⨯--⎣⎦(3)25221(1)31(2)33⎡⎤⎛⎫---⨯--÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(4)22319345121543⎡⎤⎛⎫-⨯-+⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦易错题型五有理数的混合运算中的新定义型问题例题:(23-24七年级上·陕西西安·期中)用“△”定义新运算,对于任意有理数a ,b ,都有2a b a ab =- .例如:27477421=⨯=- .(1)求()35- 的值;(2)若继续用“*”定义另一种新运算2*3a b ab b =-,例如:21*231222=⨯-=⨯.求()()4*23- .巩固训练1.(23-24七年级上·湖北随州·期中)用“☆”定义一种新运算:对于任意有理数a 和b ,规定22a b b ab =+☆,如:214421424.=+⨯⨯=☆(1)计算:54☆的值;(2)计算:()326-⎡⎤⎣⎦☆☆的值.2.(22-23七年级上·江苏镇江·期中)我们定义一种新运算:2*a b a b ab =-+,例如:21*31313=-+⨯.(1)求()()3*2--;(2)求()()()2*2*3---⎡⎤⎣⎦.3.(23-24七年级上·福建龙岩·期中)若定义一种新的运算“*”,规定:22*a b a b =-,如225*35316=-=.(1)求()3*4-的值;(2)通过计算说明()()5*4*2⎡⎤--⎣⎦与()()5*4*2⎡⎤--⎣⎦的值是否相等?易错题型六有理数运算中的错题复原问题例题:(2023秋·山东东营·六年级统考期末)课代表发下作业本之后,小刚同学发现有一个题做错了,检查巩固训练第二章有理数的运算易错训练01易错总结目录易错题型一有理数加减法中的拆项法计算 (1)易错题型二有理数乘除法中的倒数法计算 (2)易错题型三有理数中乘除混合运算易错 (4)易错题型四含乘方的有理数混合运算 (5)易错题型五有理数的混合运算中的新定义型问题................................................................................................5易错题型六有理数运算中的错题复原问题............................................................................................................602易错题型易错题型一有理数加减法中的拆项法计算例题:(23-24七年级上·河南郑州·期中)阅读下面文字:对于3131312210252⎛⎫⎛⎫-+-++ ⎪ ⎪⎝⎭⎝⎭可以如下计算:原式3131312210252⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦()()3122⎡⎤=-+-+++⎣⎦______0=+______=______.上面这种方法叫拆项法.(1)请补全以上计算过程;(2)类比上面的方法计算:235120242023202220213467⎛⎫⎛⎫-++-+ ⎪ ⎪.1.(24-25七年级上·全国·假期作业)折项法计算:3221 554410014334⎛⎫⎛⎫⎛⎫-+-++-⎪ ⎪ ⎪.()01=+-1=-.2.(24-25七年级上·全国·假期作业)拆项法.计算:75120222021140442486⎛⎫⎛⎫⎛⎫-+-+-+ ⎪ ⎪ ⎪.3.(23-24七年级上·四川成都·阶段练习)阅读计算591736342⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭的方法,再用这种方法计算2个小题.【解析】原式5231(5)(9)17(3)6342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦5231[(5)(9)17(3)]6342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1101144⎛⎫=+-=- ⎪⎝⎭,上面这种解题方法叫做拆项法.(1)计算:231117161523432⎛⎫⎛⎫-++-- ⎪ ⎪⎝⎭⎝⎭;(2)计算522120001999400016332⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪.易错题型二有理数乘除法中的倒数法计算例题:(24-25七年级上·全国·随堂练习)阅读材料,回答问题.计算:1155311⎛⎫⎛⎫-÷ ⎪ ⎪⎭-⎝⎝⎭.解:方法一:原式13521151515211515⎛⎫⎛⎫⎛⎫⎛⎫=÷-=-÷-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎭-⎝.方法二:原式的倒数为:()()()111111151515352311553535⎛⎫⎛⎫⎛⎫-÷=-⨯-=⨯--⨯-=-+= ⎪⎝- ⎪ ⎪⎝⎭⎝⎭⎭故原式12=.用适当的方法计算:121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪.1.(23-24七年级上·安徽阜阳·阶段练习)阅读材料:计算:121123031065⎛⎫÷-+- ⎪⎝⎭.分析:利用通分计算211231065-+-的结果很麻烦,可以采用以下方法进行计算.解:原式的倒数211213106530⎛⎫=-+-÷ ⎪⎝⎭21123031065⎛⎫=-+-⨯ ⎪⎝⎭21123030303031065=⨯-⨯+⨯-⨯10=.故原式110=.请你根据对材料的理解,选择合适的方法计算:11572241216243⎛⎫÷-+- ⎪.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(23-24六年级上·山东威海·期中)【阅读材料】计算:123120542⎛⎫÷-+ ⎪⎝⎭.分析:利用倒数的意义,可以先求原式的倒数,再得出计算的结果.解:由于231123120354220542⎛⎫⎛⎫-+÷-+⨯= ⎪ ⎪⎭⎝⎭=⎝,所以12311205423⎛⎫÷-+= ⎪⎝⎭.【问题解决】根据上述方法,计算:123112346⎛⎫⎛⎫-÷+- ⎪ ⎪.3.(23-24七年级上·河南南阳·阶段练习)阅读下列材料:计算503412⎛⎫÷-+ ⎪⎝⎭.解法一:原式11150505050350450125503412=÷-÷+÷=⨯-⨯+⨯=.解法二:原式4312505050630012121212⎛⎫=÷-+=÷=⨯= ⎪⎝⎭.解法三:原式的倒数为111503412⎛⎫-+÷ ⎪⎝⎭111111111113412503504501250300⎛⎫=-+⨯=⨯-⨯+⨯= ⎪⎝⎭.故原式300=.(1)上述得出的结果不同,肯定有错误的解法,你认为哪个解法是错误的.(2)请你选择两种合适的解法解答下列问题:计算:113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭易错题型三有理数中乘除混合运算易错例题:(2024·辽宁鞍山·一模)计算:()()1255-÷-⨯=.巩固训练1.(23-24七年级上·江苏连云港·阶段练习)计算:113333⎛⎫⎛⎫-⨯÷⨯-= ⎪ ⎪.2.(23-24六年级下·上海·期中)计算:321342⎛⎫⎛⎫⎛⎫-⨯-÷- ⎪ ⎪ ⎪.3.(23-24六年级下·上海黄浦·期中)计算:4122535⎛⎫⎛⎫⎛⎫-÷⨯-⨯- ⎪ ⎪ ⎪.易错题型四含乘方的有理数混合运算例题:(23-24七年级上·广东湛江·期中)计算:()3202351241⨯-++--.【答案】6【分析】本题考查了有理数的混合运算,先计算乘除,再加减即可,熟知计算法则是解题的关键。

