中考数学一元二次方程应用题经典题型汇总
一元二次方程的应用大题专练

一元二次方程的应用大题专练题型一、传播问题1.有一个人患了流感,经过两轮传染后共有121个人患了流感.(1)每轮传染中平均一个人传染了几个人?(2)如果按照这样的传染速度,经过三轮传染后共有多少人患流感?2.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是31,则这种植物每个支干长出多少个小分支?3.某教育局组织教职工男子篮球比赛.(1)本次比赛采用单循环赛制(参赛的每两支队之间要比赛一场),共安排了28场比赛,问:有多少支队参加比赛(2)在比赛场地边,东南西北四个角落分别划分一个大小一样的正方形观众席,已知观众席的总面积是400平方米,求每个正方形的边长.题型二、增长率问题1.用手机抢红包是大家春节期间进行交流联系、增强感情的一部分.下面是宁宁和她的妹妹在春节期间的对话:请问:(1)2022年到2024年宁宁和她妹妹除夕时用手机抢到红包的平均年增长率是多少?(2)2024年除夕,宁宁和她妹妹用手机各抢到了多少元的红包?2.随着阿里巴巴、淘宝网、京东、小米等互联网巨头的崛起,催生了快递行业的高速发展.据调查,杭州市某家小型快递公司,今年一月份与三月份完成投递的快递总件数分别为10万件和12.1万件.现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递快递总件数的月平均增长率;(2)如果平均每人每月最多可投递快递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年4月份的快递投递任务?如果不能,请问至少需要增加几名业务员?3.“阳光玫瑰”是一种优质的葡萄品种.某葡萄种植基地2021年年底已经种植“阳光玫瑰”300亩,到2023年年底“阳光玫瑰”的种植面积达到432亩.(1)求该基地“阳光玫瑰”种植面积的年平均增长率.(2)市场调查发现,当“阳光玫瑰”的售价为20元/kg时,每天能售出300kg;销售单价每降低1元,每天可多售出50kg.为了减少库存,该基地决定降价促销.已知该基地“阳光玫瑰”的平均成本为10元/kg,若要使销售“阳光玫瑰”每天获利3150元,并且使消费者尽可能获得实惠,则销售单价应定位多少元?题型三、销售问题1.《2024年政府工作报告》明确提出优化消费环境的目标,开展了“消费促进年”活动和实施“放心消费行动”等多项举措,旨在引导消费市场正向发展.某文具店为回馈顾客一直以来的信赖与支持,特地推出了商品促销活动.顾客每购买一本笔记本便赠送两支铅笔,若顾客一次性购买n支钢笔(n为正整数),则每支钢笔的价格在售价的基础上降低2n元.已知一本笔记本比一支铅笔贵8元,钢笔的售价为36元/支.(1)小华到此文具店购买了10本笔记本,30支铅笔,共消费120元,求此文具店所售卖笔记本和铅笔的单价.(2)小明计划到此文具店买16支铅笔和笔记本若干,但身上只带了70元,问小明最多可以买多少本笔记本?(3)已知此文具店所售卖钢笔的进价为24元/支,当顾客一次性购买多少只钢笔时,文具店此次交易的利润达到最大值?2.每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x元,每天的销售利润为y元.(1)求y与x的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?3.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加利润,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)若每件衬衫降价5元,则商场平均每天可售出衬衫______件,每天获得的利润为______元.(2)若商场每天要获得利润1200元,请计算出每件衬衫应降价多少元?(3)商场每天要获得利润有可能达到1400元吗?若能,请求出此时每件衬衫的利润;若不能,请说明理由.4.某超市销售一种商品,成本价为30元/千克,经市场调查,每天销售量y(千克)与销售单价x(元/千y x,规定每千克售价不能低于30元,且不高于80元.克)之间满足一次函数关系180(1)如果该超市销售这种商品每天获得3600元的利润,那么该商品的销售单价为多少元?(2)设每天的总利润为w元,当销售单价定为多少元时,该超市每天的利润最大?最大利润是多少元?题型四、面积问题1.为了加强劳动教育,我校在校园开辟了一块劳动教育基地:一面利用学校的墙(墙的最大可用长度为28米),用长为39米的篱笆,围成中间隔有一道篱笆的矩形菜地,在菜地的前端及中间篱笆上设计了三个宽1米的小门,便于同学们进入.(1)若围成的菜地面积为120平方米,求此时边AB的长;(2)若每平方米可收获2千克的菜,问该片菜地最多可收获多少千克的菜?2.某校九年级学生在数学社团课上进行纸盒设计,利用一个边长为30cm 的正方形硬纸板,在正方形纸板的四角各剪掉一个同样大小的小正方形,将剩余部分折成一个无盖纸盒.(1)若无盖纸盒的底面积为2484cm ,则剪掉的小正方形的边长为多少?(2)折成的无盖纸盒的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的小正方形的边长;如果没有,说明理由.3.科技创新活动一直在路上.现将某品牌平面展示屏设计与生产过程中收集的精准数据统计如下: 信息数据一:屏占比,指的是屏幕面积与整个外观面积的比,计算公式为:屏占比100%屏幕面积外观面积信息数据二:某厂商设计了该款1.0版平面展示屏(如图),正面外观呈矩形,长400mm ,宽300mm ,正中央是长宽之比为4:3的矩形屏幕,若要使屏占比达到81%,且左右边框等宽,均为xmm ,上下边框等宽,均为mm y ,应如何设计屏四周边框的宽度?信息数据三:在上述1.0版平面展示屏的升级版2.0版中,外观保持不变,对屏的长宽进行调整,调整之后使得左右边框的宽度各减少了0.9a ,上下边框的宽度各减少了a ,从而使屏占比进一步提升至91.35%.(1)求x ,y 的值;(2)求a 的值.题型五、几何动态问题1.如图,A B C D 、、、为矩形的四个顶点,4AB cm ,2AD cm ,动点P 、Q 分别从点A 、C 同时出发,都以1cm/s 的速度运动,其中点P 由A 运动到B 停止,点Q 由点C 运动到点D 停止.(1)求四边形PBCQ 的面积;(2)P 、Q 两点从出发开始到几秒时,P 、Q 、D 组成的三角形是等腰三角形?2.如图,在四边形ABCD 中,AB DC ,4AD ,12CD ,BD AD ,60A ,动点P 、Q 分别从A 、B 同时出发,点P 以每秒2个单位的速度沿着折线A D C 先由A 向D 运动,再由D 向C 运动,点Q 以每秒1个单位的速度由B 向A 运动,当其中一动点到达终点时,另一动点随之停止运动,设运动时间为t 秒.(1)两平行线DC 与AB 之间的距离是__________.(2)当点P 、Q 与BCD △的某两个顶点围成一个平行四边形时,求t 的值.(3)AP ,以AP ,AQ 为一组邻边构造平行四边形APMQ ,若APMQ 的面积为3t 的值.3.如图,在四边形ABCD 中,DC AB ∥,90B ,8cm AB ,4cm AD ,6cm CD ,点P 从点A 出发沿边AB 以2cm/s 的速度向点B 移动;同时,点Q 从点C 出发沿边CD 以1cm/s 的速度向点D 移动,当一点到达终点时,另一点也随之停止运动,设运动时间为s x .