离心泵设计实习报告

离心泵设计实习报告
离心泵设计实习报告

实习期技术报告

天津市普友机电设备制造有限公司技质部水泵设计师李永超

2013年1月

目录

(一)公司简介,产品分类、运用、条件

(二)转速的确定和绘制

(三)叶轮设计程序

(四)导叶设计

(五)叶片的厚度和夹角

(六)叶片进出口安放角的选择

(七)叶片切割

(八)汽蚀问题

(九)轴向力平衡方法

(十)水锤

(十一)进出流道的设计

(十二)取证资料

(十三)柴油机消防泵总结

QHBC:Q≤2500立方米/时 QWW:Q≤2500立方米/时 QSB:Q≤15000立方米/时 QHBX:H≤250m H≤500m H≤50m 潜没深度≤70m

潜没深度≤70m 潜没深度≤150m

电机功率≤5600kw 电机功率≤2000kw

叶片泵:

1.可靠性才是最重要的,评比时用效率

2.设计叶片泵考虑:效率、性能曲线形状和空化

3.性能曲线:

扬程-流量(H-Q)

轴功率-流量(P a-Q)

效率-流量(η-Q)

?=0.02~0.3

叶轮出口宽度比:b2D2

叶片出口安放角:β2=10°~50°

叶片数:Z=2~12

?=0.08~0.3

叶轮轴面流道转弯半径:R T D2

?=0.1~1.5

叶轮进、出口面积比:A0A2

?=0~0.7

叶轮进口轮毂比: r=D h D0

中间轴面流线相对水泵轴中心线的夹角:θ=0°~90°中间流线叶片进口边角位置:θ

=0~θ

x

叶片空化系数:σb=0.08~0.15

(二)、转速的确定与绘制

1.泵转速的确定

考虑因素:1).泵的转速越高,泵的体积越小,重量轻

2).转速和比转速有关,而比转速和效率有关,所以转速和比转速结合起来确定

3).考虑原动机的种类和传动装置

工作转速小于第一临界转速(n<n c)的轴,称为刚性轴,n≤0.8n c

工作转速大于第一临界转速(n>n c)的轴,称为柔性轴,1.3n c≤n≤0.7n c2(n c2为第二临界转速)

,H—对于多级泵,取单级扬程。同一台泵在不同工况下具2.比转速n s=3.65n√Q

H34?

有不同的n s值,作为相似准则的n s是指最高效率点工况下的值。

确定比转速:n s=120~210的区域,水泵的效率最高,n s﹤60的泵效率显著下降。比转速和泵的级数有关,级数越多,n s越大。卧式泵一般不超过10级,立式深井泵级数多达几十至几百级。

3.低比转速泵:高扬程小流量,零流量时轴功率小,应关阀启动;高比转速:低扬程大流量,零流量时轴功率大,应开阀启动。

(三)、叶轮设计程序

(四)、导叶设计

1.空间导叶设计的原则

1).叶片间流道断面的湿周应尽量的小,因而最好是圆形或方形。

2).流道形状变化平滑。

3).各部位的角度应符合流动规律。

4).各种速度变化应均匀。

5).控制喉部流速为一定的值。

6).控制流道的扩散角为一定得值。

2.确定轴面投影:空间导叶适应的比转速范围广,因而轴面投影形状的差别很大,最好选n s相近、性能良好的现有产品的图形作参考。

和叶轮出口及下级叶轮进口通顺衔接。

叶轮进口部分应有把叶轮出口液流收集起来,导入轴向的趋势。

3).合理确定导叶进口变的形状。

3.进口变离叶片出口边稍远些,导叶出口边一般是外流线向出口倾斜,可减小压力脉冲。

1).导叶内流线进口直径大致等于或稍大于叶轮后盖板出口直径。

2).导叶外流线进口直径稍大于叶轮出口轮毂直径。

3).导叶轴向长度L=(0.5~0.7)D2.

4).导叶叶片数一般不要和叶轮叶片数互成倍数关系。

5).导叶叶片包角φ=60°~95°。

6).导叶进口边离叶轮出口边的距离稍远些好,一般为(0.4~0.5)b2。

4.检查轴面液流过水断面的变化情况。

5.分流线:小泵不分中间流线,用两条流线设计;中等泵只分一条流线,按三条流线设计;大泵用五条流线设计。分流线与叶轮设计相同。

6.确定导叶进出口安放角:

;②、导叶进口角α3: α3= 1).进口安放角α3:①、进口液流角:tanα,3=υm3

υ

u3

α,3+Δα。(Δα=0°~8°)。开始计算时,叶片进口角α3是未知的,可假定φ3计算α3,最后确定的φ3和α3应与假定的值相等,否则从新计算,达到相等或相近为止,实际上进口角相差5°之内。

2).导叶出口角α4.考虑有限叶片数影响应大于90°,以保证液流法向出口。一般取α4=90°,如果要求下降的特性曲线,可取α4=80°~90°之间的值。

3).旋转方向的判定

①从导叶进口(后侧)看,看到的是叶片凹面(工作面),工作面hi迎水面;从导叶进口看。看到的是叶片凸面(背面)。

②水流从进口流向出口。

③水流的方向和叶轮旋转方向相同。

出口方向看水流是顺时针方向旋转,即从进口看叶轮是叶轮是逆时针方向旋转;如果把凹面置于平面图左侧,叶轮旋转方向则变为相反。

(五)、叶片厚度和夹角

1.角度之间的关系:

tanφ=tanβ?sinλφ:垂直叶片的面积与叶片的交线和圆周方向的夹角

cotγ=cotλ?cosββ:叶片安放角(叶片与流面的交线和圆周方向的夹角)tanβ

=tanβ?cosδλ:轴面流线(轴面和流面的交线)和轴面截面线(叶平

片和轴面的交线)

λ:叶片的流面(盖板表面)间的真实夹角,也就是垂直叶片和流面的面与两者交线间的夹角

β

:在平面投影图上流线和圆周方向的夹角

δ:在轴面投影图中的流线切线和垂直于叶轮线的平面间的夹角。

变化很好,因δ变化的影如果前、后盖板流线与轴线倾斜,尽管在平面图上β

响、β的变化并非很好。叶片进口部分δ角大,然后逐渐变小,所以进口部分β变大,且变化不均匀,因此,对盖板是倾斜的叶轮,即使是圆柱形叶片,也采用画扭曲叶片的方法绘型,否则会要产生误会。

2.求叶片表面和流面的真实夹角

一般希望叶片表面与盖板(流面)的夹角接近90°,以满足大壁角的原则。

2.叶片厚度

叶片工作面和背面间距离AC为流面厚度-s;流面上叶片在圆周方向长度AB为圆周厚度-s u;流面上叶片沿轴面流线方向的长度AD为轴面厚度-s m。圆周厚度在流面,流面展开图开面、平面投影上其值相等。

s u=s

sinβ

s m=

s cosβ

s r=s m sinε

流面厚度直接反应对流动的影响。在考虑最小铸造允许厚度、强度时,采用真实厚度—δ

s u=δ

sin φ

φ—垂直叶片的面和叶片交线与圆周方向的夹角

s′m=δ

cosφ

为了得到真实厚度和流面厚度的关系,用一与叶片和盖板交线相垂直的面去截叶片,并将其局部展开。

叶片厚度>2mm

(六)、叶片进出口安放角的选择

1.叶片进口角和进口速度三角形

叶片进口角一般大于液流角:β1>β′1,。正冲角△β=β1?β′1,冲角范围:△β=3°~15°。采用正冲角能提高抗汽蚀性能,并且对效率影响不大

1).采用正冲角,能增大叶片进口角,减小叶片的弯曲,从而增加叶片进口过流面积,减小叶片的排挤,结果减小叶片进口的v1和w1。

2).采用正冲角,在设计流量下,液体在叶片进口背面产生脱硫。

3).采用正冲角,能改善在大流量下的工作条件。

2.叶片进口角的计算

在计算叶片进口角之前,应先画出叶片进口边,画进口边的原则:

1).进口边和前后盖板流线大致成90°(叶片进口边不放在同一轴面上除外)

2).前后盖板流线长度不要相差很大

3).进口边适当向吸入口延伸,是液体提早受到叶片作用,减小叶轮外径,减小圆盘摩擦损失;增加叶片的重叠程度,减少流道的扩散;减小叶片进口的相对速度,减小进口的撞击损失,提高抗汽蚀性能减小特性曲线的驼峰。

加稍大的冲角为好,冲角的加法:

1).各流线加相同的冲角;2).冲角从前盖板流线到后盖板流线递减或递增;3).选择一条流线的冲角,确定β角之后,其他流线按tanβR=常熟确定。

2.叶片出口角的选择和计算

叶片出口角β2,对泵的性能参数、水利效率和特性曲线的形状有重要影响,β2=18°~40°。考虑因素有:

1).低比转速泵,选择大的β2角,增加扬程,减小D2,以减小圆盘摩擦损失、提高泵的效率;

2).增大β2角,在相同流量下叶轮出口速度v2增加,压水管的水力损失增加,并且在小流量下冲击损失增加,容易使特性曲线驼峰。为获得下降的曲线,不宜选

过大的β2角;

3). β2大,叶片间相对流动扩散严重。

4).为获得平坦的功率曲线,时泵在全扬程范围运行,β2可小于10°。

叶轮出口边平行轴线的叶轮,叶轮出口各流线选用相同的出口角,叶轮出口边倾斜时,为使叶轮出口的扬程相同,β2角从大直径向小直径递增,而且通常按自由漩涡理论进行计算。

(七)、叶轮、叶片切割 1.叶轮的切割 1).切割定律:相似定律—低比转速离心泵:

2).混流式叶轮:混流泵n s 大,D j D 2?变大,切割后的比值D j D 2?更大。因切割后Q ,υm1减小,要保证有高效率,β'1

不应改变,于是,进口速度三角形中的υu1

增加,将减小泵的扬程。

3).混流泵一般只许少量切割(小于5%),切割方式一般与出口平行或倾斜(外缘切割多,轮毂侧少切或不切),公式中的直径应该为平均直径。叶轮应分为2次或几次逐渐切割,每次切割必须进行实验。切割后,一般的效率下降,但有的低比转速泵切割后比转速增加,所以效率有可能提高,切割不大时,可以认为效率相等,随着切割量增加,效率将下降,尤其是高比转速更为严重。要想有最高

的效率,不一定同时满足要求的H',Q'值。

4).切割公式:

2. 修削叶片的进、出口对碰性能的影响

1).修削叶片出口部分工作面、叶片出口部分背面

①最高效率少有提高;②在相同流量下υ

m2减小,υ

u2

增加,因而泵的扬程提高

(约2%~5%);③在相同的扬程υ

u2

下,泵的流量增加(约5%);④修锉叶片进口背面,只改善叶片进口局部的形状,对性能影响不大。

2).性能改善的原因:①曾大了叶片出口角和相邻叶片间出口的开口面积;②由于叶片出口部分背面角度增加,改善了因有限叶片数造成的流动偏离和速度分布不均匀性。

3).叶片泵H-Q 性能曲线的调整 ①降低H-Q 性能曲线

平行于原来出口边的切割,一般会引起H-Q 性能曲线平行下移,BEP 朝小于名义流量方向移动;效率也可能略有降低,降低程度决定于切割量和比转速。效率降低过多将限制这种方法的采用。

n s =60~120 D x D 2?允许为80%~85% n s =120~200 D x D 2?允许为85%~90% n s =200~300 D x D 2?应小于90%

②提高H-Q 性能曲线

A.锉削叶片出口背面,扩大出口面积,也改 变叶片出口背面的角度,增高了输出扬程。

B.过渡锉削,叶片出口形成尖削,沿叶片的

压力分布改变将引起其他水力损失,增大液流进入蜗壳或导叶的撞击混合损失,限制扬程升高。最大扬程增值4%~10%(决定于比转速) C.将叶片尾部插销成正方形,性能将产生:

a.在所有流量下的扬程都升高,大流量处扬程升高更多,扬程可增加4%~10%,扬程提高量决定于比转速的叶片数。

b.相应的轴功率消耗也增大,大流量处轴功率增大较多。

c.BEP 的位置朝大流量方向移动,移动大小决定于原来叶片出口的厚度、

叶片数、

A

叶片出口角和比转速,一般约8%~10%。效率维持不变,获奖降低0.5%~1.0%。 d.NPSH r 曲线也略微朝大流量方向移动,效应原因:叶片尾部改成方形后,改变了液体出口流动角,产生了横向流动。尽管叶片出口角面积保持不变,但液体流动产生便宜,尾流的影响明显减小。性能变化:扬程最大可上升到8%~12%,由于改变养成系数,在小流量区容易加剧流动的不稳定性和NPSH r 的增大。

③改变H-Q 性能曲线

有事希望有较平坦的H-Q 性能曲线,或大流量区扬程不要降低很大;有事希望扬程变化时,流量变化较小。使H-Q 性能曲线平坦的方法:

a. 加大蜗壳喉部面积;

b.增大叶轮进口面积;

c.同时加大蜗壳喉部面积和增大叶轮进口面积。--都可减小泵内水力损失。对于低比转速离心泵,将增高比转速,提高效率。 低比转速叶片泵,采用切割叶片进口边,或者锉削进口边背面,以减小叶片厚度,增大叶轮进口面积,而负荷较大时:

使H-Q 性能曲线变陡,常采用缩窄流道牺牲效率的方法。措施:在出口法兰处插入一个喷嘴或者在吸口处增加一个阻塞环,都使损失增大效率降低,后者还将引起NPSH r 的增大。切削叶片出口正面,有略微增大斜率,效率也不会降低太多,特别是低比转速泵,可能效果较好。

B

C

D

减小消除H-Q性能曲线的不稳定部分:当不稳定性很强(超过5%)或伸展在较宽的流量范围时,设计者必须设法区消除它;一般不是很强(不超过4%),对叶轮或蜗壳作简单修改,可能消除这种不稳定性。措施;

a.每隔一个叶片进行切割,在叶片数

较多且为偶数时采用,切割后的性能

曲线也有略变陡将。

b.切割蜗壳隔舌,最适合切割径向导

叶,将增大无叶扩散室的环流,增大

损失。

c.倾斜切割后盖板和叶片出口,消除叶

轮出口的回流区,减小水动力损失。靠

近小流量区扬程升高,由于切割后叶轮

平均直径减小,扬程降低,因此切割角

不应超过12°。

d.沿叶轮后盖板在叶片出口开缝,等同于斜切叶轮出口,这种方法可能不会影响效率。

e.在蜗壳隔舌或径向导叶上开槽,在大

流量时很小或没有扬程降低,而关死点

扬程适当提高。

f.在叶轮前冠附近切割叶片进口,在符合

较高时,不宜采用。

g.在叶轮轮毂附近延伸叶片进口,能消除H-Q性能曲线不稳定部分。但是已加工的叶轮,若采用焊接延伸叶片将难以保证轴对称,厚度不均匀对进口产生阻塞,降低效率,增大NPSH r。计算叶片延伸长度,根据关死点需要扬程的增大量计算叶片负荷。

4).移动BEP在H-Q性能曲线上的位置,改善叶片泵的效率

将叶轮尾部插销成正方形,BEP朝大流量移动;整体叶轮切割外径,BEP朝小流量方向移动。尽可能达到既改善性能又提高效率。对于低比转速,泄露损失和轮盘损失占总损失的40%~60%,因此对于低比转速泵,改变密封环密封间隙、减小叶轮直径和提高叶轮前冠及后盖板外表的光洁度,提高效率。

(八)、泵的汽蚀

1.泵发生汽蚀的条件是由泵本身和吸入装置据定的。

泵汽蚀的发生过程:泵在运行中,若过流部分的局部区域,液体的绝对压力下降到所抽送液体当时温度下的气化压力时,液体便在该处开始汽化,形成气泡。这些气泡随液流向前运动至高压区时,气泡周围的高压液体使气泡急剧地缩小以致凝结,在气泡消失的同时,液体质点以高速填充空穴,发生互相撞击而形成强烈的水击,同时在气泡凝结时还产生点解、化学反应,故使过流部件收到剥蚀而损坏。

现象:1).产生噪声和振动2).泵的性能下降3).过流部件的汽蚀损坏

P k=P r,NPSH a=NPSH r,泵汽蚀

P k

P k>P r,NPSH a>NPSH r,泵无汽蚀

NPSH a有效汽蚀NPSH r必须汽蚀

对抗汽蚀性能高的泵

C=1000~1600,k0=4.5~5.5

对兼顾效率和抗汽蚀性能

C=800~1000,k0=4.0~4.5

对抗汽蚀性能不作需求主要考虑提高效率

C=600~800,k0=3.5~4.0

2.泵的汽蚀余量的物理意义表示液体在泵进口部分压力下降的程度。汽蚀余量与

装备无关,只与泵进口部分的运动参数(ν

0,ω

,ω

k

)有关。NPSH r越小,

表示压力降小,要求装置必须提供的NPSH a小,因而泵的抗汽蚀性能越好。

3.汽蚀比转速:C =

5.62?n?Q 12?(NPSH )

34

?