有理数的除法题型归纳总结(含答案)

有理数的除法题型归纳总结(含答案)

有理数的除法-重难点题型【题型1 有理数除法法则的辨析】【例1】(2020秋•许昌期末)如果a +b <0,ab >0,那么下列各式中一定正确的是( ) A .a ﹣b >0B .ab >0C .b ﹣a >0D .ab<0【解题思路】直接利用有理数的乘除运算法则以及加减运算法则判断得出答案. 【解答过程】解:∵a +b <0,ab >0, ∴a ,b 同为负数, ∴ab >0,故选:B .【变式1-1】(2020秋•鼓楼区校级月考)在下列各题中,结论正确的是( ) A .若a >0,b <0,则ba >0B .若a >b ,则a ﹣b >0C .若a <0,b <0,则ab <0D .若a >b ,a <0,则ba <0【解题思路】根据有理数的乘法法则和除法法则进行判断.【解答过程】解:A .两数相除,异号得负,该选项错误,不符合题意; B .∵a >b ,∴a ﹣b >0,该选项正确,符合题意;C .两数相乘,同号得正,该选项错误,不符合题意;D .∵a >b ,a <0,∴1<ba ,∴ba >1,该选项错误,不符合题意.故选:B .【变式1-2】(2020秋•锦江区校级期中)若a +b >0,a ﹣b <0,ab <0,则下列结论正确的是( )A .a >b ,b >0B .a <0,b <0C .a <0,b >0且|a |<|b |D .a >0,b <0且|a |>|b |【解题思路】直接利用有理数的除法运算、加法、减法运算法则以及绝对值的性质分别分析得出答案. 【解答过程】解:∵a ﹣b <0, ∴a <b , ∵ab <0,∴a <0<b , ∵a +b >0, ∴|a |<|b |. 故选:C .【变式1-3】(2020秋•秀峰区校级月考)已知a ,b 为有理数,则下列说法正确的个数为( ) ①若a +b >0,a b >0,则a >0,b >0.②若a +b >0,a b <0,则a >0,b <0且|a |>|b |. ③若a +b <0,a b >0,则a <0,b <0.④若a +b <0,ab <0,则a >0,b <0且|b |>|a |. A .1B .2C .3D .4【解题思路】根据有理数的加法法则以及有理数的除法法则分别分析得出即可. 【解答过程】解:①若a +b >0,ab >0,则a >0,b >0,故①结论正确;②若a +b >0,a b <0,则a >0,b <0且|a |>|b |或a <0,b >0且|a |<|b |,故②结论错误;③若a +b <0,ab>0,则a <0,b <0,故③结论正确;④a +b <0,ab <0,则a >0,b <0且|b |>|a |或a <0,b >0且|b |<|a |,故斯结论错误.故正确的有2个. 故选:B .【题型2 有理数乘除法的混合运算】【例2】(2021春•青浦区期中)计算:−1.75÷(−312)×47. 【解题思路】原式从左到右依次计算即可求出值. 【解答过程】解:原式=−74÷(−72)×47 =−74×(−27)×47 =27.【变式2-1】(2021春•杨浦区期中)158÷(﹣10)×(−103)÷(−154) 【解题思路】根据有理数的运算法则即可求出答案. 【解答过程】解:原式=158×−110×10−3×−415=−16【变式2-2】(2020秋•广信区月考)计算: (1)−0.75×0.4×(−123); (2)916÷(−112)×1924.【解题思路】(1)先把小数化成分数,把带分数化成假分数,再根据有理数的乘法法则求出即可; (2)先把除法变成乘法,再根据有理数的乘法法则求出即可. 【解答过程】解:(1)原式=34×25×53 =12;(2)原式=916×(−23)×1924=−1964. 【变式2-3】(2020秋•官渡区校级月考)(﹣81)÷94×49÷(﹣16) 【解题思路】根据有理数的混合计算解答即可. 【解答过程】解:(﹣81)÷94×49÷(﹣16) =81×49×49×116 =1【题型3 有理数除法的应用(含绝对值)】【例3】(2020秋•南沙区校级期中)若|abc |=﹣abc ,且abc ≠0,则|a|a+|b|b+|c|c=( )A .1或﹣3B .﹣1或﹣3C .±1或±3D .无法判断【解题思路】利用绝对值的代数意义判断得到a ,b ,c 中负数有一个或三个,即可得到原式的值. 