(1)PB cm ,CQ cm (用含x 的代数式表示);(2)当P 、Q 37cm 时,求x 的值;(3)填空:①当x 时,四边形APQD 是菱形;②当x 时,四边形PBCQ 是矩形.题型六、数字问题1.第十四届国际数学教育大会14ICME 会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有07~共8个基本数字,八进制数3745换算成十进制数是3210387848582021,表示14ICME 的举办年份.(1)请把八进制数3747换算成十进制数;(2)小华设计了一个n 进制数265,换算成十进制数是145,求n 的值(n 为正整数).2.两个相邻偶数的平方和的平均数为Q ,则Q 一定是偶数.如:2268100,100250,50为偶数.(1)偶数12和14是否满足上述结论,请说明理由;(2)设两个相邻偶数为2n 和22n ,请论证上述结论;(3)若122Q .求符合要求的偶数.3.阅读材料:200多年前,数学王子高斯用他独特的方法快速计算出123100的值.我们从这个算法中受到启发,用下面方法计算数列1,2,3,…,n ,…的前n 项和: 由1211211111n n nn n n n n 可知(1)1232n n n . 应用以上材料解决下面问题:(1)有一个三角点阵(如图),从上向下数有无数多行,其中第一行有1个点,第二行有2个点,…,第n 行有n 个点,.若该三角点阵前n 行的点数和为325,求n 的值.(2)在第一问的三角点阵图形中,前n 行的点数和能是900吗?如果能,求出n ;如果不能,说明理由.(3)如果把上图中的三角点阵中各行的点数依次换为3,6,9,…,3n ,…,前n 行的点数和能是900吗?如果能,求出n ;如果不能,说明理由.题型七、行程问题1.小明设计了点做圆周运动的一个动画游戏,如图所示,甲、乙两点分别从直径的两端点A 、B 以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程☎✆l cm 与时间☎✆s t 满足关系:213022lt t t ,乙以4cm/s的速度匀速运动,半圆的长度为21cm .(1)甲运动4s 后的路程是多少?(2)甲、乙从开始运动到第三次相遇时,它们运动了多少时间?2.随着人们对健康生活的追求,全民健身意识日益增强,徒步走成为人们锻炼的日常,中老年人尤为喜爱.(1)张大伯徒步走的速度是李大伯徒步走的1.2倍,张大伯走5分钟,李大伯走10分钟,共走800米,求张大伯和李大伯每分钟各走多少米?(2)天气好,天色早,张大伯和李大伯锻炼兴致很浓,又继续走,与(1)中相比,张大伯的速度不变,李大伯的速度每分钟提高了2a 米,时间都各自多走了10a 分钟,结果两人又共走了6900米,求a 的值.3滑行时间/t s 0 1 2 3 4滑行速度/m/s y 60 57 54 51 48已知该飞机在跑道起点处着陆后的滑行速度y (单位:m/s )与滑行时间t (单位:s )之间满足一次函数关系.而滑行距离 平均速度v 时间t ,02t v v v ,其中0v 是初始速度,t v 是t 秒时的速度.(1)直接写出y 关于t 的函数解析式和自变量的取值范围;(2)求飞机滑行的最远距离;(3)当飞机在跑道起点处着陆后滑行了450m ,求此时飞机的滑行速度;(4)若飞机在跑道起点处开始滑行时,发现前方300m 有一辆通勤车正以54km/h 的速度匀速同向行驶,试问飞机滑行过程中是否有碰撞通勤车的危险?题型八、工程问题1.由于疫情反弹,某地区开展了连续全员核酸检测,9月7日,医院派出13名医护人员到一个大型小区设置了A 、B 两个采样点进行核酸采样,当天共采样9220份,已知A 点平均每人采样720份,B 点平均每人采样700份.(1)求A 、B 两点各有多少名医护人员?(2)9月8日,医院继续派出这13名医护人员前往这个小区进行核酸采样,这天,社区组织者将附近数个商户也纳入这个小区采样范围,同时重新规划,决定从B 点抽调部分医护人员到A 点经调查发现,B 点每减少1名医护人员,人均采样量增加10份,A 点人均采样量不变,最后当天共采样9360份,求从B 点抽调了多少名医护人员到A 点?2.某工程队采用A 、B 两种设备同时对长度为4800米的公路进行施工改造.原计划A 型设备每小时铺设路面比B 型设备的2倍多30米,则32小时恰好完成改造任务.(1)求A 型设备每小时铺设的路面长度;(2)通过勘察,此工程的实际施工里程比最初的4800米多了1000米.在实际施工中,B 型设备在铺路效率不变的情况下,时间比原计划增加了25m 小时,同时,A 型设备的铺路速度比原计划每小时下降了3m 米,而使用时间增加了m 小时,求m 的值.3.城开高速公路即重庆市城口县至开州区的高速公路,是国家高速G69银百高速公路(银川至百色)的一段,线路全长129.3公里,甲、乙两工程队共同承建该高速公路某隧道工程,隧道总长2100米,甲、乙分别从隧道两端向中间施工,计划每天各施工6米.因地质结构不同,两支队伍每合格完成1米隧道施工所需成本不一样.甲每合格完成1米隧道施工成本为8万元;乙每合格完成1米隧道施工成本为9万元.(1)若工程结算时乙总施工成本不低于甲总施工成本的32,求甲最多施工多少米? (2)实际施工开始后地质情况比预估更复杂,甲乙两队每日完成量和成本都发生变化.甲每合格完成1米隧道施工成本增加m 万元时,则每天可多挖2m 米,乙在施工成本不变的情况下,比计划每天少挖3m 米,若最终每天实际总成本比计划多92m 万元,求m 的值.题型九、图表信息问题1.近年来,随着城市居民入住率的增加,污水处理问题成为城市的难题.某城市环境保护局协同自来水公司为鼓励居民节约用水,减少污水排放,规定:居民用水量每月不超过a吨时,只需交纳10元水费,如果超过a吨,除按10元收费外,超过部分,另按每吨5a元收取水费(水费+污水处理费).(1)某市区居民2018年3月份用水量为8吨,超过规定水量,用a的代数式表示该用户应交水费多少元;(2)下表是这户居民4月份和5月份的用水量和缴费情况;月份用水量(吨)交水费总金额(元)4 7 705 5 40根据上表数据,求规定用水量的值.2.在日历上,我们可以发现其中某些数满足一定的规律,如图是2019年1月份的日历.我们任意选择其中所示的菱形框部分将每个菱形框部分中去掉中间位置的数之后,相对的两对数分别相乘,再相减,例如:91131748,131572148.不难发现,结果都是48.(1)请证明发现的规律;(2)若用一个如图所示菱形框,再框出5个数字,其中最小数与最大数的积为435,求出这5个数的最大数;(3)小明说:他用一个如图所示菱形框,框出5个数字,其中最小数与最大数的积是120.直接判断他的说法是否正确.(不必叙述理由)3.【观察思考】【规律发现】(1)第5个图案中“”的个数为______;(2)第n(n为正整数)个图案中“○”的个数为_____“”的个数为_____(用含n的式子表示)【规律应用】(3)结合上面图案中“○”和“”的排列方式及规律,求正整数n,使得“○”比“”的个数多28.题型十、项目设计方案问题探索果园土地规划和销售利润问题素材1 某农户承包了一块长方形果园ABCD,图1是果园的平面图,其中200AB 米,300BC 米.准备在它的四周铺设道路,上下两条横向道路的宽度都为2x米,左右两条纵向道路的宽度都为x米,中间部分种植水果.出于货车通行等因素的考虑,道路宽度x不超过12米,且不小于5米.素材2 该农户发现某一种草莓销售前景比较不错,经市场调查,草莓培育一年可产果,若每平方米的草莓销售平均利润为100元,每月可销售5000平方米的草莓;受天气原因,农户为了快速将草莓出手,决定降价,若每平方米草莓平均利润下调5元,每月可多销售500平方米草莓.