泵流量和汽蚀比转速关系

4.提高泵抗汽蚀性能

1).叶轮进口直径D :增大D ,则u 0增大、ν0减小,必然存在一个D ,使二者平方和最小,求的D 。D 0=k 0√Q

n 3

2).叶轮叶片进口宽度:增大叶片进口宽度b 1,能增加进口过流面积,减小ν0和ω0,从而减小NPSH r 。

3).叶轮盖板进口部分曲率半径:适当增大盖板的曲率半径,有利于减小盖板处的ν

和改善流苏的均匀性,减小泵进口部分的压力降,从而减小NPSH r,提高泵的抗汽蚀性能。

4).叶片进口边的位置和叶片进口部分的形状

叶片进口轮毂侧向吸入口方向延伸或叶片进口边前伸并倾斜。

5).叶片进口冲角

叶片进口角,通常都大于进口相对液流角,即β1>β,1,正冲角△β=β1-β,。正冲角通常△β=3°~10°,个别情况大到15°。采取正冲角能提高抗汽蚀性能,而且对效率影响不大。

①增大叶片进口角β1,从而减小叶片的弯曲,增大叶片进口过流面积,减小叶片

的排挤,都将会减小ν

0和ω

,提高泵的抗汽蚀性能。

②采用正冲角,液体在叶片口背面产生脱流,该脱流引起的漩涡不易向高压侧扩散。在正冲角时,压降系数λ在很大正冲角范围内变化不大;在负冲角,λ急剧上升。

③泵的流量增加时,β,增大,采用正冲角可以避免泵在大流量运转时出现负冲角。

6).叶片进口厚度:叶片进口厚度越薄,越接近流线型,叶片最大厚度离进口越远,叶片进口的压降越小,泵的抗汽蚀性能越好。叶片进口形状对压降影响是十分敏感的。

7).平衡孔:泄流对进入叶轮的主流起破坏作用,平衡孔的面积不小于密封间隙面积的5倍,以减小泄露流速,从而减小对主流的影响,提高泵抗汽蚀性能8).光滑度:叶轮进口部分越光滑,水力损失减小,会明显提高泵的抗汽蚀性能。9).吸入室的形状和速度:泵吸入六道至叶轮进口面积应当逐渐减小,使流速逐

渐增加,提高流动的稳定性,可以降低汽蚀的形成。

5.防止发生汽蚀的措施:欲防止发生汽蚀必须提高NPSH a,使NPSH a>NPSH r

6.泵的运行工况点:Q G为规定工况点的流量值,一般情况0.7Q G~1.2Q G为最佳范围。离心泵应该在关闭出口阀时启动,因为这是启动功率最小。轴流泵应在开阀启动,这时启动功率小,容易启动。

多级泵的结构图展示及原理介绍

多级泵的结构图展示及原理介绍 多级泵主要由定子、转子、轴承和轴封四大部分组成: 1、多级泵定子部分主要由吸入段、中段、吐出段和导叶等组成,有拉紧螺栓将各段夹紧,构成工作室。D 型多级泵泵一般水平吸入,垂直向上吐出;用于是油田注水时,泵进出口均垂直向上。DG 型多级泵出、入口均垂直向上。 2、多级泵转子部分主要由轴、叶轮、平衡盘和轴套等组成。轴向力由平衡盘平衡。 3、多级泵轴承主要由轴承体、轴承和轴承压盖等组成,轴承用油脂或稀油润滑。 4、多级泵轴封采用软填料密封,主要由进水段和尾盖上的密封函体、填料、挡水圈等组成。D 型多级泵泵水封水来源于泵内的压力水。DG 型多级泵泵水封水来源于外部供水。 5、多级泵转动泵通过弹性联轴器由原动机直接驱动。从原动机端看泵,泵为顺时针方向旋转D 、DG 型多级泵泵是卧式单吸多级节段式离心泵。供输送清水(含杂质量小于1% ,颗粒度小于0.1mm )或物理化学性质类似于水的其它液体。D 型多级泵泵输送介质温度小于80℃,适用于矿山排水、油田注水、工厂和城市给、排水等场合。油田注水泵根据介质的腐蚀性,泵采用不同的材质。DG 型泵输送介质温度小于105℃,适用于各种锅炉给水。

多级泵与单级泵有什么区别? 1、单级泵是指只有一只叶轮的泵,最高扬程只有125米; 2、多级泵是指有两只或两只以上叶轮的泵,最高扬程可以超过125米;多级泵在单级泵扬程需要必须配两级电机的情况下,可以通过增加叶轮个数来配用四级电机,从而可以提高泵使用寿命和降低机组噪音,但是多级泵维修相对单级泵来说要困难一点。 3、在泵实际需要扬程小于125米时,可根据泵房面积、泵价格(多级泵一般比单级泵价格偏高)、等因素综合考虑该选用单级泵还是多级泵。 随着技术的进步,单级叶轮的泵可通过提高泵的转速来提高泵的扬程,可代替多级泵, 只是价格贵一点。

双吸离心泵毕业设计-开题报告

双吸离心泵毕业设计-开题报告

毕业设计(论文)开题报告 学生姓名:陈乐东学号:20121698 学院:机电工程学院 专业:热能动力工程 设计(论文)题目:800S26型双吸泵的设计 指导教师:杨辉 2016年2月15日

开题报告填写要求 1.开题报告(含“文献综述”)作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在专业审查后生效; 2.开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见; 3.“文献综述”应按论文的格式成文,并直接书写(或打印)在本开题报告第一栏目内,学生写文献综述的参考文献应不少于15篇; 4.有关年月日等日期,按照如“2002年4月26日”方式填写。

1.结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写1500字左右的文献综述(包括研究进展,选题依据、目的、意义) 文献综述 800S26型双吸泵的型号意义是,入口直径为800mm,设计点扬程为26m的单极双吸水平中开式离心清水泵。要想了解此泵,首先要了解双吸离心泵。 双吸离心泵是从叶轮两面进水的双吸离心泵,因泵盖和泵体是采用水平接缝进行装配的,又称为水平中开式离心泵。与单级单吸离心泵相比,效率高、流量大、扬程较高。但体积大,比较笨重,一般用于固定作业。适用于丘陵、高原中等面积的灌区,也适用于工厂、矿山、城市给排水等方面。 S型单极双吸离心泵也被称为为中开式离心泵,供抽送清水或物理化学性质类似于水的其他液体之用。S系列单级双吸离心泵主要适用于自来水厂、空调循环用水、建筑供水、灌溉、排水泵站、电站、工业供水系统、消防系统、船舶工业等输送液体的场合。 S型中开泵与其他同类型泵相比较具有寿命长、效率高、结构合理,运行成本低、安装及维修方便等特点,是消防、空调、化工、水处理及其他行业的理想用泵。泵体设计压力为1.6MPa和2.0MPa。泵体的进出口法兰均位于下泵体,这样可以在不拆卸系统管路的情况下取出转子,维修方便。部分泵体采用双流道设计,以减少径向力,从而延长机封和轴承的寿命。叶轮叶轮的水力设计采用了最先进的 CFD 技术,因此提高了S泵的水力效率。对叶轮进行动平衡, 确保S泵的运行平稳。轴轴径较粗,轴承间距较短,从而减小了轴的挠度,延长了机械密封和轴承的寿命。轴套可以采用多种不同的材料,以防止轴被腐蚀和磨损,轴套可更换。磨损环泵体与叶轮间采用可更换的磨损环,防止泵体和叶轮的磨损,更换方便,维修费用低,同时保证运行间隙和较高的工作效率。既可以使用填料也可以使用机械密封,可以在不拆卸泵盖的情况下更换密封装置。轴承独特的轴承体设计使轴承可采用油脂或稀油润滑,轴承的设计寿命10万小时以上,也可使用双列推力轴承和封闭轴承。材料根据用户的实际需要,S型中开泵的材料可为铜、铸铁、球铁、316不锈钢、416;7锈钢、双向钢、哈氏合金、蒙耐合金,钛合金及20号合金等材料。 我国水泵技术的现状 1、我国泵产品图样的来源可分为联合设计、引进、自行开发等几种,引进的这些