【解答过程】解:∵|abc |=﹣abc ,且abc ≠0, ∴abc 中负数有一个或三个, 则原式=1或﹣3, 故选:A .【变式3-1】(2020秋•句容市期中)已知a 、b 为有理数,且ab >0,则a |a|+b |b|+ab |ab|的值是( )A .3B .﹣1C .﹣3D .3或﹣1【解题思路】根据同号得正分a 、b 都是正数和负数两种情况,利用绝对值的性质去掉绝对值号,然后进行计算即可得解.【解答过程】解:∵ab >0, ∴a >0,b >0时,a |a|+b |b|+ab |ab|=a a+b b +ab ab =1+1+1=3, a <0,b <0时,a |a|+b|b|+ab |ab|=a−a +b−b+ab ab=−1﹣1+1=﹣1,综上所述,a|a|+b |b|+ab|ab|的值是3或﹣1.故选:D .【变式3-2】(2020秋•讷河市期末)若三个非零有理数a ,b ,c 满足|a|a+|b|b+|c|c=1,则|abc|abc= .【解题思路】由|a|a+|b|b+|c|c=1知,a 、b 、c 中有一个为负数,故能求|abc|abc的值.【解答过程】解:∵|a|a+|b|b+|c|c=1∴a 、b 、c 中有一个为负数,另外两个为正数, ∴|abc|abc=−1故答案为﹣1.【变式3-3】(2020秋•旅顺口区期中)若abc <0,a +b +c =0,则|b+c|a+|a+c|b+|a+b|c= .【解题思路】根据有理数的乘法判断出负数的个数,再用两个字母表示出第三个字母,然后求解即可. 【解答过程】解:∵abc <0, ∴a 、b 、c 有1个负数或3个负数, ∵a +b +c =0,∴a 、b 、c 只有1个负数,∴b +c =﹣a ,a +c =﹣b ,a +b =﹣c , ∴|b+c|a+|a+c|b+|a+b|c=−1+1+1=1,故答案为:1.【题型4 有理数除法的应用(新定义)】【例4】(2020秋•平阴县期中)概念学习:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2记作23,读作“2的3次商”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)4,读作“﹣3的4次商”.一般地,我们把n 个a (a ≠0)相除记作a n ,读作“a 的n 次商”.根据所学概念,求(﹣4)3的值是( ) A .﹣12B .−43C .14D .−14【解题思路】利用题中的新定义计算即可求出值.【解答过程】解:根据题意得,(﹣4)3=(﹣4)÷(﹣4)÷(﹣4)=1÷(﹣4)=−14. 故选:D .【变式4-1】(2020秋•如皋市期中)有两个正数a ,b ,且a <b ,把大于等于a 且小于等于b 的所有数记作[a ,b ].例如,大于等于1且小于等于4的所有数记作[1,4].若整数m 在[5,15]内,整数n 在[﹣30,﹣20]内,那么nm 的一切值中属于整数的个数为( )A .5个B .4个C .3个D .2个【解题思路】根据已知条件得出5≤m ≤15,﹣30≤n ≤﹣20,再得出nm的范围,即可得出整数的个数.【解答过程】解:∵m 在[5,15]内,n 在[﹣30,﹣20]内, ∴5≤m ≤15,﹣30≤n ≤﹣20, ∴−305≤n m≤−2015,即﹣6≤n m ≤−43,∴n m的一切值中属于整数的有﹣2,﹣3,﹣4,﹣5,﹣6,共5个; 故选:A .【变式4-2】(2020•白云区一模)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种键盘密码,每个字母与所在按键的数字序号对应(如图),如字母Q 与数字序号0对应,当明文中的字母对应的序号为a 时,将a +7除以26后所得的余数作为密文中的字母对应的序号,例如明文“X ”对应密文“W ”. 按上述规定,将密文“TKGDFY ”解密成明文后是( )A .DAISHUB .TUXINGC .BAIYUND .SHUXUE【解题思路】根据“明文”与“密文”的转化规则,由“明文”得出“密文”,反之亦然. 【解答过程】解:由“明文”与“密文”的转换规则可得:故选:C .