果园每月的承包费为2万元.问题解决任务1 解决果园中路面宽度的设计对种植面积的影响.(1)请直接写出纵向道路宽度x的取值范围.(2)若中间种植的面积是244800m,则路面设置的宽度是否符合要求.任务2 解决果园种植的预期利润问题.(总利润销售利润承包费)(3)若农户预期一个月的总利润为52万元,则从购买草莓客户的角度应该降价多少元?2清明果销售价格的探究素材1 清明节来临之际,某超市以每袋30元的价格购进了500袋真空包装的清明果,第一周以每袋50元的价格销售了150袋.素材2 第二周如果价格不变,预计仍可售出150袋,该超市经理为了增加销售,决定降价,据调查发现:每袋清明果每降价1元,超市平均可多售出10袋,但最低每袋要盈利15元,第二周结束后,该超市将对剩余的清明果一次性赔钱甩卖,此时价格为每袋25元.解决问题任务1 若设第二周单价为每袋降低x元,则第二周的单价每袋元,销量是袋.任务2①经两周后还剩余清明果袋.(用x的代数式表示)②若该超市想通过销售这批清明果获利5160元,那么第二周的单价每袋应是多少元?3如何设计实体店背景下的网上销售价格方案?素材1 某公司在网上和实体店同时销售一种自主研发的小商品,成本价为40元/件.素材2 该商品的网上销售价定为60元/件,平均每天销售量是200件,在实体店的销售价定为80元/件,平均每天销售量是100件.按公司规定,实体店的销售价保持不变,网上销售价可按实际情况进行适当调整,需确保网上销售价始终高于成本价.素材3 据调查,网上销售价每降低1元,网上销售每天平均多售出20件,实体店的销售受网上影响,平均每天销售量减少2件.问题解决任务1 计算所获利润当该商品网上销售价为50元/件时,求公司在网上销售该商品每天的毛利润与实体店销售该商品每天的毛利润各是多少元?任务2 平衡市场方案该商品的网上销售价每件_________元时,该公司网上销售该商品每天的毛利润与实体店销售该商品每天的毛利润相等任务3 拟定价格方案公司要求每天的总毛利润(总毛利润=网上毛利润+实体店毛利润)达到8160元,求每件商品的网上销售价是多少元?。
一元二次方程应用题专题训练

一元二次方程应用题专题训练一、面积问题1. 题目- 一个矩形的长比宽多2cm,面积是100cm²,求这个矩形的长和宽。
- 解析:设矩形的宽为x cm,因为长比宽多2cm,所以长为(x + 2)cm。
根据矩形面积公式:面积=长×宽,可得到方程x(x + 2)=100。
展开方程得到x²+2x - 100 = 0。
对于一元二次方程ax²+bx + c = 0(这里a = 1,b = 2,c=-100),根据求根公式x=frac{-b±√(b^2)-4ac}{2a},先计算判别式Δ=b^2-4ac = 2^2-4×1×(- 100)=4 + 400=404。
则x=(-2±√(404))/(2)=(-2±2√(101))/(2)=-1±√(101)。
因为矩形的宽不能为负数,所以取x=-1+√(101)≈ - 1+10 = 9(这里√(101)≈10),长为x + 2=9+2 = 11cm。
2. 题目- 有一块正方形铁皮,从四个角各剪掉一个边长为2分米的正方形后,所剩部分正好围成一个无盖的正方体盒子,这个盒子的容积是27立方分米,求原来正方形铁皮的边长。
- 解析:设原来正方形铁皮的边长为x分米。
那么围成无盖正方体盒子底面的边长为(x - 2×2)=(x - 4)分米,盒子的高为2分米。
根据正方体容积公式V=a^3(这里a为正方体棱长),可得方程(x - 4)^2×2 = 27,即(x - 4)^2=(27)/(2),展开得到x^2-8x + 16=(27)/(2),整理为2x^2-16x+32 - 27 = 0,即2x^2-16x + 5 = 0。
这里a = 2,b=-16,c = 5,判别式Δ=b^2-4ac=(-16)^2-4×2×5=256 - 40 = 216,x=(16±√(216))/(4)=(16±6√(6))/(4) = 4±(3√(6))/(2),因为边长不能为负,所以x =4+(3√(6))/(2)分米。
初三上册一元二次方程的6种常考应用题题型

一元二次方程解应用题的6种题型列一元二次方程解应用题是列一元一次方程解应用题的拓展,两者的解题方法类似,但由于一元二次方程有两个实数解,所以需要注意检验得出的方程的解是否具有实际意义。
其一般步骤如下:(1)审:读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的等量关系。
(2)设:选用适当的方式设未知数(直接设未知数或者间接设未知数),不要漏写单位,用含未知数的代数式表示题目中涉及的量。
(3)列:根据题目中的等量关系,用含有未知数的代数式表示其他未知量,列出含未知数的等式。
注意等号两边量的单位保持一致。
(4)解:解所列的方程,求出未知数的值。
(5)验:一是检验得到的未知数的值是否为方程的解(在草稿纸上自行验证),二是检验方程的解是否符合题意(需要在答题过程中明确说明)。
(6)答:怎么问就怎么答,注意不要漏写单位。
题型1:增长率(降低率)问题涉及关系式:增产量=原产量×增产率、增长后的产量=原产量×(1+增产率)例1某些养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x.(1)用x的代数式表示第三年的可变成本为万元;(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x。
分析:(1)由第1年的可变成本为2.6万元可以表示出第2年的可变成本为2.6(1+x)万元,同样的根据第2年的可变成本,可以写出第3年的可变成本为2.6(1+x)2万元;(2)再根据“养殖成本=固定成本+可变成本”建立方程求解即可。
解:(1)2.6(1+x)2;(2)根据题意有:4+2.6(1+x)2=7.146,解之得:x1=0.1,x2=-2.1(不合题意,舍去)答:可变成本平均每年增长的百分率是10%。
点拨:增长率问题,若基数为a,平均增长率为x,则增长n次后的值为a(1+x)n.题型2:利息问题涉及关系式:利息=本金×利率×时间,本息和=本金+利息例2某年,小明将1000元压岁钱以一年定期存入银行,一年后取出500元购买学习用品,剩下的500元和应得的利息又全部按一年定期存入银行,若存款的年利率保持不变,这样到期后可得本金和利息共660元,求存款的年利率(不计利息税)。
一元二次方程中考经典题型

一元二次方程是中考数学中的重要内容,以下是几个经典的中考题型:
1.已知一元二次方程x² - kx - 6 = 0 的两根分别是2 和3,则k 的值为多少?
解析:由求根公式可知,一元二次方程ax² + bx + c = 0 的两根分别为x1 = (-b + √(b² - 4ac)) / 2a 和x2 = (-b - √(b² - 4ac)) / 2a。
题目已知方程x² - kx - 6 = 0 的两根为2 和3,根据求根公式可得2 + 3 = k,即k = 5。
2. 若一元二次方程x² - x - a = 0 的两根之差为3,则a 的值为多少?
解析:根据题意,设该方程的两根为x1 和x2,则有x2 - x1 = 3。
根据求和公式可知,x1 + x2 = 1。
而根据一元二次方程的求根公式,x1 + x2 = 1/a。
将上述两个式子联立,可得1/a = 3,即a = 1/3。
3. 若一元二次方程x² - 5x + b = 0 的两根之比为2:3,则
b 的值为多少?
