高一弧长公式扇形面积公式
高三复习-扇形的面积公式

扇形的面积公式
S=LR/2。
公式描述:公式中L为扇形的弧长,R为扇形的半径,S 为扇形的面积。
一条弧和经过这条弧两端的两条半径所围成的图形叫扇形(半圆与直径的组合也是扇形)。
显然,它是由圆周的一部分与它所对应的圆心角围成。
扇形面积计算公式也可以用扇形所在圆的面积除以360再乘以扇形圆心角的角度n,如下:S=nπr²/360;
扇形面积S=圆心角的角度(角度制)×圆周率π3.14×半径r²/360°
S=LR/2(L为弧长,R为扇形半径)
扇形面积S=弧长L×半径/2
推导过程:S=πR²×L/2πR=LR/2或者S=nπR²/360=(nπR/180)/2×r
扇形面积S=圆周率π3.14×半径r²×弧长L/2×圆周率π3.14×半径=弧长L×半径/2
S=│α│R²/2(L=│α│·R)
(弧度制)循环链条扇形面积计算公式:
扇形面积S=圆心弧度绝对值|a|×半径r²/2
圆心弧度绝对值|a|=扇形面积S×2/半径r²
弧长L=圆心弧度绝对值|a|×半径r
扇形面积S=弧长L×半径r/2
扇形组成部分1、圆上A、B两点之间的的部分叫做“圆弧”简称“弧”,
读作“圆弧AB”或“弧AB”。
2、以圆心为中心点的角叫做“圆心角”。
3、有一种统计图就是“扇形统计图。
扇形的弧长和面积公式弧度制

弧度制扇形面积公式:S=L*R/2。
一条弧和经过这条弧两端的两条半径所围成的图形叫扇形(半圆与直径的组合也是扇形)。
显然,它是由圆周的一部分与它所对应的圆心角围成。
用弧长与半径之比度量对应圆心角角度的方式,叫做弧度制,用符号rad表示,读作弧度。
等于半径长的圆弧所对的圆心角叫做1弧度的角。
由于圆弧长短与圆半径之比,不因为圆的大小而改变,所以弧度数也是一个与圆的半径无关的量。
角度以弧度给出时,通常不写弧度单位。
另外一种常用的度量角的方法是角度制。
三角函数笔记

cos2 1 cos .
2
2
公
式
tan
2=
1
2
tan tan
2
十、辅助角公式
令 cos a ,sin
a2 b2 a sin x b cos x
b a2 b2
a2 b2 ( a sin x b cos x)
a2 b2
a2 b2
a2 b2 cos sin x sin cos x
a2 b2 sin x cos cos x sin
a2 b2 sin x .
十一、正弦定理、余弦定理及推论
a b c. sin A sin B sin C
a2 =b2 c2 2bc cos A; b2 =a2 c2 2ac cos B; c2 =a2 + b2 - 2abcosC.
一般解法
由A+B+C=180°求角A,由正弦定理 求出b与c.
由余弦定理求出第三边c,再由 正弦定理求出剩下的角.
由正弦定理求出角B,再求角C, 最后求出c边.可有两解,一解 或无解. 先由余弦定理求出其中两个角,再利 用内角和为180°求出第三个角.
三角函数必记内容
一、弧长公式与扇形面积公式
1、弧长公式:
l = r
2、扇形面积公式:
1
S= 2 lr
S=
1 2
r2
R
L
α
二、单位圆中三角函数的定义
sin y cos x tan y(x≠0)
x
三、任意角的三角函数定义
sin y , cos x , tan y
r
r
x
四、同角三角函数的基本关系式
0
/
0
高中数学一轮复习三角函数的图像与性质:第3节扇形的弧长及面积公式