【变式4-3】(2020秋•铜梁区校级期中)我们知道,正整数按照能否被2整除可以分成两大类:正奇数和正偶数,小明受到启发,按照一个正整数被3整除的余数把正整数分成了3类:如果一个正整数被3整除余数为1,则这个正整数属于A 类,例如1,4,7等;如果一个正整数被3整除余数为2,则这个正整数属于B类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C类,例如3,6,9等.(1)2020属于类.(选填A或B或C)(2)①从A类数中任意取两个数,它们的和属于类.(选填A或B或C)②从A类数中任意取8个数,从B类数中任意取9个数,从C类数中任意取10个数,把它们都加起来,则最后的结果属于类(选填A或B或C);(3)从A类数中任意取出m个数,从B中任意取出n个数,把它们都加起来,若最后的结果属于C类,则关于下列关于m、n的叙述中正确的是.(填序号)①m+2n属于C类;②|m﹣n|属于B类;③m属于A类,n属于B类;④m、n属于同一类.【解题思路】(1)计算2020÷3,根据计算结果即可求解;(2)①从A类数中任取两个数进行计算,即可求解;②从A类数中任意取出8数,从B类数中任意取出9个,从C类数中任意取出10数,把它们的余数相加,再除以3,根据余数判断即可求解;(3)根据m,n的余数之和,举例,观察即可判断.【解答过程】解:(1)2020÷3=673…1,所以2020被3除余数为1,属于A类;故答案为:A;(2)①从A类数中任取两个数,如:(1+4)÷3=1…2,(4+7)÷3=3…2,被3除余数为2,则它们的和属于B类;②从A类数中任意取出8数,从B类数中任意取出9数,从C类数中任意取出10数,把它们的余数相加,得(8×1+9×2+10×0)=26÷3=8…2,∴余数为2,属于B类;故答案为:①B;②B;(3)从A类数中任意取出m个数,从B类数中任意取出n个数,余数之和为:m×1+n×2=m+2n,∵最后的结果属于C类,∴m+2n能被3整除,即m+2n属于C类,①正确;②若m=1,n=1,则|m﹣n|=0,不属于B类,②错误;③若m=1,n=1,③错误;④观察可发现若m+2n属于C类,m,n必须是同一类,④正确;综上,①④正确.故答案为:①④.【题型5 有理数除法的实际应用题】【例5】(2020秋•吉安期中)气象统计资料表明,高度每增加1000米,气温就降低大约5℃,我省著名风景区庐山的最高峰高于地面约为1200米,若现在地面温度约为3℃,则山顶气温大约是多少?【解题思路】根据题意列出算式,计算即可求出值.【解答过程】解:根据题意得:3﹣1200÷1000×5=3﹣6=﹣3(℃),则山顶气温大约是﹣3℃.【变式5-1】(2021春•南岗区校级月考)温度的变化与高度有关:高度每增加1km,气温大约下降5.8℃.(1)已知地表温度是12℃,则此时高度为3km的山顶温度是多少?(2)如果山顶温度是﹣6.1℃,此时地表温度是20℃,那么这座山的高度是多少?【解题思路】(1)根据题意,列出算式进行计算;(2)先求温度差,利用温度差除以5.8,得高度.【解答过程】解:(1)依题意,得12﹣3×5.8=12﹣17.4=﹣5.4(℃).答:山顶温度为﹣5.4℃.(2)[20﹣(﹣6.1)]÷5.8=26.1÷5.8=4.5 (千米)答:这座山的高度为4.5千米.【变式5-2】(2020秋•肇源县期末)在湖北省抗击新冠病毒期间,国家实行“一省帮一市对口”支援,春雨矿泉水厂向武汉市的某地区运送矿泉水,该地区人口约12万,每人每天需2瓶水,24瓶水装成一箱,则该厂每天需要装运多少箱矿泉水?【解题思路】先计算每天需要矿泉水的瓶数,再用总瓶数除以每箱矿泉水的瓶数即可得出答案.【解答过程】解:120000×2÷24=10000(箱),答:则该厂每天需要装运10000箱矿泉水.【变式5-3】(2020秋•杨浦区校级期中)某中学举行“新冠肺炎”防控知识竞赛,全校一共有100位学生参赛,比赛设一、二、三等奖三个奖项,其中,获得一等奖、二等奖和三等奖的人数情况如下表所示,根据表格回答:奖项 一等奖 二等奖 三等奖 人数101625(1)一等奖人数是三等奖人数的几分之几?(2)一、二等奖人数之和占全校参赛学生人数的几分之几? (3)三等奖人数比二等奖人数多了几分之几? 【解题思路】(1)10除以25即可得答案,(2)一、二等奖人数和除以全校参赛学生人数即得答案,(3)三等奖人数减去二等奖人数的差,再除以二等奖人数即是答案. 