解析:根据题意,设该方程的两根为x1 和x2,则有x1/x2 = 2/3。
根据求根公式可知,x1 + x2 = 5,x1x2=b。
将x1/x2 = 2/3代入得x1=2x2/3,代入x1+x2得5=8x2/3,即x2=15/8。
代入x1/x2=2/3得x1=10/3。
于是b=x1x2=15/8*10/3=25/4。
中考数学中的一元二次方程考题形式多样,需要学生结合具体的知识点进行综合练习和思考,提高解题技能和水平。
初三数学一元二次方程常考应用题型附答案解析

初三数学一元二次方程常考应用题型附答案解析一、列一元二次方程解决率类问题例1、今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元。
假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3500 (B.2500(1+x)2=3500C.2500(1+x%)2=3500D.2500(1+x)+2500(1+x)2=3500【解答】解:设增长率为x,根据题意得2500×(1+x)2=3500,故选B.例2、为落实素质教育要求,促进学生全面发展,某市某中学2009年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2011年投资18.59万元。
则该学校为新增电脑投资的年平均增长率是,从2009年到2011年,该中学三年为新增电脑共投资万元。
【解答】解:设该学校为新增电脑投资的年平均增长率是x11(1+x)2=18.59x=30%(则该学校为新增电脑投资的年平均增长率是30%11×(1+30%)=14.3万元11+14.3+18.59=43.89万元故答案为:30%;43.89练习1、股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停。
已知一只股票某天跌停,之后两天时间又涨回到原价。
若这两天此股票股价的平均增长率为x,则x满足的方程是()A.(1+x)2=B.(1+x)2=C.1+2x=D.1+2x=【解答】解:设平均每天涨x,则90%(1+x)2=1,即(1+x)2=,故选B。
(2、某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造,2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,那么每年投资的增长率为()A.20%B.40%C.﹣220%D.30%【解答】解:设每年投资的增长率为x,根据题意,得:5(1+x)2=7.2解得:x1=0.2=20%,x2=﹣2.2(舍去),故每年投资的增长率为为20%,故选:A3、随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆。
一元二次方程(八大题型综合归纳)(原卷版)-九年级数学(北师大版)

第14讲一元二次方程(八大题型综合归纳)目录:题型1:一元二次方程的相关概念;题型2:一元二次方程的解法题型3:一元二次方程根的判别式;题型4:一元二次方程根与系数的关系题型5:配方法的应用;题型6:一元二次方程的实际应用题型7:一元二次方程的几何应用;题型8:材料信息题题型1:一元二次方程的相关概念1.下列方程,是一元二次方程(其中x ,y 是未知数)的个数是()①210x +=,②2231-=-x xy ,③214x x-=,④220ax x -+=A .1个B .2个C .3个D .4个2.写出一个以1-和5为两根且二次项系数为1的一元二次方程:___________.3.一元二次方程245x x -=的二次项系数、一次项系数和常数项分别是()A .1,4,5B .0,4-,5-C .1,4-,5D .1,4-,5-4.当m =______时,关于x 的方程()32690m m x x +++-=是一元二次方程.5.若关于x 的一元二次方程()230x k x k +++=的一个根是2-,则另一个根是()A .1B .1-C .3-D .26.若3x =是关x 的方程26ax bx -=的解,则202362a b -+的值为___________.7.若实数a ,b 分别满足2430a a -+=,2430b b -+=,且a b ¹,则()()11a b ++的值为______.8.设α,β是方程2202330x x --=的两个根,则()()222023120232a αββ--+-=_______.9.解方程:(1)2416x =.(2)22310x x -+=.(3)()220x x x -+-=.(4)22610x x -+=.10.用适当方法解下列方程:(1)2(21)9x -=;(2)212455250x x --=;(3)22(31)(1)0x x --+=;(4)2(2)(2)0x x x -+-=;(5)2152102x x -+=;题型3:一元二次方程根的判别式15.若关于x 的一元二次方程2242mx x x +=+有实数根,则m 的值有可能是()A .3-B .2-C .1D .1-16.关于x 的一元二次方程2630mx x +-=有两个不相等的实数根,则m 的取值范围是()A .3m ≥-且0m ≠B .3m <且0m ≠C .3m >-且0m ≠D .3m >-17.关于x 的一元二次方程2240x x c ++=有两个不相等的实数根,则c =________(写出一个满足条件的值).18.已知,关于x 的一元二次方程()2222341480x m x m m --+-+=,(1)若0m >,求证:方程有两个不相等的实数根;(2)若1240m <<,m 为整数,且方程有两个整数根,求m 的值.19.关于x 的一元二次方程()222150x m x m -+++=有两个实数根.(1)求m 的取值范围;(2)若Rt ABC △的两条直角边AC BC 、的长恰好是此方程的两个实数根,斜边6AB =,求ABC 的周长.题型4:一元二次方程根与系数的关系题型5:配方法的应用题型6:一元二次方程的实际应用30.某县2020年人均可支预收入为2.36万元,2022年达到2.7万元,若2020年至2022年间每年人均可支配收入的增长率都为x ,则下面所列方程正确的是()A .()22.71 2.36x +=B .()22.361 2.7x +=C .()22.71 2.36x -=D .()22.361 2.7x -=31.有一个人患了流感,经过两轮传染后共有121个人患了流感,每轮传染中平均一个人传染了()个人.A .8B .9C .10D .1132.空地上有一段长为a 米的旧墙AB ,工人师傅欲利用旧墙和木棚栏围成一个封闭的长方形菜园(如图),已知木栅栏总长为40米,所围成的长方形菜园面积为S 平方米.若18a =,194S =,则()A .有一种围法B .有两种围法C .不能围成菜园D .无法确定有几种围法33.如图,在宽为20m ,长为30m 的矩形地面上修建两条同样宽且互相垂直的道路,其余部分作为耕地为2551m .则道路的宽为是______.34.某商店销售某种商品,平均每天可售出20件,每件盈利40元.经调查发现,商品销售单价每降1元,平均每天可多售出2件.在每件盈利不少于25元的前提下,要获利1200元利润,每件商品应降价()A .10元B .20元C .10元或20元D .13元35.《田亩比类乘除捷法》是我国南宋数学家杨辉的著作,其中记载了一道题:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步,”意思是:一个矩形的面积为864平方步,宽比长少12步,问宽和长各多少步?如果设矩形的长为x 步,由题意,可列方程为______.36.一个两位数是一个一位数的平方,把这个一位数放在这个两位数的左边所成的三位数,比把这个一位数放在这个两位数的右边所成的三位数大252,求这个两位数.37.2021年7月1日是建党100周年纪念日,在本月日历表上可以用一个方框圈出4个数(如图所示),若圈出的四个数中,最小数与最大数的乘积为48,求这个最小数(请用方程知识解答).38.全球疫情爆发时,口罩极度匮乏,中国许多企业都积极地生产口罩以应对疫情,经调查发现:1条口罩生产线最大产能是78000个/天,每增加1条生产线,每条生产线减少1625个/天,工厂的产线共x 条(1)该工厂最大产能是_____个/天(用含x 的代数式表示).(2)若该工厂引进的生产线每天恰好能生产口702000个,该工厂引进了多少条生产线?题型7:一元二次方程的几何应用39.将一个边长为4的正方形ABCD 分割成如图所示的9部分,其中ABE BCF CDG DAH ,,, 全等,AEH BEF CFG DGH ,,, 也全等,中间小正方形EFGH 的面积与ABE 面积相等,且ABE 是以AB 为底的等腰三角形,则AEH △的面积为()A .2B .322540.如图,矩形ABCD 中,AB =点Q 从点B 开始沿BC 边向点C 以时,(1)PBQ 的面积等于8平方厘米?(2)五边形APQCD 的面积最小?最小值是多少?41.如图1,在平面直⻆坐标系中,点AOB 的面积为32.(1)求OA 的长;(2)如图2,点D 是第一象限内一点,连接OD ,AD ,BD ,OD OA =,求ADB ∠度数;(3)如图3,在(2)的条件下,点E 是第四象限内一点,连接DE ,DE BD ⊥且DE BD =,点长线上,2∠EFB=∠ODE+∠DOE ,OF=OE+OA ,求点D 的坐标.42.已知正方形ABCD ,M 为AD 上动点,AD nAM =,AE BM ⊥于E ,延长DE 交AB 于点题型8:材料信息题【材料2】已知实数m ,n 满足210m m --=,210n n --=,且m n ≠,显然m ,n 是方程210x x --=的两个不相等的实数根,由韦达定理可知1m n +=,1mn =-.根据上述材料,解决以下问题:(1)直接应用:方程42560x x -+=的解为;(2)间接应用:已知实数a ,b 满足:422710a a -+=,422710b b -+=且a b ¹,求44a b +的值.。