第3节扇形的弧长及面积公式【基础知识】弧长公式:l=|α|r,扇形面积公式:S扇形=12lr=12|α|r2.【规律技巧】(1)弧度制下l=|α|·r,S=12lr,此时α为弧度.在角度制下,弧长l=nπr180,扇形面积S=nπr2360,此时n为角度,它们之间有着必然的联系.(2)在解决弧长、面积及弓形面积时要注意合理应用圆心角所在的三角形.【典例讲解】【例1】已知一扇形的圆心角为α(α>0),所在圆的半径为R.(1)若α=60°,R=10 cm,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长是一定值C(C>0),当α为多少弧度时,该扇形有最大面积?【解析】(1)设弧长为l,弓形面积为S弓,则α=60°=π3,R=10,l=π3×10=10π3(cm),S弓=S扇-S△=12×10π3×10-12×102×sinπ3=503π-5032=50π3-32(cm2).【规律方法】涉及弧长和扇形面积的计算时,可用的公式有角度表示和弧度表示两种,其中弧度表示的公式结构简单,易记好用,在使用前,应将圆心角用弧度表示.弧长和扇形面积公式:l=|α|R,S=12|α|R2=12lR.【变式探究】已知扇形的周长为 4 cm,当它的半径为______ cm和圆心角为________弧度时,扇形面积最大,这个最大面积是________ cm2.【答案】12 1【针对训练】1、已知扇形的周长是 6 cm,面积是 2 cm2,则扇形的圆心角的弧度数是()A.1或4 B.1C.4 D.8【答案】A2、已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大?【答案】当r=10,θ=2时,扇形面积最大3.一段圆弧的长度等于其圆内接正三角形的边长,则其圆心角的弧度数为()A.π3B.2π3C. 3D.2【答案】C【解析】设圆的半径为R,则其内接正三角形的边长为3R,即该圆弧的弧长为3R,于是其圆心角的弧度数为 3.故选C.4.一扇形的圆心角为120°,则此扇形的面积与其内切圆的面积之比为________.【答案】(7+43)∶9【练习巩固】1.(1)已知扇形周长为10,面积是4,求扇形的圆心角;(2)一个扇形OAB的面积是 1 cm2,它的周长是 4 cm,求圆心角的弧度数和弦长AB.【解析】(1)设圆心角是θ,半径是r,则2r+rθ=10,1 2θ·r2=4,解得r=4,θ=12或r=1,θ=8(舍去).∴扇形的圆心角为1 2 .(2)设圆的半径为r cm,弧长为l cm,则12lr=1,l+2r=4,解得r=1,l=2.∴圆心角α=lr=2.如图,过O作OH⊥AB于H,则∠AOH=1 rad.∴AH=1·sin 1=sin 1 (cm),∴AB=2sin 1 (cm).2.如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x轴上沿正向滚动,当圆滚动到圆心位于(2,1)时,OP→的坐标为________.【答案】(2-sin 2,1-cos 2) 3.已知扇形的半径是2,面积为8,则此扇形的圆心角的弧度数是()A .4B .2 C.8 D.1【答案】A 【解析】试题分析:记扇形的圆心角为,42,.2rS 扇,故选A .考点:1、扇形面积公式.4.(2015秋?友谊县校级期末)一个扇形的面积为3π,弧长为2π,则这个扇形中心角为()A .B.C .D .【答案】D 【解析】试题分析:由扇形面积公式得θr=2π,θr2=3π,先解出r 值,即可得到θ值.解:设这个扇形中心角的弧度数是θ,半径等于r ,则由题意得θr=2π,θr2=3π,解得 r=3,θ=.故选:D .考点:扇形面积公式.5.已知扇形的圆心角为060,所在圆的半径为10cm ,则扇形的面积是________2cm .【答案】503【解析】试题分析:由扇形的面积公式,得该扇形的面积为350100321212RS;故填503.考点:扇形的面积公式.6.在半径为2的圆中,一扇形的弧所对的圆心角为60°,则该扇形的弧长等于.【答案】32【解析】试题分析:圆心角为60°即32233l r考点:弧长公式7.已知扇形的圆心角为0120,半径为3,则扇形的面积为______.【答案】3【解析】试题分析:21203oQ ,扇形所对的弧长2323l,扇形面积为12332S .考点:扇形面积.8.已知扇形的周长等于它所在圆的周长的一半,则这个扇形的圆心角是______.【答案】2【解析】试题分析:设扇形的半径R ,弧长,根据题意R l R 2,解得2Rl ,而圆心角2Rl 考点:圆心角公式9.(2015秋?溧阳市期末)已知扇形的半径为1cm ,圆心角为2rad ,则该扇形的面积为cm 2.【答案】1【解析】试题分析:直接求出扇形的弧长,然后求出扇形的面积即可.解:扇形的圆心角为2,半径为1,扇形的弧长为:2,所以扇形的面积为:=1.故答案为:1.考点:扇形面积公式.10.圆锥的轴截面是正三角,则它的侧面展开扇形圆心角为弧度.【答案】【解析】试题分析:设圆锥的底面半径为r ,母线为l ,则l=2r ,于是侧面展开图的扇形半径为l ,弧长为2πr ,∴圆心角α==π.考点:旋转体(圆柱、圆锥、圆台),圆锥的侧面展开图.【名师点睛】旋转体的侧面展开图问题:1.圆柱的侧面展开图是矩形,矩形的高是圆柱的高(母线),矩形的底是圆柱的底面周长.2.圆锥的底面半径为r ,母线长为l ,侧面展开图扇形的中心角是,则2r l.3.圆台的上、下底面半径分别为r,R ,母线长为l ,侧面展开图圆环的中心角为,则2R r l.11.如图,点P 从(1,0)出发,沿单位圆按顺时针方向运动3弧长到达Q 点,则Q 点的坐标为.【答案】13,22【解析】试题分析:由三角函数定义知:13cos(),sin(),3232xy ,因此Q 点的坐标为13,22考点:三角函数定义【名师点睛】定义法求三角函数值的两种情况(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后利用三角函数的定义求解.(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义求解相关的问题.若直线的倾斜角为特殊角,也可直接写出角α的三角函数值.。
弧长扇形面积与弦长的计算