【解答过程】解:(1)10÷25=25, 答:一等奖人数是三等奖人数的25;(2)(10+16)÷100=26÷100=1350, 答:一、二等奖人数之和占全校参赛学生人数的1350;(3)(25﹣16)÷16=9÷16=916, 答:三等奖人数比二等奖人数多了916.【题型6 有理数除法的运算步骤问题】【例6】(2020秋•启东市校级月考)阅读后回答问题: 计算(−52)÷(﹣15)×(−115) 解:原式=−52÷[(﹣15)×(−115)]① =−52÷1 ② =−52③(1)上述的解法是否正确?答: 若有错误,在哪一步?答: (填代号)错误的原因是:(2)这个计算题的正确答案应该是: .【解题思路】(1)直接利用有理数的乘除运算法则分析即可; (2)直接利用有理数的乘除运算法则计算即可. 【解答过程】解:(1)答:不正确 若有错误,在哪一步?答:①(填代号)错误的原因是:运算顺序不对,或者是同级运算中,没有按照从左到右的顺序进行; (2)原式=−52÷(﹣15)×(−115) =−52×115×115=−190, 这个计算题的正确答案应该是:−190. 故答案为:−190. 【变式6-1】(2021秋•大安市期末)阅读下面的解题过程: 计算(﹣15)÷(13−12)×6解:原式=(﹣15)÷(−16)×6(第一步) =(﹣15)÷(﹣1)(第二步) =﹣15(第三步)回答:(1)上面解题过程中有两处错误,第一处是第 步,错误的原因是 ,第二处是第 步,错误的原因是 .(2)把正确的解题过程写出来.【解题思路】(1)从第一步到第二步,先计算除法,再计算乘法,所以第1处是第二步,错误原因是运算顺序错误;然后根据有理数除法的运算方法,可得第2处是第三步,错误原因是得数错误. (2)根据有理数除法、乘法的运算方法,从左向右,求出算式的值是多少即可.【解答过程】解:(1)上面解题过程中有两处错误,第一处是第二步,错误的原因是运算顺序错误,第二处是第三步,错误的原因是得数错误. (2)(﹣15)÷(13−12)×6=(﹣15)÷(−16)×6=(﹣15)×(﹣6)×6 =90×6 =540.故答案为:二、运算顺序错误;三、得数错误.【变式6-2】(2020秋•上蔡县期中)阅读下列材料:计算50÷(13−14+112).解法一:原式=50÷13−50÷14+50÷112=50×3﹣50×4+50×12=550. 解法二:原式=50÷(412−312+112)=50÷212=50×6=300.解法三:原式的倒数为(13−14+112)÷50=(13−14+112)×150=13×150−14×150+112×150=1300.故原式=300.上述得出的结果不同,肯定有错误的解法,你认为解法 是错误的.请你选择合适的解法解答下列问题: 计算:(−142)÷(16−314+23−27) 【解题思路】根据有理数的除法,可转化成有理数的乘法,可得答案; 根据有理数的运算顺序,先算括号里面的,再算有理数的除法,可得答案. 【解答过程】解:没有除法分配律,故解法一错误; 故答案为:一. 原式=(−142)÷(56−36) =(−142)×3 =−114.【变式6-3】(2020秋•鄂托克旗期末)小华在课外书中看到这样一道题: 计算:136÷(14+112−718−136)+(14+112−718−136)÷136. 她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,她顺利地解答了这道题(1)前后两部分之间存在着什么关系?(2)先计算哪部分比较简便?并请计算比较简便的那部分.(3)利用(1)中的关系,直接写出另一部分的结果. (4)根据以上分析,求出原式的结果. 【解题思路】(1)根据倒数的定义可知:136÷(14+112−718−136)与(14+112−718−136)÷136互为倒数;(2)利用乘法的分配律可求得(14+112−718−136)÷136的值;(3)根据倒数的定义求解即可; (4)最后利用加法法则求解即可.【解答过程】解:(1)前后两部分互为倒数; (2)先计算后一部分比较方便. (14+112−718−136)÷136=(14+112−718−136)×36=9+3﹣14﹣1=﹣3; (3)因为前后两部分互为倒数,所以136÷(14+112−718−136)=−13;(4)根据以上分析,可知原式=−13+(−3)=−313.。