一元二次方程应用题经典题型汇总含答案解析

z一元二次方程应用题经典题型汇总一、增长率问题例1 恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.解设这两个月的平均增长率是x.,则根据题意,得200(1-20%)(1+x)2=193.6,即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去).答这两个月的平均增长率是10%.说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中m<n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1-x)2=n即可求解,其中m>n.二、商品定价例2 益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?解根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0,解这个方程,得a1=25,a2=31.因为21×(1+20%)=25.2,所以a2=31不合题意,舍去.所以350-10a=350-10×25=100(件).答需要进货100件,每件商品应定价25元.说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点.三、储蓄问题例3 王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税)解设第一次存款时的年利率为x.则根据题意,得[1000(1+x)-500](1+0.9x)=530.整理,得90x2+145x-3=0.解这个方程,得x1≈0.0204=2.04%,x2≈-1.63.由于存款利率不能为负数,所以将x2≈-1.63舍去.答第一次存款的年利率约是2.04%.说明这里是按教育储蓄求解的,应注意不计利息税.四、趣味问题例4 一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?解设渠道的深度为x m,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m.则根据题意,得(x+0.1+x+1.4+0.1)·x=1.8,整理,得x2+0.8x-1.8=0.解这个方程,得x1=-1.8(舍去),x2=1.所以x+1.4+0.1=1+1.4+0.1=2.5.答渠道的上口宽2.5m,渠深1m.说明求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解.五、古诗问题例5 读诗词解题:(通过列方程式,算出周瑜去世时的年龄).大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?解设周瑜逝世时的年龄的个位数字为x,则十位数字为x-3.则根据题意,得x2=10(x-3)+x,即x2-11x+30=0,解这个方程,得x=5或x=6.当x=5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x=6时,周瑜年龄为36岁,完全符合题意.答周瑜去世的年龄为36岁.六、象棋比赛例6 象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979,1980,1984,1985.经核实,有一位同学统计无误.试计算这次比赛共有多少个选手参加.解设共有n个选手参加比赛,每个选手都要与(n-1)个选手比赛一局,共计n(n-1)局,但两个选手的对局从每个选手的角度各自统计了一次,因此实际比赛总局数应为n(n -1)局.由于每局共计2分,所以全部选手得分总共为n(n-1)分.显然(n-1)与n为相邻的自然数,容易验证,相邻两自然数乘积的末位数字只能是0,2,6,故总分不可能是1979,1984,1985,因此总分只能是1980,于是由n(n-1)=1980,得n2-n-1980=0,解得n1=45,n2=-44(舍去).答参加比赛的选手共有45人.说明类似于本题中的象棋比赛的其它体育比赛或互赠贺年片等问题,都可以仿照些方法求解.七、情景对话例7 春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准. 某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游?解设该单位这次共有x名员工去天水湾风景区旅游.因为1000×25=25000<27000,所以员工人数一定超过25人.则根据题意,得[1000-20(x-25)]x=27000.整理,得x2-75x+1350=0,解这个方程,得x1=45,x2=30.当x=45时,1000-20(x-25)=600<700,故舍去x1;当x2=30时,1000-20(x-25)=900>700,符合题意.答:该单位这次共有30名员工去天水湾风景区旅游.说明求解本题要时刻注意对话框中的数量关系,求得的解还要注意分类讨论,从中找出符合题意的结论.八、等积变形例8 将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为原来荒地面积的三分之二.(精确到0.1m)(1)设计方案1(如图2)花园中修两条互相垂直且宽度相等的小路.(2)设计方案2(如图3)花园中每个角的扇形都相同.以上两种方案是否都能符合条件?若能,请计算出图2中的小路的宽和图3中扇形的半径;若不能符合条件,请说明理由.解都能.(1)设小路宽为x,则18x+16x-x2=×18×15,即x2-34x+180=0,解这个方程,得x=,即x≈6.6.(2)设扇形半径为r,则3.14r2=×18×15,即r2≈57.32,所以r≈7.6.说明等积变形一般都是涉及的是常见图形的体积,面积公式;其原则是形变积不变;或形变积也变,但重量不变,等等.九、动态几何问题例9 如图4所示,在△ABC中,∠C=90?/SPAN>,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?(2)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ABC的面积的一半.若存在,求出运动的时间;若不存在,说明理由.解因为∠C=90?/SPAN>,所以AB===10(cm).(1)设x s后,可使△PCQ的面积为8cm2,所以AP=x cm,PC=(6-x)cm,CQ=2x cm.则根据题意,得·(6-x)·2x=8.整理,得x2-6x+8=0,解这个方程,得x1=2,x2=4.所以P、Q同时出发,2s或4s后可使△PCQ的面积为8cm2.(2)设点P出发x秒后,△PCQ的面积等于△ABC面积的一半.则根据题意,得(6-x)·2x=××6×8.整理,得x2-6x+12=0.由于此方程没有实数根,所以不存在使△PCQ的面积等于ABC面积一半的时刻.说明本题虽然是一道动态型应用题,但它又要运用到行程的知识,求解时必须依据路程=速度×时间.十、梯子问题例10 一个长为10m的梯子斜靠在墙上,梯子的底端距墙角6m.(1)若梯子的顶端下滑1m,求梯子的底端水平滑动多少米?(2)若梯子的底端水平向外滑动1m,梯子的顶端滑动多少米?(3)如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是多少米?解依题意,梯子的顶端距墙角=8(m).