浅谈离心泵的使用及维护保养

浅谈离心泵的使用及维护保养 摘要离心泵是化工生产中普遍使用的液体输送设备,由于离心泵必须经常在环境恶劣的运行条件下运行,导致极有可能发生过早损坏的现象——这势必会增加了成本损失和由于故障停机造成的生产力下降的风险,本文就此问题对离心泵的使用及维护保养进行了论述。 关键词离心泵;使用;维护保养 1 离心泵的正确选型和精心安装是离心泵正常运转的重要前提 1.1 离心泵的正确选型 首先,在选型前一定要详细了解被输送物料的物理化学性质,有无腐蚀性、有无悬浮物、粘度大小、凝固点及汽化温度饱和蒸汽压等;一定要详细了解被输送物料的工况:输送压力、温度、流量、输送高度、吸入高度、负荷变动范围等。综合上述两方面的因素,参阅离心泵的特性曲线,从而选出最切合生产实际使用的离心泵。 其次,离心泵的生产厂家较多,有些离心泵的结构尺寸不够规范,配合间隙不是最佳值,会因装配误差导致元件的损坏(包括叶轮、紧固件、轴承和机械密封)。为延长轴承和密封的寿命,可以采取的改进措施是:加强离心泵及零部件的标准化、规范化;降低装配误差;改进设计特性,如减小轴长而加大轴径、采用较大的密封腔、应用大规格轴承,以及为改善润滑环境而加大轴承框等。 1.2 离心泵的安装 首先,在施工中应严格按照离心泵的施工安装规范进行,并要有一套完善的质量监督制度及验收制度。安装完毕后要进行试运转,经试运转周期考核各项性能指标均符合要求的泵,才能交付生产。 其次,离心泵内部元件的装配精度必须按照标准进行,包括叶轮、密封、轴承等;在运输过程中,难免会造成离心泵内部元件松动。因此,在离心泵安装到基础上后,要找平找正。离心泵的出、入口连接好管道后,会产生应力,造成原对中找正发生偏差,要重新对中。有研究表明,轴分离程度同轴度每25.5mm直线度小于0.005mm时,旋转机器的寿命在100个月左右;当每25.5mm直线度为0.0076mm 时,其寿命缩短为10个月;每25.5mm直线度为1.27mm时,其寿命为2个月。 第三,对一些要求较高的离心泵,应在设计中考虑在吸入口前安装过滤器,在出口阀后安装止逆阀,同时应在操作室及现场设置两套监控装置,以应付突发事故的发生。

立式多级离心泵

立式多级离心泵 目录 CDLF型立式不锈钢多级泵 GDL系列立式多级管道离心泵 DL系列立式多级离心泵

【CDLF不锈钢立式多级离心泵】产品: 【CDLF不锈钢立式多级离心泵】产品简介: CDLF立式不锈钢轻型多级泵是采用国际先进技术制造而成,其最大优点是采用先进水力模型设计,高效率,高节能。水泵内部叶轮、泵壳及其主要配件采用不锈钢冲压成形,流道特别光滑,轴瓦、轴套用硬质合金,具有超强的使用寿命,避免产生二次污染。轴封采用耐磨机械密封,无泄漏。电机采用铝外壳,进口轴承,绝缘等级F级。泵运转平稳,低噪音,整机质量可靠外形美观、体积小、重量轻、运输安装方便,是理想的绿色环保、节能的水泵。 【CDLF不锈钢立式多级离心泵】型号意义:

【CDLF不锈钢立式多级离心泵】性能范围: 流量:1-22m3/h; 扬程:6-232m; 功率:0.37-15kw; 转速:2900r/min; 口径:φ25-φ50; 温度范围:-15℃-+120℃; 【CDLF不锈钢立式多级离心泵】产品特点: 1、采用优良的水力模型和先进的制造工艺,大大提高泵的性能及使用寿命。 2、由于轴封采用材料为硬质合金及氟橡胶的机械密封,可提高泵运行的可靠性及输送介质的温度。 3、泵的过流部分采用不锈钢板冲压焊接而成,使得泵可适用于轻度腐蚀性介质。 4、整体结构紧凑、体积小、重量轻、噪声低、节能效果显著,检修方便。 5、泵的进水口与出水口位于泵座同一水平线上,可直接用于管路当中。 6、采用标准电机,用户可方便地根据需要配备电机。 7、可根据用户需要配备智能保护器,对泵干转、缺相、过载等进行有效保护。 【CDLF不锈钢立式多级离心泵】输送介质: 1、稀薄、清洁、不含固体颗粒或纤维的非易燃易爆介质。 2、诸如矿泉水、软化水、纯水、清油和其他轻化工介质。 3、泵主要材料为不锈钢,可应用于抽送轻度腐蚀性介质。 【CDLF不锈钢立式多级离心泵】产品用途: 供水:水厂过滤与输送、水厂分区送水、主管增压、高层建筑增压。 工业增压:流程水系统、清洗系统、高压冲洗系统、消防系统。 工业液体输送:冷却和空调系统、锅炉给水和冷凝系统、机床配套、酸性和碱性介质输送。 水处理:超滤系统、反渗透系统、蒸馏系统、分离器和游泳池的水处理系统。 灌溉:农田灌溉、喷灌、滴灌。

浅谈离心泵的故障原因及应对措施(标准版)

( 安全论文 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 浅谈离心泵的故障原因及应对 措施(标准版) Safety is inseparable from production and efficiency. Only when safety is good can we ensure better production. Pay attention to safety at all times.

浅谈离心泵的故障原因及应对措施(标准 版) 摘要:泵是一种流体机械,它给予液体一定能量而沿管路输送液体。由于泵的结构简单、比较耐用,是被广泛应用于石油、化工、电力、冶金、矿山、造船、工程、轻工、农业和国防等部门的一种通用机械设备。尤其是在石油炼化企业生产中,泵类设备是不可缺少的运转设备之一,这其中要以离心泵的应用较为常见。在离心泵的运转过程中,难免会出现各种故障。为了确保设备正常运转,保证工艺生产的正常运行,必须加强日常生产中的维护和保养,并对离心泵出现的各种故障进行分析并采取相应的措施加以处理。本文主要从离心泵的结构、工作原理、常见故障、影响因素、日常的维护保养及应对的措施等几方面进行探讨和分析。 关键词:离心泵故障措施

1离心泵的主要组成部分 离心泵主要是由叶轮、泵体、泵轴、轴承、密封环、填料函等几部分组成。 1.1叶轮:叶轮是离心泵的核心部分,是将原动机输入的机械能传递给液体,提高液体能量的核心部件。它用键固定于轴上,被电机驱动旋转对液体作功进行能量传递转换。叶轮上的内外表面要求光滑,以减少水流的摩擦损失。根据其结构形式可分为闭式、开式、半开式三种。其中闭式叶轮效率较高,开式叶轮效率较低。 1.2泵体:泵体也称泵壳,它是离心泵的主体,起到支撑固定的作用,并与安装轴承的托架相连接。 1.3泵轴:泵轴是传递扭矩的主要部件,其主要作用是将联轴器和电动机相链接,并将电动机的转矩传给叶轮。泵轴通常要选用强度较高的碳钢或合金钢并经调质处理,轴径按强度、刚度及临界转速定。 1.4轴承:轴承是套在泵轴上支撑泵轴的构件,有滚动轴承和滑动轴承两种。常见的轴承润滑方式有油润滑和脂润滑两种。滚动轴

离心泵设计

1.概述 (2) 2.工艺说明 (2) 2.1工艺介绍 (2) 2.2物料性质 (2) 2.3工作温度 (2) 2.4工作压力 (2) 3.机械设计 (3) 3.1材料选择 (3) 3.2结构设计 (3) 3.3设计参数计算 (4) 4.零部件的选型 (4) 4.1法兰的选型 (4) 4.2人孔的选型 (5) 4.3容器支座的选型 (5) 5.总结 (5) 参考文献 (6)

1.概述 离心泵是工业生产中应用最为广泛的液体输送机械。其突出特点是结构简单、体积小、流量均匀、调节控制方便、故障少、寿命长、适用范围广、购置费用和操作费用较低。 离心泵依靠旋转叶轮对液体的作用把原动机的机械能传递给液体。由于离心泵的作用液体从叶轮进口流向出口的过程中,其速度能和压力能都得到增加,被叶轮排出的液体经过压出室,大部分速度能转换成压力能,然后沿排出管路输送出去,这时,叶轮进口处因液体的排出而形成真空或低压,吸水池中的液体在液面压力(大气压)的作用下,被压入叶轮的进口,于是,旋转着的叶轮就连续不断地吸入和排出液体。 2.工艺说明 2.1工艺介绍 离心泵的基本构造是由六部分组成的,分别是:叶轮,泵体,泵轴,轴承,密封环,填料函。 2.2物料性质 传输介质是清水,正常的沸点和熔点是100℃、不具有腐蚀性和毒性 2.3工作温度 介质温度不高于80℃ 环境温度不高于40℃ 2.4工作压力