有理数的除法基本知识及易错题例析

有理数的除法基本知识及易错题例析

有理数除法基本知识及易错例析松江区立达中学 庄士忠 卢栋才 201600有理数除法的意义与小学学过的正数的除法的意义是相同的,即:已知两个因数的积与其中一个因数,求另一个因数的运算叫除法,所不同的是,负有理数可以参加除法运算. 1.关于倒数乘积为1的两个数互为倒数,即:如果a ·b=1,则a,b 互为倒数. 反过来,如果a,b 互为倒数,则ab=1.因为任何与0相乘的积都是零,而不能是1,所以0没有倒数. 一般地,求一个整数的倒数,直接写成这个数的分之一即可.求一个分数的倒数,只要把分子、分母颠倒一下即可.即a(a ≠0)的倒数是a1;ab (a ≠0,b ≠0)的倒数是b a .例如21的倒数是2,-3的倒数是-31,-53的倒数是-35.2.除法的运算法则法则一:除以一个数等于乘上这个数的倒数,即:a ÷b=a ·b1(b ≠0)法则一表明了有理数的除法和乘法可以互相转化,由于0没有倒数,所以除数不能为0.法则二:两数相除,同号得正,异号得负,并把绝对值相除. 0除以任何一个不等于0的数,得0. 3.利用除法化简分数除法可以写成几种不同的形式,例如:6÷3可以写成36,还可写成6∶3.说明除法可以表示成分数和比的形式;反过来,分数和比可化为除法,由于除法、分数和比可以互化,所以可以利用除法化简分数. 4.关于运算律因为除法可以转化成乘法,所以乘法的运算律有的在除法中适用,例如乘法的分配律在除法中的应用,如(-2565)÷(-5)=(25+65)÷5=25÷5+65÷5=5+61=561,但是乘法的交换律和结合律在除法中是不适用的,如6÷5≠5÷6,(6÷2)÷3≠6÷(2÷3)【重点难点解析】1.本节的重点是有理数除法法则;难点是确定商的符号和灵活运用除法的两个法则.2.根据倒数的意义可知,正数的倒数是正数,负数的倒数是负数,0没有倒数.在表示一个数(0除外)的倒数时,只要把这个数的分子、分母颠倒位置就可以了.3.对于除法的两个法则.在计算时可根据具体的情况运用.一般在不能整除的情况下应用第一个法则.如141÷(-132)=45×(-53)=-43;在能整除的情况下,应用第二个法则比较方便,如:(-16)÷(+2)=-16÷2=-8,写成(-16)÷2=-16×(+21)=-8就繁琐了.例1 计算(1)(-40)÷(-8); (2)(-5.2)÷3253.分析: 题(2) ∵ 5.2=526,32578253=,∴原式=(-526)×7825. 解: (1) (-40)÷(-8)=5;(2)(-5.2) ÷3253=-526×7825=-35=-132.注: 题(1)能整除,在确定商的符号之后,直接除比较简便;题(2)的除数是分数,把它转化为乘法比较简便.例2 计算 -2.25÷181×(-8)分析: 把小数化为分数,除法转化为乘法,带分数化为假分数,即-⨯4998×(-8)再乘.解: -2.25÷181×(-8)=-⨯4998×(-8)=16注: 有理数的乘除法运算是同一级运算,因此应按照从左到右的顺序进行运算.错误的解是-2.25÷181×(-8)=-2.25÷89×(-8)=-2.25÷(-9)= 41,原因是先乘后除了.为了防止这类错误,应化除为乘.例3 计算(-631)÷(141327291-+-)错解: 原式=(-631)÷91+631÷72+(-631)÷32-(-631)÷141=-71+181-92421+ =12614=91正确: 原式=-631÷12653=- 631×53126=-532 注: 乘法对加法满足分配律,但除法对加法并不满足分配律.只有当把除法转化为乘法以后,才能运用分配律. 例4: 化简下列分数(1);62-- (2)-93-; (3);30- (4)-.ba--解: (1);3162)6()2(62=÷=-÷-=--(2)--=-93[3÷(-9)]=-(-31)= 31;(3)30-=0÷(-3)=0; (4)--=--ba[(-a) ÷(-b)]=-a ÷b=-b a .注: 利用除法化简分数,主要是简化分数的符号,一般地有,分数的分子、分母、分数本身的三个符号中,任意改变其中两个的符号,分数的值不变,这一结论使上述问题化简过程更为简便,如第(4)小题-.bab a b a -=++-=-- 【难题巧解点拨】例1 计算:651715÷(-1312)+(-17173)÷(-1312)解: 651715÷(-1312)+(-17173)÷(-1312)=651715×(-1213)+(-17173)×(-1213)=481712×(-1213)=(48+1712)×(-1213)=48×(-1213)+1712×(-1213)=-52-1713521713-=注:本题灵活运用运算律,使繁杂的计算变得简便.【课本难题解答】 1.计算(1)(-43)×(-121)÷(-241);(2)-6÷(-0.25)×1411解:(1)(-43)×(-121)÷(-241)=(-43)×(-23)×(-94)=-43×23×94=-21(2)-6÷(-0.25)×1411=-6÷(-41)×1411=6×4×1411=76187132= 注:先将小数化成分数,将除法变成乘法,最后确定结果的符号. 2.判断下列各式是否成立:(1)b a b a b a -=-=-;(b ≠0) (2).ba b a =--(b ≠0)解:(1)、(2)均正确.