(1)若梯子顶端下滑1m,则顶端距地面7m.设梯子底端滑动x m.则根据勾股定理,列方程72+(6+x)2=102,整理,得x2+12x-15=0,解这个方程,得x1≈1.14,x2≈-13.14(舍去),所以梯子顶端下滑1m,底端水平滑动约1.14m.(2)当梯子底端水平向外滑动1m时,设梯子顶端向下滑动x m.则根据勾股定理,列方程(8-x)2+(6+1)2=100.整理,得x2-16x+13=0.解这个方程,得x1≈0.86,x2≈15.14(舍去).所以若梯子底端水平向外滑动1m,则顶端下滑约0.86m.(3)设梯子顶端向下滑动x m时,底端向外也滑动x m.则根据勾股定理,列方程 (8-x)2+(6+x)2=102,整理,得2x2-4x=0,解这个方程,得x1=0(舍去),x2=2.所以梯子顶端向下滑动2m时,底端向外也滑动2m.说明求解时应注意无论梯子沿墙如何上下滑动,梯子始终与墙上、地面构成直角三角形.十一、航海问题例11 如图5所示,我海军基地位于A处,在其正南方向200海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D恰好位于AC的中点,岛上有一补给码头;小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A 出发,经B到C匀速巡航.一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.(1)小岛D和小岛F相距多少海里?(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?(精确到0.1海里)解(1)F位于D的正南方向,则DF⊥BC.因为AB⊥BC,D为AC的中点,所以DF=AB =100海里,所以,小岛D与小岛F相距100海里.(2)设相遇时补给船航行了x海里,那么DE=x海里,AB+BE=2x海里,EF=AB+BC-(AB+BE)-CF=(300-2x)海里.在Rt△DEF中,根据勾股定理可得方程x2=1002+(300-2x)2,整理,得3x2-1200x+100000=0.解这个方程,得x1=200-≈118.4,x2=200+(不合题意,舍去).所以,相遇时补给船大约航行了118.4海里.说明求解本题时,一定要认真地分析题意,及时发现题目中的等量关系,并能从图形中寻找直角三角形,以便正确运用勾股定理布列一元二次方程.十二、图表信息例12 如图6所示,正方形ABCD的边长为12,划分成12×12个小正方形格,将边长为n (n为整数,且2≤n≤11)的黑白两色正方形纸片按图中的方式,黑白相间地摆放,第一张n×n的纸片正好盖住正方形ABCD左上角的n×n个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n-1)×(n-1)个小正方形.如此摆放下去,直到纸片盖住正方形ABCD的右下角为止.请你认真观察思考后回答下列问题:(1)由于正方形纸片边长n的取值不同,•完成摆放时所使用正方形纸片的张数也不同,请填写下表:纸片的边长n 2 3 4 5 6使用的纸片张数(2)设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S1,未被盖住的面积为S2.①当n=2时,求S1∶S2的值;②是否存在使得S1=S2的n值?若存在,请求出来;若不存在,请说明理由.解(1)依题意可依次填表为:11、10、9、8、7.(2)S1=n2+(12-n)[n2-(n-1)2]=-n2+25n-12.①当n=2时,S1=-22+25×2-12=34,S2=12×12-34=110.所以S1∶S2=34∶110=17∶55.②若S1=S2,则有-n2+25n-12=×122,即n2-25n+84=0,解这个方程,得n1=4,n2=21(舍去).所以当n=4时,S1=S2.所以这样的n值是存在的.说明求解本题时要通过阅读题设条件及提供的图表,及时挖掘其中的隐含条件,对于求解第(3)小题,可以先假定问题的存在,进而构造一元二次方程,看得到的一元二次方程是否有实数根来加以判断.十三、探索在在问题例13 将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.解(1)设剪成两段后其中一段为x cm,则另一段为(20-x)cm.则根据题意,得+=17,解得x1=16,x2=4,当x=16时,20-x=4,当x=4时,20-x=16,答这段铁丝剪成两段后的长度分别是4cm和16cm.(2)不能.理由是:不妨设剪成两段后其中一段为y cm,则另一段为(20-y)cm.则由题意得+=12,整理,得y2-20y+104=0,移项并配方,得(y-10)2=-4<0,所以此方程无解,即不能剪成两段使得面积和为12cm2.说明本题的第(2)小问也可以运用求根公式中的b2-4ac来判定.若b2-4ac≥0,方程有两个实数根,若b2-4ac<0,方程没有实数根,本题中的b2-4ac=-16<0即无解.十四、平分几何图形的周长与面积问题例14 如图7,在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10.点E•在下底边BC上,点F在腰AB上.(1)若EF平分等腰梯形ABCD的周长,设BE长为x,试用含x的代数式表示△BEF的面积;(2)是否存在线段EF将等腰梯形ABCD的周长和面积同时平分?若存在,求出此时BE 的长;若不存在,请说明理由;(3)是否存在线段EF将等腰梯形ABCD的周长和面积同时分成1∶2的两部分?若存在,求此时BE的长;若不存在,请说明理由.解(1)由已知条件得,梯形周长为12,高4,面积为28.过点F作FG⊥BC于G,过点A作AK⊥BC于K.则可得,FG=×4,所以S△BEF=BE·FG=-x2+x(7≤x≤10).(2)存在.由(1)得-x2+x=14,解这个方程,得x1=7,x2=5(不合题意,舍去),所以存在线段EF将等腰梯形ABCD的周长与面积同时平分,此时BE=7.(3)不存在.假设存在,显然有S△BEF∶S多边形AFECD=1∶2,即(BE+BF)∶(AF+AD+DC)=1∶2.则有-x2+x=,整理,得3x2-24x+70=0,此时的求根公式中的b2-4ac=576-840<0,所以不存在这样的实数x.即不存在线段EF将等腰梯形ABCD的周长和面积同时分成1∶2的两部分.说明求解本题时应注意:一是要能正确确定x的取值范围;二是在求得x2=5时,并不属于7≤x≤10,应及时地舍去;三是处理第(3)个问题时的实质是利用一元二次方程来探索问题的存在性.十五、利用图形探索规律例15 在如图8中,每个正方形有边长为1 的小正方形组成:图8(1)观察图形,请填写下列表格:正方形边长 1 3 5 7 …n(奇数)黑色小正方形个数…正方形边长 2 4 6 8 …n(偶数)黑色小正方形个数…(2)在边长为n(n≥1)的正方形中,设黑色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数..n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.解(1)观察分析图案可知正方形的边长为1、3、5、7、…、n时,黑色正方形的个数为1、5、9、13、2n-1(奇数);正方形的边长为2、4、6、8、…、n时,黑色正方形的个数为4、8、12、16、2n(偶数).(2)由(1)可知n为偶数时P1=2n,所以P2=n2-2n.根据题意,得n2-2n=5×2n,即n2-12n=0,解得n1=12,n2=0(不合题意,舍去).所以存在偶数n=12,使得P2=5P1.说明本题的第(2)小问是属于存在性问题,求解时,可以先假设结论存在,进而从中找到数量关系,使问题获解.综上所言,列一元二次方程解应用题是列一元一次方程、二元一次方程组解应用题的延续和发展,列方程解应用题就是先把实际问题抽象为方程模型,然后通过解方程获得对实际问题的解决.列一元二次方程解应用题的关键是:找出未知量与已知量之间的联系,从而专业资料整理分享将实际问题转化为方程模型,要善于将普通语言转化为代数式,在审题时,要特别注意关键词语,如“多少、快、慢、和、差、倍、分、超过、剩余、增加、减少”等等,此外,还要掌握一些常用的公式或特殊的等量关系,如特殊图形的面积公式、行程问题、工程问题、增长率问题中的一些特殊关系等等.完美WORD格式编辑。
初中一元二次方程应用题经典题型

初中一元二次方程应用题经典题型摘要:一、一元二次方程的应用题概述二、一元二次方程的求解方法三、经典题型及解题思路1.题型一:增长率问题2.题型二:利润问题3.题型三:几何问题4.题型四:其他实际问题正文:一、一元二次方程的应用题概述一元二次方程是在初中数学中常见的一种方程,它是指形如ax+bx+c=0 的方程,其中a、b、c 是已知数,且a≠0。