允许吸入管路压力0.3MPa,泵的最高使用压力1.6MPa 3.机械设计 3.1材料选择 根据工艺参数和介质特性来选择泵的系列和材料。 (1)根据介质特性决定选用哪种特性泵,如清水泵、耐腐蚀泵和杂质泵等。介质为剧毒、贵重或有放射性等不允许泄漏物质时,应考虑选用无泄漏泵(如屏蔽泵、磁力泵)或带有泄漏液收集和泄漏报警装置的双端面机械密封。如介质为液化等易发挥发液体应选择低汽蚀余量泵、如筒型泵。 (2)根据选择安装条件选择卧式泵、立式泵(含液下泵、管道泵)。(3)根据流量大小选用单吸泵、双吸泵,或小流量离心泵。 (4)根据扬程高低选用单级泵、多级泵,或高速离心泵等。 3.2结构设计 1、叶轮是离心泵的核心部分,它转速高输出力大,叶轮上的叶片又起到主要作用,叶轮在装配前要通过静平衡实验。叶轮上的内外表面要求光滑,以减少水流的摩擦损失。 2、泵体也称泵壳,它是水泵的主体。起到支撑固定作用,并与安装轴承的托架相连接。 3、泵轴的作用是借联轴器和电动机相连接,将电动机的转矩传给叶轮,所以它是传递机械能的主要部件。

150Y-75型离心输油泵三维参数化设计开题报告

北方民族大学毕业论文(设计)开题报告书 题目150Y-75型离心输油泵三维参数化设计 姓名何世平 学号20072711 专业过程装备与控制工程 指导教师高阳 北方民族大学教务处制 二O一O年三月

北方民族大学毕业论文(设计) 开题报告书 2010年12月10日

二.本题的基本内容: 设计(论文)的主要内容与要求及其主要技术指标: 1.有关本课题的任务要求: 围绕150Y-75型离心输油泵,对其进行机械校核和泵的故障分析,并且应用三维模型设计软件(Auto CAD)对其(零部件)进行三维建模设计。 2.有关本课题的工艺参数: 油泵参数:设计一台150Y-75型离心输油泵,要求流量Q=200m3/h,泵吸入口径为150mm,扬程H=75m,装置气蚀余量△h a=4.3m。 3.工作量分析及任务分解: (1)设计内容: A、根据泵的主要参数进行吸入口径和压出口径的确定,转速的选择和确定。 B、泵结构形式的确定。选择泵的比转速并确定泵的级数,泵的结构形式选择,泵的效率估算,

轴功率的计算和电机的选择,轴向力的平衡与结构形式的选择。 C、水力设计。叶轮设计,导叶设计,轴向力平衡与结构形式的选择。 D、其他零部件的结构选择。包括联轴器,轴承、密封等。 E、轴的临界转速计算及强度计算。 (2)绘图:叶轮、轴、泵体等主要零部件设计图和三维造型; 离心泵的三维装配图的二维装配图。 (3)论文编制:按照学校相关文件的要求编写设计论文。 (4)英文翻译:要求翻译出汉字约为3000字左右的专业技术文章。 进度安排 序号毕业设计(论文)工作进度日期(起止周数)% 1 教师布置题目;查阅资料;写参考文献(至 少15篇);外文翻译(教师限制译文内容、方 向);根据给定的工艺参数和工艺规程,确定 设计方案。 第1——2周5 2 离心泵主要零部件的设计计算,水力设 计。 第3——5周35 3 其他零部件的设计、选型,轴的临界转速 计算及强度计算。中期检查。 第6周10 4绘制离心泵装配图和零部件图。第7——9周35 5按规定格式编制设计说明书。第10——11周5 6预答辩、修改设计说明书和图纸第12周5 7答辩第13周5 三、推荐使用的主要参考文献: 1.丁成伟.离心泵与轴流泵原理与水力设计[M] 2.无宗泽,罗圣国.机械设计课程设计手册[M].高等教育出版社 3.高键铭,林洪义,杨永鄂.水轮机与叶片泵结构[M].清华大学出版社 4.徐纪方,王曾璇,齐学义.水利机械强度计算[M].机械工业出版社 5.倪正方,徐行建.叶片泵图册[M].沈阳水泵厂 6.沈阳水泵研究所编.叶片泵设计图册[M].北京:机械工业出版社,1983.7 7.关醒凡.现代泵技术手册[M].北京:宇航出版社

多级泵结构图

D型多级泵结构图 技术交流2010-04-27 22:57:24 阅读138 评论0 字号:大中小 D型多级离心泵的结构图 不锈钢多级泵、长沙不锈钢多级泵、湖南不锈钢多级泵的性能结构说明 参数范围: 流量Q 55~175m3/h 扬程H 165~684m DF型不锈钢多级泵系单吸\多吸\节段式耐腐蚀离心泵,适用于输送不含固体颗粒的腐蚀性液体,泵进口压力不得超过0.59MPA(6KGF/CM2)。被输送介质的温度为-20℃~105℃ 不锈钢多级泵的泵壳可在轴线处轴向拆开;吸入口水平,吐出口垂直向上,与轴心线垂直。从驱动端方向看,水

泵旋向为顺时针方向,根据用户需要也可生产逆时针方向旋转的,用户可在定货时特别提出。 泵体与泵盖构成叶轮的工作室,在进、出水法兰上制有安装真空表和压力表的管螺孔,泵体下部制有放余水的管螺孔。 叶轮为单吸闭式,设置平衡盘平衡绝大部分轴向力,可能残存的小部分轴向力则由轴端的轴承承受。叶轮及转子部件在装配前均须作严格的静平衡校验,以保证运行的平稳。 泵轴由两个单列向心球轴承支承,轴承装在泵悬架中的轴承体内,用脂或稀油润滑。轴承的布置使轴处于稳定的拉杆状态。 在泵体上设有密封环,可以减少泵的级间漏损,提高泵的容积效率;另一方面也可以避免高压水回流入吸入室,扰乱进水流场,可以保证水泵的吸入性能。 不锈钢多级泵的过流部件材质为铸钢、铸不锈钢两类。如用户有特殊要求,订货时可向厂家提出。)DF型泵成套供应电机,本身底座。另外,厂主还提供备件(其中有叶轮、轴套、密封环、导叶套、平衡盘、平衡环)。 轴封一般为软填料密封,水泵工作时可引少量介质至填料函处,也可外接冷却润滑水,起水封及冷却润滑作用,订货时,就根据输送介质的名称、浓度泵进口压力、使用温度对材质的腐蚀程度,合理选用泵的材质及密封形式。 D、DG型卧式多级离心泵结构图:

立式多级离心泵概述及原理

立式多级离心泵概述及原理 一、立式多级离心泵产品概述: 立式多级离心泵是采用国家推荐使用的高效节能产品IS型泵的水力模型,为立式多级多节段式结构。螺杆把进水段、中段、出水段夹紧联成一体。水泵每一级装一个叶轮、一个导水叶。 轴向力采用水力平衡法解决,残余轴向力由球轴轴承承受,用油脂润滑。轴封采用软填料或机械密封。产品执行JB/T2727-93 《立式多级离心泵型式与基本参数》标准,主要供吸送稀释的、清洁的、不腐蚀的、不爆炸的清水及物理化学性质类似水的不含固体颗粒或纤维的液体。 立式多级离心泵采用计算机设计和优化处理,拥有雄厚的技术力量、丰富的生产经验和完善的检测手段,从而产品质量的稳定可靠。 二、立式多级离心泵适用范围: 广泛应用于高层建筑的消防、生活供水以及空调机组循环、冷却水输送。 三、立式多级离心泵产品特点: 1、水力模型先进:效率高,性能范围广。 2、结构新颖,运行可靠:取消了平衡鼓,其轴向力采用水力平衡,彻底解决了平衡鼓易锈蚀、易咬死、易磨损的问题,保证了运行更加可靠。 3、更少的运行、维修费用:采用优质机械密封,耐磨损、无泄漏、使用寿命长,故障率低,具有更少的运行维修费用。 4、运行平稳,噪音低:采用低转速电机,使泵运行平稳,噪音更低。 5、立式结构,占地面积小。