注:根据分数与除法互化来做:如:ba b a b a b a =÷=-÷-=--)()(,如:b a-=(-a) ÷b=-a ÷b=-b a ,a b a =-÷(-b)=-a ÷b=-b a ∴.bab a b a -=-=+-【典型题】例1 填空题:(1)-1.5的倒数是 ; 的倒数是-0.6. (2)a-b(a ≠b)的倒数是 ; (3)-12÷(-3)= ;-2÷(-6)= ;(4)13÷(-52)= ;-231÷(-161)= ;(5)=--1615 ;-1018-= . 解:(1)-32;-35 (2);1b a -(3)4;31; (4)-41;2; (5)1615;154注意:(1)一般倒数用分数表示比较方便;(2)只有在a-b ≠0的条件下,a-b 才有倒数;(3)利用除法可以简化分数的符号,一般地有分数的分子、分母、分式本身的三个符号中,任意改变其中两个的符号,分数的值不变. 例2 计算题:(1)-54×241÷(-241)×92;(2)(-1283716)÷(-32); (3)[1521-(143÷152+143÷321)]÷(-183).解: (1)原式=54×49×94×92=54×92=12(2)原式=128÷32+3716÷32=4+741=4741(3)原式=-[1521-(47×75+47×72)×118]=-[1521-(45+42)] ×118=-455×118=-10注意:(1)如果算式中只含有乘除法运算,应按从左到右的顺序进行运算,不能乱.(2)含有加减乘除的混合运算中,要先算乘除,再算加减,遇到括号要先算括号里面的.例3 计算:-841+841÷(-2127×313)解:原式:=-841+433÷(-1231×313)=-841+433÷(-41)=-841-33=-4141【练习】(时间45′,满分100分) 1.选择题:(1)两个有理数的商是正数,这两个数一定是( ) A .都是负数; B .都是正数 C .至少一个是正数; D .两数同号.(2)计算:(-1)÷(-5)×(-51)的结果是( )A .-1;B .1;C .-251D .-25.(3)下列说法错误的是( ). A .任何有理数都有倒数; B .互为倒数的两数的积等于1; C .互为倒数的两数符号相同; D .1和-1互为负倒数.(4)一个数的倒数的相反数是351,则此数是( )A .516; B .165; C .-516; D .-165. (5)若a<a1,则a 满足( )A .a>1;B .0<a<1或a<-1;C .a>-1;D .-1<a<0 或a>1 (6)两数的商为正,那么这两数( ) A .和为正; B .差为正; C .积为正; D .以上都不对. (7)下列说法错误的是( )A .小于-1的数的倒数大于其本身;B .小于1的正数的倒数大于其本身;C .一个数的倒数不能等于它本身;D .m-n(m ≠n)的倒数是nm -1.(8)如果a<b<0,那么下列式子成立的是( ).A .;11b a <B .ab<1;C .1<b a ;D .1>ba2.计算:(1)21÷(-43); (2)(-65)÷(+331);(3)-71÷(-7); (4)(41-21)÷21(5)169÷(-43)÷(-53); (6)(-0.1)÷10÷(-100);(7)(-81) ÷241×94÷(-16) ÷(-41); (8)(162116243524-)÷8÷53×(-7).3. 写出下列各数的倒数:-4,151,2.4,-1,174 -0.014.化简分数:(1)-912-; (2)164--; (3)-23--; (4)515-. 5.列式计算:(1)一个数的451倍是-5,这个数是多少?(2)一个数与12013的积是-42019,求这个数.(3)0.378的多少倍是-2.646?【提高训练】1.填空题 (1) 的倒数是-0.125;-221的负倒数是 ;0.36的倒数的相反数是.(2)如果a,b 互为倒数,那么3ab= ,如果abc<0,且a,b 异号,那么c 0.(3)当a时,1=aa ,当a时,1-=a a .(4)当m=时,2÷(3m+1)没有意义;当n= 时,(1-2n) ÷11=0.(5)两数的积是-1,其中一个数是-132,那么另一个数是 .(6)-21和31的和的倒数是 ;-21和31的倒数和是 .(7)若a 1>1,则a 的取值范围是 ;若a1<1,则a 的取值范围是 .(8)若ab<0,且a>b,则a 0,b 0.(9)若ac cbb a 则,0,0<> 0.(10)如果-1<a<b<0,那么a1 b 1.2.计算(1)[1)436183(241-+-×24] ÷5;(2)-121÷43×(-0.2) ×143÷1.4×(-53);(3)( 51-31)×(51+31)÷51×(-31)(4)(-1132)÷0.5-(-2121)÷0.5+(-1031)÷0.5;(5)13÷1.5-0.34÷321+31÷131-0.34÷151.参考答案: 【基本练习】1.(1)D; (2)C; (3)A; (4)D; (5)B; (6)C; (7)C; (8)D.2.(1)-32; (2)- ;41 (3) ;491 (4)- 21; (5)1;41(6)0.0001; (7)-4; (8) .1523.-;41, 15,125,-1,117,-100. 4.(1)34; (2) ;41(3)- 23; (4)-3.5.(1)-1214(2)-3; (3) -7【提高训练】1.(1)-8,52,-925; (2)3,>; (3)>0,<0; (4)-31,21; (5) 53; (6)-6,212;(7)0<a<1,a<0或a>1; (8)>,<; (9)<; (10)>.2.(1)1245; (2)-0.3; (3) 13516 (4)-1[提示:利用分配律] (5)12.66。