弧长扇形面积与弦长的计算弧长(arc length)与扇形面积(sector area)是圆形几何中的重要概念。
弧长指的是圆的一部分弧的长度,而扇形面积是由这一弧和与之相交的两条半径所围成的图形的面积。
在数学中,我们可以通过一些公式和方法来计算弧长、扇形面积以及它们与弦长(chord length)之间的关系。
一、弧长的计算在计算弧长时,我们需要知道圆的半径和所对应的圆心角(central angle)。
根据圆的性质,我们可以得出以下公式来计算弧长。
1. 当圆心角使用弧度制时:弧长 = 半径 ×圆心角弧长的单位与半径的单位相同,例如,如果半径使用米(m)作为单位,则弧长也使用米(m)作为单位。
2. 当圆心角使用度数制时:弧长 = (半径 ×圆心角× π) / 180这里的π是一个常数,近似取3.14159。
例如,假设圆的半径为5m,对应的圆心角为60度,则根据上述公式计算得到弧长为(5 × 60 × 3.14159) / 180 ≈ 5.24m。
二、扇形面积的计算扇形面积是由圆心、弧和两条半径所围成的区域。
计算扇形面积时,我们需要知道圆的半径和所对应的圆心角。
扇形面积的计算公式如下:扇形面积 = (半径的平方 ×圆心角) / 2其中,半径的平方表示半径的平方值。
与弧长计算中的圆心角一样,如果圆心角使用度数制,则计算扇形面积时需要将圆心角转换为弧度制。
例如,假设圆的半径为4cm,对应的圆心角为45度,则根据上述公式计算得到扇形面积为(4^2 × 45 × 3.14159) / (2 × 180) ≈ 5.65cm²。
三、弦长与弧长、扇形面积的关系弦是圆内连接两个任意点的线段,它与圆的弧和扇形面积有一定的关系。
1. 弧长与弦长的关系当弧长和弦长的夹角(内切角)相同时,弦长越长,对应的弧长也越长。
2. 扇形面积与弦的关系当扇形面积和弦的夹角(内切角)相同时,弦越长,对应的扇形面积也越大。
弧长公式和面积公式

弧长公式和面积公式
圆弧的弧长公式和面积公式:
1、已知弧长L与半径R:S扇形=1/2LR。
2、已知弧所对的圆心角n°与半径。
S扇形=nπR^2/360。
弧形计算公式:S=1/2LR=nπR²/360(L是弧长,R是半径)。
弧长计算公式:L=n(圆心角度数)×π(1)×r(半径)/180(角度制),L=α(弧度)×r(半径)(弧度制)。
其中n是圆心角度数,r 是半径,L是圆心角弧长。
弧形面积的计算方法
弧长、两弧点间的距离、弧高这三个条件知道任意两个就够了。
(1)由已知弧长和已知弦长(两弧点间的距离)求得圆半径和弧所对的圆心角的度数。
(2)由半径和圆心角求得扇形面积和三角形面积。
(3)扇形面积减去三角形的面积的弧形的面积。
扇形面积公式三种

扇形面积公式三种
扇形面积公式3个有:S扇=(n/360)πR²,S扇=1/2lr(知道弧长时),S 扇=(1/2)θR²(θ为以弧度表示的圆心角),S扇=(lR)/2 (l为扇形弧长)。
R是扇形半径,n是弧所对圆心角度数,π是圆周率,L是扇形对应的弧长。
扇形面积公式与形状关联:
1、扇形是与圆形有关的一种重要图形,其面积与圆心角、圆半径相关,圆心角为n°,半径为r的扇形面积为n/360*πr^2。
如果其顶角采用弧度单位,则可简化为1/2×弧长r。
2、扇形还与三角形有相似之处,上述简化的面积公式亦可看成:1/2×弧长r,与三角形面积:1/2×底×高相似。
弧长=n/360·2πr=nπr/180,扇形的弧相似三角形的一条边。
3、扇形还与三角形有相似之处,上述简化的面积公式亦可看成:弧长与半径乘积的一半,与三角形面积,为底和高乘积的一半相似。
4、R是扇形半径,n是弧所对圆心角度数,π是圆周率。
也可以用扇形所在圆的面积除以360再乘以扇形圆心角的角度。
S=nπR²/360。
S=LR/2。
高三复习-扇形面积公式弧长公式

扇形面积公式弧长公式
一条弧和经过这条弧两端的两条半径所围成的图形叫扇形(半圆与直径的组合也是扇形),它是由圆周的一部分与它所对应的圆心角围成。
扇形面积公式
S扇=LR/2(L为扇形弧长,R为半径)或π(R^2)*N/360(即扇形的度数) 扇形是与圆形有关的一种重要图形,其面积与圆心角(顶角)、圆半径相关,圆心角为n°,半径为r的扇形面积为n/360*πr^2。
如果其顶角采用弧度单位,则可简化为1/2×弧长×(半径)
扇形还与三角形有相似之处,上述简化的面积公式亦可看成:1/2×弧长×(半径),与三角形面积:1/2×底×高相似。
扇形弧长公式
L是弧长,n是扇形圆心角,π是圆周率,R是扇形半径。
弧长L=2×圆心角的角度(角度制)×圆周率π3.14×半径/360°
弧长L=圆心角的角度(角度制)×圆周率π3.14×半径/180°。