四、立式多级离心泵技术参数: 流量:4.2-504m3/h; 扬程:24-240m; 功率:1.5-450kw; 转速:1480r/min; 口径:φ40-φ250; 温度范围:0-+90℃; 工作压力:≤2.4Mpa。五、立式多级离心泵型号意义:

六、立式多级离心泵适用范围: 广泛应用于高层建筑的消防、生活供水以及空调机组循环、冷却水输送。

多级离心泵设计

多级离心泵设计、使用、维修技术和改进措施 作者:周夏1,白云升2(1.内蒙古三维煤化科技有限公司,鄂尔多斯010300;2.新能能源有限责任公司) 日期:2008-10-7 由于多级离心泵的特殊性,与单级离心泵相比,多级离心泵在设计、使用和维护维修等方面,有着不同、更高的技术要求,人们往往在一些细节上的疏忽或者考虑不周,使得多级离心泵投用后频繁发生异常磨损、振动、抱轴等故障,以致停机。 1 设计方面 1.1 基本结构 常用的多级离心泵基本结构有水平中开式和节段式或称多级串联式两种形式。水平中开式的结构特点是上下泵体通过轴心的水平剖分面上对接,进出口管、部分蜗壳及流道铸造在下部泵壳体上,检修维护比较方便,维修时不需拆卸泵的管线便可直接取下泵的上壳体。节段式的结构特点是每一级由一个位于扩压器壳体内的叶轮组成,扩压器用螺栓和连杆连在一起,各级以串联方式由固定杆固定在一起,好处是耐压高,不易泄漏。但在维修时必须拆卸进口管道,拆卸装配难度较大。一般认为,水平中开式多级泵比节段式多级泵刚度好,泵振动值低。 吸入室结构,水平中开式多级泵一般均采用半螺旋形,节段式多级泵大都采用圆环形。而每级叶轮的压出室,由于蜗壳制造方便、将液体动能转换为压能的效率高,水平中开式多级泵一般采用蜗壳结构;但由于蜗壳形状不对称,易使轴弯曲,在节段式多级泵中只是限于首段和尾段可以采用蜗壳,而在中段则采用导轮装置来进行一级叶轮和次级叶轮之间的能量转换。 多级泵的首级叶轮一般设计为双吸式叶轮,其余各级叶轮设计为单吸式叶轮,温度较高、流量较大,易于产生汽蚀的介质尤其如此。 对于压力非常高的泵,用单层泵的壳体难以承受其压力,常采用双层泵壳体,把泵体制作成简体式的。筒体式泵体承受较高压力,筒体内安装水平中开式或节段式的转子。 我国有关标准规定,高压锅炉给水泵采用单壳体节段式或双壳体筒式结构,300 MW及其以上发电机组用泵一般应采用双壳体筒式结构。双壳体的内壳采用节段式或水平中开式结构。 1.2 轴向力平衡 1.2.1 常用的轴向力平衡措施 多级离心泵轴向力的平衡措施一般有:叶轮对称布置、采用平衡鼓装置、平衡盘装置以及平衡鼓、平衡盘组合装置等几种。也有采用双平衡鼓平衡机构的,如有的高压锅炉给水泵。叶轮对称布置或采用平衡鼓装置,轴向力不能完全平衡,仍需安装止推轴承来承受残余轴向力,多级离心泵更多的是采用具有自动调整轴向力作用的平衡盘来平衡轴向力。 在设计多级泵的平衡盘、平衡鼓等装置时,必须配置合适的平衡管路,才能使轴向力平衡装置满足设计要求。在多级泵的轴承温升过高、轴承烧毁事故中,很多都是因为平衡管过流面积偏小、管路阻力损失过大、平衡能力达不到要求造成的。文献[1]以平衡鼓装置为例,提出了平衡管管径的计算方法。 王宗明、周龙昌等针对多级离心泵易出现平衡盘与平衡盘座贴合而引起平衡盘及泵损坏的现象,设计出了多级离心泵动力楔防磨平衡盘,如图1所示。该结构与离心式压缩机的干气密封的原理相似:当平衡盘向平衡盘座靠近时,动力楔可产生巨大的开启力,从而起到防止平衡盘与平衡盘座贴合的作用。经九个月的运行试验,平衡盘工作正常,工作面无磨损和划痕,可见这种新型动力楔防磨平衡盘可有效防止平衡盘与平衡盘座的贴合。该动力楔平衡盘不仅能延长平衡盘使用寿命,而且能减小平衡盘间隙泄漏量,节能降耗。

机械设计工艺夹具设计开题报告(含文献综述、外文翻译)

毕业设计开题报告 (含文献综述、外文翻译) 题目 姓名 学号 班级 专业机械设计制造及其自动化 学院机械工程学院 指导教师(职称)

1. 获得广泛的应用,1.1 1.2 选题意义 2.设计内容 2.1 主要设计内容 …………………………… 2.2 拟解决的关键问题 …………………………… 3.设计的方法及措施 3.1 可行性分析 ……………………………

3.2 方法及措施 …………………………… 4.预期设计成果 …………………………… 5.设计工作进度计划 本毕业设计的阶段划分与进度安排如下: 第一阶段:第七学期第10~12周(2010.11.1~2010.11.19),查阅文献和撰写 第二阶段:第七学期第13 第三阶段:第八学期第1~ ……….; ……; ……….; ……….; ……….; 第六阶段:第八学期第10~12周(2011…..~2011…..),整理和撰写设计论文,形成终稿,送审、修改、并装订。

1. 获得广泛的应用,分子合成技术,……2.研究方向 2.1 2.1.1 机械结构设计

参考文献(含开题报告和文献综述) [1] 蒋继红, 虞贤颖, 王效岳. 塑料成型模具典型结构图册 出版社, 2006. [2] 朱祖超. ARKKIO A. Determination [S]. 北京: 中国标准出版社, 1996. 期刊 [序号] 主要责任者. 文献题名[J]. 刊名, 出版年份,卷号(期号): 起止页码. 专著 [序号] 主要责任者. 文献题名[M]. 其他责任者. 出版地: 出版者, 出版年. 国际、国家标准 [序号] 标准代号, 标准名称[S]. 出版地: 出版者, 出版年. 学位论文 [序号] 主要责任. 文献题名[D]. 保存地: 保存单位, 年份.

浅谈离心泵设计思路

浅谈离心泵设计思路 吴献李京一陶荣华 利欧集团股份有限公司317503 摘要:随着科学技术的进步,我国的计算机技术迅速发展,离心泵的设计也有了新的思路,这种思路与传统离心泵的设计思路不一样。离心泵设计新思路,不仅降低了生产成本,而且可以提升零件的可用性,具有更好的实际应用价值。本文将围绕离心泵展开,详细阐述了离心泵的工作原理以及离心泵在日常生活中的应用,重点分析了传统离心泵的特点,提出了离心泵设计的新思路,希望为提高离心泵的工作效率、降低生产成本、促进离心泵产业的发展提供一些参考。 关键词:离心泵;设计思路;创新 引言 随着我国社会主义市场经济的不断发展和进步,离心泵在液体输送设备中得到了广泛应用,发挥着举足轻重的作用。对于液体输送设备而言,离心泵起着至关重要的作用,离心泵的运行一旦出现问题,整个液体输送的过程都会受到很大的影响,因而对离心泵的设计很重要。离心泵从产生到大规模使用,经历了一个漫长的过程,其设计方法和思路也在发生不同的改变。为了降低生产成本,提高员工的工作效率,缩短设计周期,离心泵的设计思路创新是非常有必要的。因此,深刻了解离心泵的工作原理,在了解基础的前提下,进行离心泵的设计思路创新,已经成为一种趋势。 一、离心泵的工作原理和应用 1.离心泵的工作原理分析 离心泵在工业中应用比较广泛,主要是离心泵相比于其它泵类具有很明显的优势,液体输出量比较高,没有脉冲便能平稳地运转。离心泵的尺寸不仅小而且质量还比较轻,所以占用的场地比较小,应用起来比较方便。另外,离心泵的设备比较简单,工作性能比较可靠,员工操作起来比较方便,而且维修起来相对容易,保养比较轻松。工作人员在需要用液体输送设备的时候,为了充分发挥泵的作用,大可以考虑使用这种离心泵。 离心泵的工作原理是在自身吸入室、排出管以及叶轮与压出室的相互配合下