一元二次方程的应用题主要涉及到如何利用一元二次方程来解决实际问题,这类题目不仅考查学生对一元二次方程概念的理解,还考查学生运用数学知识解决实际问题的能力。
二、一元二次方程的求解方法求解一元二次方程的方法有多种,其中最常见的方法是公式法。
公式法的基本步骤如下:1.确定方程的系数a、b、c;2.计算判别式Δ=b-4ac;3.根据Δ的值判断方程的根的情况:- 当Δ>0 时,方程有两个不相等的实数根;- 当Δ=0 时,方程有两个相等的实数根;- 当Δ<0 时,方程无实数根。
4.根据公式x,x=(-b±√Δ)/(2a) 计算方程的根。
三、经典题型及解题思路1.题型一:增长率问题增长率问题是指求解某个变量在一定时间内的增长率。
这类问题通常可以通过列一元二次方程来解决。
解题思路是:设增长率为x,根据题意列出方程,然后利用公式法求解。
2.题型二:利润问题利润问题是指求解销售一定数量的商品后获得的利润。
这类问题通常可以通过列一元二次方程来解决。
解题思路是:设销售单价为x,根据题意列出方程,然后利用公式法求解。
3.题型三:几何问题几何问题是指求解与几何图形相关的问题。
这类问题通常可以通过列一元二次方程来解决。
解题思路是:根据题意建立几何关系,将几何关系转化为一元二次方程,然后利用公式法求解。
4.题型四:其他实际问题除了上述三种经典题型外,还有其他一些实际问题也可以通过列一元二次方程来解决。
解题思路是:认真阅读题目,理解题意,找到问题的关键点,将问题转化为一元二次方程,然后利用公式法求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程应用题经典题型汇总一、增长率问题例1恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.解:设这两个月的平均增长率是x.,则根据题意,得200(1-20%)(1+x)2=193.6,即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去).答这两个月的平均增长率是10%.说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中m<n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1-x)2=n即可求解,其中m>n.二、商品定价例2益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?解根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0,解这个方程,得a1=25,a2=31.因为21×(1+20%)=25.2,所以a2=31不合题意,舍去.所以350-10a=350-10×25=100(件).答需要进货100件,每件商品应定价25元.说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点.三、储蓄问题例3王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税)解设第一次存款时的年利率为x.则根据题意,得[1000(1+x)-500](1+0.9x)=530.整理,得90x2+145x-3=0.解这个方程,得x1≈0.0204=2.04%,x2≈-1.63.由于存款利率不能为负数,所以将x2≈-1.63舍去.答第一次存款的年利率约是2.04%.说明这里是按教育储蓄求解的,应注意不计利息税.四、趣味问题例4一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?解设渠道的深度为x m,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m.则根据题意,得12(x+0.1+x+1.4+0.1)·x=1.8,整理,得x2+0.8x-1.8=0.解这个方程,得x1=-1.8(舍去),x2=1.所以x+1.4+0.1=1+1.4+0.1=2.5.答渠道的上口宽2.5m,渠深1m.说明求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解.五、古诗问题例5读诗词解题:(通过列方程式,算出周瑜去世时的年龄).大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?解设周瑜逝世时的年龄的个位数字为x,则十位数字为x-3.则根据题意,得x2=10(x-3)+x,即x2-11x+30=0,解这个方程,得x=5或x=6.当x=5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x=6时,周瑜年龄为36岁,完全符合题意.答周瑜去世的年龄为36岁.说明本题虽然是一道古诗问题,但它涉及到数字和年龄问题,通过求解同学们应从中认真口味.六、象棋比赛例6象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979,1980,1984,1985.经核实,有一位同学统计无误.试计算这次比赛共有多少个选手参加.解设共有n个选手参加比赛,每个选手都要与(n-1)个选手比赛一局,共计n(n-1)局,但两个选手的对局从每个选手的角度各自统计了一次,因此实际比赛总局数应为1n(n-1)局.由于每局共计2分,所以全部选手得分总共为n(n-1)分.显然(n-1)与n为相2邻的自然数,容易验证,相邻两自然数乘积的末位数字只能是0,2,6,故总分不可能是1979,1984,1985,因此总分只能是1980,于是由n(n-1)=1980,得n2-n-1980=0,解得n1=45,n2=-44(舍去).答参加比赛的选手共有45人.说明类似于本题中的象棋比赛的其它体育比赛或互赠贺年片等问题,都可以仿照些方法求解.七、情景对话例7春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准.某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游?解设该单位这次共有x名员工去天水湾风景区旅游.因为1000×25=25000<27000,所以员工人数一定超过25人.则根据题意,得[1000-20(x-25)]x=27000.整理,得x2-75x+1350=0,解这个方程,得x1=45,x2=30.当x=45时,1000-20(x-25)=600<700,故舍去x1;当x2=30时,1000-20(x-25)=900>700,符合题意.答:该单位这次共有30名员工去天水湾风景区旅游.说明求解本题要时刻注意对话框中的数量关系,求得的解还要注意分类讨论,从中找出符合题意的结论.八、等积变形例8将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为原来荒地面积的三分之二.(精确到0.1m)(1)设计方案1(如图2)花园中修两条互相垂直且宽度相等的小路.(2)设计方案2(如图3)花园中每个角的扇形都相同.以上两种方案是否都能符合条件?若能,请计算出图2中的小路的宽和图3中扇形的半径;若不能符合条件,请说明理由.解都能.(1)设小路宽为x,则18x+16x-x2=23×18×15,即x2-34x+180=0,图1 如果人数超过25人,每增加1人,人均旅游费用降低20元,但人均旅游费用不得低于700如果人数不超过25人,人均旅游费用为1000元.解这个方程,得x,即x ≈6.6. (2)设扇形半径为r ,则3.14r 2= ×18×15,即r 2≈57.32,所以r ≈7.6.说明 等积变形一般都是涉及的是常见图形的体积,面积公式;其原则是形变积不变;或形变积也变,但重量不变,等等.九、动态几何问题例9 如图4所示,在△ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 从点A 出发沿边AC 向点C 以1cm/s 的速度移动,点Q 从C 点出发沿CB 边向点B 以2cm/s 的速度移动.(1)如果P 、Q 同时出发,几秒钟后,可使△PCQ 的面积为8平方厘米?(2)点P 、Q 在移动过程中,是否存在某一时刻,使得△PCQ 的面积等于△ABC 的面积的一半.若存在,求出运动的时间;若不存在,说明理由.解 因为∠C =90°,所以AB 10(cm ).(1)设x s 后,可使△PCQ 的面积为8cm 2,所以 AP =x cm ,PC =(6-x )cm ,CQ =2x cm. 则根据题意,得12·(6-x )·2x =8.整理,得x 2-6x +8=0,解这个方程,得x 1=2,x 2=4.