七年级数学上册第二章有理数2.6有理数的乘法与除法有理数乘除错解例析素材苏科版

七年级数学上册第二章有理数2.6有理数的乘法与除法有理数乘除错解例析素材苏科版

有理数乘除错解例析在进行有理数乘除运算中,如果计算不细心,对于运算法则,运算顺序不熟练,就容易出现一些解题中的错误,现总结如下:一、混淆符号法则出错例1 计算:(211-)×(322-)×(—1) 错解:原式=(23-)×(38-)×(-1)=4 剖析:对乘法法则中“两数相乘,同号得正,异号得负”理解不透,三个有理数相乘,应根据负因数的个数确定符号,而不能只看是同号还是异号.正解:原式=(23-)×(38-)×(-1)=4- 二、违背运算顺序出错例2 计算:(311-)÷(3-)×(31-) 错解:原式=(311-)÷1=311- 剖析:没有按照“同级运算,从左到右”的顺序进行,掉进了出题人设计的“陷阱”,有理数运算,不能违背运算顺序.正解:原式=(34-)×(31-)×(31-)=274- 三、对负带分数理解不清出错例3 计算:251542⨯- 错解:原式=(2-+154)25⨯=252⨯-25154⨯+=32050+-=3143- 剖析:将负带分数1542-错误地理解为1542+-,负带分数的整数部分和分数部分都是负数,即 1542-=1542--. 正解:原式=(2--154)25⨯=252⨯-25154⨯-=32050--=3256- 四、违背去括号法则出错例4 计算:+---5[3(532.01⨯-)÷(2-)] 错解:原式=++-53(532.01⨯-)÷(2-)=2+⨯2522(21-)=2-2511=25141 剖析:错解的原因是去掉“—”和中括号时,没有将(532.01⨯-)改变符号。

正解:原式=-+-53(532.01⨯-)÷(2-) =2-⨯2522(21-)=2+2511=25112 五、应用乘法分配律时弄错符号出错例5 计算:⨯-24(165127--) 错解:原式=12724⨯-6524⨯-124⨯-=—14-20—24=—58 剖析;在用—24乘以括号内每一个数时,混淆了运算符号和性质符号,正解:原式=12724⨯-⨯-24(65-)()124-⨯-=-14+20+24=30 六、乱用运算律出错例6 计算:(631-)÷(327291+-) 错解:原式=(631-)÷91-(631-)÷72+(631-)÷32 =42118171-+-=1263718-+-=91- 剖析;由于受乘法分配律a (b+c )=ab+ac 的影响,错误地认为a ÷(b+c )=a ÷b+a ÷c ,这是不正确的,事实上不存在除法分配律。

有理数加减乘除混合运算易错题

有理数加减乘除混合运算易错题

有理数加减乘除混合运算易错题
有理数加减乘除混合运算中,学生容易犯的错误主要包括以下几个方面:
运算顺序错误:按照运算的优先级,应先进行乘除运算,再进行加减运算。

然而,一些学生可能会忽略这个原则,导致结果错误。

符号处理错误:有理数的加减乘除运算涉及到正负号的处理,如果处理不当,就会导致结果错误。

例如,负负得正的原则,一些学生可能会忽略或者误解。

忽略括号:括号可以改变运算的顺序,但一些学生可能会忽略这一点,导致运算结果错误。

计算错误:在进行具体的加减乘除运算时,由于粗心或者技能不熟练,也可能会导致结果错误。

以下是一些具体的易错题示例:
计算:2 - (-3) * 4。

这个题目中,学生需要先进行括号内的乘法运算,再进行减法运算。

如果忽略了括号,直接进行减法运算,就会导致结果错误。

计算:(-2) * 3 + 4 / (-1)。

这个题目中,学生需要同时进行乘法和除法运算,然后再进行加法运算。

如果忽略了运算的优先级,或者对负数的处理不当,就会导致结果错误。

计算:(1/2) - (1/3)。

这个题目中,学生需要进行分数的加减运算。

如果学生对分数的运算不熟悉,或者忽略了运算的顺序,就会导致结果错误。

以上只是有理数加减乘除混合运算中的一些常见易错题,学生在进行练习时,应该多加注意,避免犯类似的错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数的除法的方法题型解法易错
摘要:
1.有理数除法的基本概念及方法
2.有理数除法的易错题型分析
3.解题技巧与策略
4.练习题及答案解析
正文:
一、有理数除法的基本概念及方法
有理数除法是指两个有理数相除的运算,其中除数不能为零。

其计算方法分为三种情况:
1.除数大于零,商为正;
2.除数小于零,商为负;
3.除数为零,无意义。

二、有理数除法的易错题型分析
1.除数为负数时的运算顺序错误;
2.忽略除数的绝对值符号;
3.商的正负判断错误;
4.计算过程中出现小错误导致答案错误。

三、解题技巧与策略
1.注意运算顺序,先处理符号,再处理绝对值;
2.除数为负数时,先转换为正数再进行除法运算;
3.运用乘除法的互逆关系进行验算;
4.熟练掌握商的变化规律,如除数变大,商变小等。

相关文档
最新文档