轴向柱塞泵设计开题报告

安徽理工大学本科毕业设计(论文)开题报告

一,拥有一批规模大、技术水平高的混凝土泵车制造企业,如SCHWING、PUTZMEISTER、ELBA、TEKE、REICH等。 我国从1982年引进日本技术并批量生产混凝土泵车,经过20年的发展,设计水平和制造能力都有长足发展,三一重工等企业甚至已经赶超国外。目前三一重工、徐工集团、中联重科等企业以成功研发并推出了56m泵车、66m世界最长臂架泵车、三轴混凝土泵车底盘、43m混凝土泵车等。 研究内容 混凝土泵车水洗系统中清洗水泵的设计。 1. 通过对混凝土泵车水洗系统的研究,设计水泵驱动装置的液压系统; 2. 液压柱塞缸、水缸的结构参数设计,主要结构尺寸的设计以及运动学分析、强度校核和寿命估算; 3. 活塞式水泵的水阀的结构参数设计,主要结构尺寸的设计以及运动学分析、强度校核和寿命估算。 最后利用solidworks制图软件制图进行干涉检验,无误后出图。 研究思路与方法 1.总体设计:通过对混凝土泵车水洗系统的研究,设计水泵驱动装置的液压系统。通过给定参数(液压缸最高油压、水缸最高水压和水泵出水量)查询手册确定各个液压元件及辅件的选型。 2.主要结构设计:对液压缸、水缸的外形结构尺寸、缸体的尺寸等主要零部件进行总体结构尺寸设计。对水阀的外形结构尺寸、阀芯尺寸等主要零部件进行总体结构尺寸设计。 3.运动学分析:运动学分析分两项,(1)运动规律分析(2)流量及流量脉动率 。 4.受力分析与强度计算:涉及到受力分析与强度校核的部件主要是缸筒、活塞、活塞杆、缸盖等。 5.利用CAD、solidworks绘图软件制图、出图。 3、主要参考文献 〔1〕李培滋﹑王占林主编.《飞机液压传动与伺服控制》(上册)[M].国防工业出

离心泵课程设计

离心泵课程设计 课程设计说明书 题目: 流体机械及工程课程设计______ 院(部):能源与动力工程学院_____ 专业班级: __________ 流体1002班________ 学号:3100201079 ___________ 学生姓名: _____________ 刘成强___________ 指导教师: _____________ 赵斌娟___________

离心泵课程设计 起止日期:2014.1.72012.1.17

流体机械及工程课程设计设计任务书 设计依 据: 流量Q:30m3/h 扬程H:18.5m 转 速n: 2900 r/min 效率:68% 任务要求: 1. 用速度系数法进行离心泵叶轮的水力设计。 2. 绘制叶轮的木模图和零件图,压出室水力设 计图。 3. 写课程设计说明书 4. 完成Auto CAD 出图

目录 第一章结构方案的确定 (5) 1.1确定比转数 (3) 1.2确定泵进、出口直径 (3) 1.3泵进出口流速 (3) 1.4确定效率和功率 (4) 1.5电动机的选择轴径的确定 (4) 第二章叶轮的水力设计 (5) 2.1叶轮进口直径D0的确定 (5) 2.2叶轮出口直径D2的确定 (6) 2.3确定叶片出口宽度b2 (6) 2.4确定叶片出口安放角 2 6 2.5确定叶片数Z (6) 2.6精算叶轮外径D (6) 2.7叶轮出口速度 (8) 2.8确定叶片入口处绝对速度M和圆周速度U1 (9) 第三章画叶轮木模图与零件图 (9) 3.1叶轮的轴面投影图 (9) 3.2绘制中间流线 (11) 3.3流线分点(作图分点法) (11) 3.4确定进口角1 (13) 3.5作方格网 (14) 3.6绘制木模图 (15) 第四章压水室的设计 (17) 4.1 基圆直径D3的确定 (17) 4.2压水室的进口宽度 (17) 4.3 隔舌安放角0 (17) 4.4隔舌的螺旋角0 (17) 4.5断面面积F (17) 4.6当量扩散角 (18) 4.7各断面形状的确定 (18) 4.8压出室的绘制 (20) 1. 各断面平面图 (20) 2. 蜗室平面图画 (20) 3. 扩散管截线图 (21)

多级离心泵操作及原理

多级离心泵操作及原理 一、多级离心泵产品概述: 多级离心泵是采用国家推荐使用的高效节能产品IS型泵的水力模型,为多级多节段式结构。螺杆把进水段、中段、出水段夹紧联成一体。水泵每一级装一个叶轮、一个导水叶。 轴向力采用水力平衡法解决,残余轴向力由球轴轴承承受,用油脂润滑。轴封采用软填料或机械密封。产品执行JB/T2727-93 《多级离心泵型式与基本参数》标准,主要供吸送稀释的、清洁的、不腐蚀的、不爆炸的清水及物理化学性质类似水的不含固体颗粒或纤维的液体。 多级离心泵采用计算机设计和优化处理,拥有雄厚的技术力量、丰富的生产经验和完善的检测手段,从而产品质量的稳定可靠。 二、多级离心泵适用范围: 广泛应用于高层建筑的消防、生活供水以及空调机组循环、冷却水输送。 三、多级离心泵产品特点: 1、水力模型先进:效率高,性能范围广。 2、结构新颖,运行可靠:取消了平衡鼓,其轴向力采用水力平衡,彻底解决了平衡鼓易锈蚀、易咬死、易磨损的问题,保证了运行更加可靠。 3、更少的运行、维修费用:采用优质机械密封,耐磨损、无泄漏、使用寿命长,故障率低,具有更少的运行维修费用。 4、运行平稳,噪音低:采用低转速电机,使泵运行平稳,噪音更低。 5、结构,占地面积小。

四、多级离心泵技术参数: 流量:4.2-504m3/h; 扬程:24-240m; 功率:1.5-450kw; 转速:1480r/min; 口径:φ40-φ250; 温度范围:0-+90℃; 工作压力:≤2.4Mpa。 五、多级离心泵型号意义:

六、多级离心泵适用范围: 广泛应用于高层建筑的消防、生活供水以及空调机组循环、冷却水输送。

煤矿井下排水泵节能与控制系统的设计开题报告

辽宁工程技术大学 本科毕业设计(论文)开题报告 题目煤矿井下排水泵节能与控制系统的设计 指导教师张兰芬 院(系、部)机械工程学院 专业班级矿电11-1 学号1107250108 姓名姜宗帅 日期2015/4/6 教务处印制 25

一、选题的目的、意义和研究现状 煤矿井下排水设备对保证矿井正常生产起着非常重要的作用。目前国内各矿井的排水系统多采用传统的继电器控制方法,用人工进行监测。传统方法控制线路复杂,设备运行的可靠性低,工人劳动强度大,不适应煤炭发展的需要。本文设计的排水系统采用PLC控制,弥补了传统继电器控制的缺陷与不足,提高了水泵节能与工作可靠性和稳定性。 1设计现状: 目前国内外学者已经在煤矿井下排水系统控制的研究中取得了很多成就。就国内的研究工作来看,大多是从煤矿井下排水系统的安全可靠性、节能的角度进行研究。根据煤矿井下排水系统消耗电能大的特点,国内研究人员分别从离心式水泵,排水管路,电动机三个方面提出了对井下排水系统的节能改造。由于各类矿井情况差别大,能源消耗尤其是电能消耗大,所以在节能技术方面的研究对煤矿效益,以致可持续发展有着很大的意义。国内某计研究院提出采用PLC自动检测水仓水位、管道压力、流量等数据,根据水仓水位高低和参考矿井用电情况,建立数学模型,达到了水泵运行的避峰就谷的效果,有效地节省了矿井在排水系统上的能耗,缩减了煤矿的生产成本。 国外的研究大多从管道的长期的维护和清理,井水质量对排水设备的影响等更加细微更加长远的方面来研究。俄罗斯研究人员根据费用相等的原理,推导出水泵最佳使用周期和管道清理周期的两种形式相似的计算公式,为水泵使用和管道清理从科学的角度进行阐述,提高了整个排水系统的安全性能。 2设计目的和设计意义: 新形势下,随着市场经济的飞速发展,中国低碳节能的经济目标的提出,与泵类搭配使用的马达的用电量大致是全国耗电总量的两成由于过去水泵的效率比较低,致使资源的浪费问题严重。如何提高水泵的运转效率,是考虑水泵节能的首要工作,这成为当今势必考量的话题。该设计的目的以及意义就是通过分析煤矿井下排水泵的节能方法,找出一种最适合的节能途径,力求做到能源消耗最少,使泵的排水效率实现最大化。 二、研究方案及预期结果 26