所以P 、Q 同时出发,2s 或4s 后可使△PCQ 的面积为8cm 2. (2)设点P 出发x 秒后,△PCQ 的面积等于△ABC 面积的一半. 则根据题意,得12(6-x )·2x =12×12×6×8.整理,得x 2-6x +12=0. 由于此方程没有实数根,所以不存在使△PCQ 的面积等于ABC 面积一半的时刻. 说明 本题虽然是一道动态型应用题,但它又要运用到行程的知识,求解时必须依据路程=速度×时间.图2 Q PC BA 图4图3十、梯子问题例10一个长为10m的梯子斜靠在墙上,梯子的底端距墙角6m.(1)若梯子的顶端下滑1m,求梯子的底端水平滑动多少米?(2)若梯子的底端水平向外滑动1m,梯子的顶端滑动多少米?(3)如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是多少米?解依题意,梯子的顶端距墙角=8(m).(1)若梯子顶端下滑1m,则顶端距地面7m.设梯子底端滑动x m.则根据勾股定理,列方程72+(6+x)2=102,整理,得x2+12x-15=0,解这个方程,得x1≈1.14,x2≈-13.14(舍去),所以梯子顶端下滑1m,底端水平滑动约1.14m.(2)当梯子底端水平向外滑动1m时,设梯子顶端向下滑动x m.则根据勾股定理,列方程(8-x)2+(6+1)2=100.整理,得x2-16x+13=0.解这个方程,得x1≈0.86,x2≈15.14(舍去).所以若梯子底端水平向外滑动1m,则顶端下滑约0.86m.(3)设梯子顶端向下滑动x m时,底端向外也滑动x m.则根据勾股定理,列方程(8-x)2+(6+x)2=102,整理,得2x2-4x=0,解这个方程,得x1=0(舍去),x2=2.所以梯子顶端向下滑动2m时,底端向外也滑动2m.说明求解时应注意无论梯子沿墙如何上下滑动,梯子始终与墙上、地面构成直角三角形.十一、航海问题例11如图5所示,我海军基地位于A处,在其正南方向200海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D恰好位于AC的中点,岛上有一补给码头;小岛F位于D ABC 上且恰好处于小岛D 的正南方向,一艘军舰从A 出发,经B 到C 匀速巡航.一艘补给船同时从D 出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.(1)小岛D 和小岛F 相距多少海里?(2)已知军舰的速度是补给船的2倍,军舰在由B 到C 的途中与补给船相遇于E 处,那么相遇时补给船航行了多少海里?(精确到0.1海里)解(1)F 位于D 的正南方向,则DF ⊥BC .因为AB ⊥BC ,D 为AC 的中点,所以DF =12AB =100海里,所以,小岛D 与小岛F 相距100海里.(2)设相遇时补给船航行了x 海里,那么DE =x 海里,AB +BE =2x 海里,EF =AB +BC -(AB +BE )-CF =(300-2x )海里.在Rt △DEF 中,根据勾股定理可得方程x 2=1002+(300-2x )2,整理,得3x 2-1200x +100000=0.解这个方程,得x 1=200-3≈118.4,x 2=200+3. 所以,相遇时补给船大约航行了118.4海里.说明 求解本题时,一定要认真地分析题意,及时发现题目中的等量关系,并能从图形中寻找直角三角形,以便正确运用勾股定理布列一元二次方程.十二、图表信息例12 如图6所示,正方形ABCD 的边长为12,划分成12×12个小正方形格,将边长为n (n 为整数,且2≤n ≤11)的黑白两色正方形纸片按图中的方式,黑白相间地摆放,第一张n ×n 的纸片正好盖住正方形ABCD 左上角的n ×n 个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n -1)×(n -1)个小正方形.如此摆放下去,直到纸片盖住正方形ABCD 的右下角为止.请你认真观察思考后回答下列问题:(1)由于正方形纸片边长n 的取值不同,•完成摆放时所使用正方形纸片的张数也不同,请填写下表:(2)设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S1,未被盖住的面积为S2.①当n=2时,求S1∶S2的值;②是否存在使得S1=S2的n值?若存在,请求出来;若不存在,请说明理由.解(1)依题意可依次填表为:11、10、9、8、7.(2)S1=n2+(12-n)[n2-(n-1)2]=-n2+25n-12.①当n=2时,S1=-22+25×2-12=34,S2=12×12-34=110.所以S1∶S2=34∶110=17∶55.②若S1=S2,则有-n2+25n-12=12×122,即n2-25n+84=0,解这个方程,得n1=4,n2=21(舍去).所以当n=4时,S1=S2.所以这样的n值是存在的.说明求解本题时要通过阅读题设条件及提供的图表,及时挖掘其中的隐含条件,对于求解第(3)小题,可以先假定问题的存在,进而构造一元二次方程,看得到的一元二次方程是否有实数根来加以判断.十三、探索在在问题例13将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.解(1)设剪成两段后其中一段为x cm,则另一段为(20-x)cm.则根据题意,得24x⎛⎫⎪⎝⎭+2204x-⎛⎫⎪⎝⎭=17,解得x1=16,x2=4,当x=16时,20-x=4,当x=4时,20-x=16,答这段铁丝剪成两段后的长度分别是4cm和16cm.图6(2)不能.理由是:不妨设剪成两段后其中一段为y cm,则另一段为(20-y)cm.则由题意得24y⎛⎫⎪⎝⎭+2204y-⎛⎫⎪⎝⎭=12,整理,得y2-20y+104=0,移项并配方,得(y-10)2=-4<0,所以此方程无解,即不能剪成两段使得面积和为12cm2.说明本题的第(2)小问也可以运用求根公式中的b2-4ac来判定.若b2-4ac≥0,方程有两个实数根,若b2-4ac<0,方程没有实数根,本题中的b2-4ac=-16<0即无解.十四、平分几何图形的周长与面积问题例14如图7,在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10.点E•在下底边BC上,点F在腰AB上.(1)若EF平分等腰梯形ABCD的周长,设BE长为x,试用含x的代数式表示△BEF 的面积;(2)是否存在线段EF将等腰梯形ABCD的周长和面积同时平分?若存在,求出此时BE的长;若不存在,请说明理由;(3)是否存在线段EF将等腰梯形ABCD的周长和面积同时分成1∶2的两部分?若存在,求此时BE的长;若不存在,请说明理由.解(1)由已知条件得,梯形周长为12,高4,面积为28.过点F作FG⊥BC于G,过点A作AK⊥BC于K.则可得,FG=125x-×4,所以S△BEF=12BE·FG=-25x2+245x(7≤x≤10).(2)存在.由(1)得-25x2+245x=14,解这个方程,得x1=7,x2=5(不合题意,舍去),所以存在线段EF将等腰梯形ABCD的周长与面积同时平分,此时BE=7.(3)不存在.假设存在,显然有S△BEF∶S多边形AFECD=1∶2,即(BE+BF)∶(AF+AD+DC)=1∶2.则有-25x2+165x=283,FEDCBA图7KG整理,得3x2-24x+70=0,此时的求根公式中的b2-4ac=576-840<0,所以不存在这样的实数x.即不存在线段EF将等腰梯形ABCD的周长和面积同时分成1∶2的两部分.说明求解本题时应注意:一是要能正确确定x的取值范围;二是在求得x2=5时,并不属于7≤x≤10,应及时地舍去;三是处理第(3)个问题时的实质是利用一元二次方程来探索问题的存在性.十五、利用图形探索规律例15在如图8中,每个正方形有边长为1 的小正方形组成:图8(1)观察图形,请填写下列表格:正方形边长 1 3 5 7 …n(奇数)黑色小正方形个数…正方形边长 2 4 6 8 …n(偶数)黑色小正方形个数…(2)在边长为n(n≥1)的正方形中,设黑色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数..n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.解(1)观察分析图案可知正方形的边长为1、3、5、7、…、n时,黑色正方形的个数为1、5、9、13、2n-1(奇数);正方形的边长为2、4、6、8、…、n时,黑色正方形的个数为4、8、12、16、2n(偶数).(2)由(1)可知n为偶数时P1=2n,所以P2=n2-2n.根据题意,得n2-2n=5×2n,即n2-12n=0,解得n1=12,n2=0(不合题意,舍去).所以存在偶数n=12,使得P2=5P1.说明本题的第(2)小问是属于存在性问题,求解时,可以先假设结论存在,进而从中找到数量关系,使问题获解.。