离心泵设计

离心泵设计 目录 1 概述 (2) 2 工艺说明 (2) 2.1 工艺简介 (2) 2.2 物料性质 (2) 2.3 工作温度 (2) 2.4 工作压力 (2) 2.5 尺寸参数 (2) 2.6 其他说明................................. 错误!未定义书签。 3 机械设计....................................... 错误!未定义书签。 3.1 材料选择................................. 错误!未定义书签。 3.2 结构设计 (3) 3.3 设计参数 (3) 4 零部件的选型 (4) 4.1 法兰的选型 (4) 4.2 泵体的选型 (4) 4.3 叶轮的选型 (4) 4.4 其他零部件的选型 (4) 5 总结 (4) 参考文献 (5)

1 概述 本门课程是关于化工机械与设备的基础课程,完成一项相关设计是课程学习的主要目的,也是学好课程的重要方法。 目的是将论运用于实践,提高综合运用知识的能力。 本课程设计的目标是提高查阅资料、理论计算、工程制图、数据处理的能力。 完成本设计需要先学好理论知识再参考各类标准按照规范完成作品。 本设计的主要内容有确定工艺参数、确定材料与结构、完成相关计算以及零部件选型。 2 工艺说明 2.1 工艺简介 即合成氨的生产工艺,工艺大致流程如下: 造气→半水煤气脱硫→压缩机1,2工段→变换→变换气脱硫→压缩机3段→脱硫→压缩机4,5工段→铜洗→压缩机6段→氨合成→产品NH 3 本设备主要在其中起输送液体作用。 2.2 物料性质 水在70℃下的物性数据: 热导率:λ 2 = 0.624 W/(m?℃) 粘度:μ 2 = 0.742×10-3 Pa?s 2.3 工作温度 热流体进口温度70℃。 2.4 工作压力 根据工艺要求,设备允许压强不大于2×105Pa。 2.5 尺寸参数 外型尺寸 L: 352 H:320 a:80 h:180

多级离心泵的设计

由于多级离心泵的特殊性,与单级离心泵相比,多级离心泵在设计、使用和维护维修等方面,有着不同、更高的技术要求,人们往往在一些细节上的疏忽或者考虑不周,使得多级离心泵投用后频繁发生异常磨损、振动、抱轴等故障,以致停机。 1 设计方面 1.1 基本结构 常用的多级离心泵基本结构有水平中开式和节段式或称多级串联式两种形式。水平中开式的结构特点是上下泵体通过轴心的水平剖分面上对接,进出口管、部分蜗壳及流道铸造在下部泵壳体上,检修维护比较方便,维修时不需拆卸泵的管线便可直接取下泵的上壳体。节段式的结构特点是每一级由一个位于扩压器壳体内的叶轮组成,扩压器用螺栓和连杆连在一起,各级以串联方式由固定杆固定在一起,好处是耐压高,不易泄漏。但在维修时必须拆卸进口管道,拆卸装配难度较大。一般认为,水平中开式多级泵比节段式多级泵刚度好,泵振动值低。 吸入室结构,水平中开式多级泵一般均采用半螺旋形,节段式多级泵大都采用圆环形。而每级叶轮的压出室,由于蜗壳制造方便、将液体动能转换为压能的效率高,水平中开式多级泵一般采用蜗壳结构;但由于蜗壳形状不对称,易使轴弯曲,在节段式多级泵中只是限于首段和尾段可以采用蜗壳,而在中段则采用导轮装置来进行一级叶轮和次级叶轮之间的能量转换。 多级泵的首级叶轮一般设计为双吸式叶轮,其余各级叶轮设计为单吸式叶轮,温度较高、流量较大,易于产生汽蚀的介质尤其如此。 对于压力非常高的泵,用单层泵的壳体难以承受其压力,常采用双层泵壳体,把泵体制作成简体式的。筒体式泵体承受较高压力,筒体内安装水平中开式或节段式的转子。 我国有关标准规定,高压锅炉给水泵采用单壳体节段式或双壳体筒式结构,300 MW及其以上发电机组用泵一般应采用双壳体筒式结构。双壳体的内壳采用节段式或水平中开式结构。 1.2 轴向力平衡 1.2.1 常用的轴向力平衡措施 多级离心泵轴向力的平衡措施一般有:叶轮对称布置、采用平衡鼓装置、平衡盘装置以及平衡鼓、平衡盘组合装置等几种。也有采用双平衡鼓平衡机构的,如有的高压锅炉给水泵。叶轮对称布置或采用平衡鼓装置,轴向力不能完全平衡,仍需安装止推轴承来承受残余轴向力,多级离心泵更多的是采用具有自动调整轴向力作用的平衡盘来平衡轴向力。 在设计多级泵的平衡盘、平衡鼓等装置时,必须配置合适的平衡管路,才能使轴向力平衡装置满足设计要求。在多级泵的轴承温升过高、轴承烧毁事故中,很多都是因为平衡管过流面积偏小、管路阻力损失过大、平衡能力达不到要求造成的。文献[1]以平衡鼓装置为例,提出了平衡管管径的计算方法。 王宗明、周龙昌等针对多级离心泵易出现平衡盘与平衡盘座贴合而引起平衡盘及泵损坏的现象,设计出了多级离心泵动力楔防磨平衡盘,如图1所示。该结构与离心式压缩机的干气密封的原理相似:当平衡盘向平衡盘座靠近时,动力楔可产生巨大的开启力,从而起到防止平衡盘与平衡盘座贴合的作用。经九个月的运行试验,平衡盘工作正常,工作面无磨损和划痕,可见这种新型动力楔防磨平衡盘可有效防止平衡盘与平衡盘座的贴合。该动力楔平衡盘不仅能延长平衡盘使用寿命,而且能减小平衡盘间隙泄漏量,节能降耗。 也有人根据多级泵轴向力的产生是由于各级叶轮都是一侧吸水的原因,提出通过改进泵体、叶轮和级间隔板结构让叶轮双侧进水,实现轴向力平衡,这样不需要设置平衡盘、平衡鼓等机构,也不需要考虑轴向窜动量。 1.2.2 平衡盘、平衡鼓机构的局限性

长江大学毕业设计开题报告(离心泵的设计)

长江大学 毕业设计开题报告 题目名称离心泵设计及基于solidworks 三维设计院(系)机械工程学院 专业班级装备11001 学生姓名胡强 指导教师门朝威 辅导教师门朝威 开题报告日期2014.04.10

离心泵设计及基于solidworks 三维设计 学生:胡强机械工程学院 指导老师:门朝威机械工程学院 一、题目来源: 生产实际 二、研究目的和意义: 泵是一种通用的工业机械,特别是离心泵,可以说在是在工业生产中不可缺少的一部分,而在工业生产中,研究泵往往是为了更加高效的液体介质输送水力和结构,能适合更多(甚至是苛刻)的工况条件,泵的生命周期成本更低,环 三、阅读的主要参考文献及资料名称 [1] 关醒凡.现代泵技术手册[M].北京:宇航出版社,1995 [2] 濮良贵,纪名刚.机械设计[M].西安:高等教育出版社,2006 [3] 柴立平.泵选用手册[M].北京:机械工业出版社,2009 [4] 侯作富,胡述龙,张新红.材料力学[M].武汉:武汉理工大学出版社,2012 [5] 张锋,古乐.机械设计课程设计手册[M]. 北京:高等教育出版社,2002 [6] 李世煌,吴桐林.水泵设计教程[M]. 北京:机械工业出版社,1987 [7] 于慧力,冯新敏.轴系零部件设计与实用数据查询[M]. 北京.机械工业出版社, 2010 [8] 王朝晖.泵与风机[M].北京.中国石化出版社,2007 [9] 钱锡俊,陈弘.泵与压缩机[M]. 山东.石油大学出版社,1994 [10] 李云,姜培正.过程流体机械[M]. 北京.化学工业出版社,2008 [11] 汪云英,张湘亚.泵与压缩机[M]. 北京:石油工业出版社,1985 [12] 袁恩熙.工程流体力学[M].北京:石油工业出版社,2012 [13] 查森.叶片泵原理及水力设计[M]. 北京:机械工业出版社,1987 [14] Mario ?avar.Improving centrifugal pump efficiency by impeller trimming .[D].Desalination 249(2009)654-659

相关文档
最新文档