集合综合应用测试题(含答案)
小学数学“集合”知识测试卷【适合小学高年级(如五到六年级)的学生】

小学数学“集合”知识测试卷适用年级:五-六年级时间:60分钟总分:100分一、填空题(每空2分,共20分)1.若集合A={2,4,6,8}A = \{2, 4, 6, 8\}A={2,4,6,8},则4______ 集合AAA。
(填“属于”或“不属于”)2.集合BBB中的元素有5个,它们分别是2、4、6、8和10,用符号表示集合BBB为:________。
3.若集合C={x∣xC = \{x | xC={x∣x是小于10的自然数}\} },则集合CCC的元素是________。
4.若集合D={3,5,7,9,11}D = \{3, 5, 7, 9, 11\}D={3,5,7,9,11},请写出集合DDD中的最大值和最小值:最大值是________,最小值是________。
5.已知集合E={a,b,c,d}E = \{a, b, c, d\}E={a,b,c,d},集合F={b,c,e,f}F = \{b, c, e, f\}F={b,c,e,f},则EEE和FFF的公共元素是________。
6.若集合G={1,3,5,7}G = \{1, 3, 5, 7\}G={1,3,5,7}和集合H={2,4,6,8}H = \{2, 4, 6, 8\}H={2,4,6,8},则G∣HG \cup HG∣H的结果是________。
7.已知集合I={1,2,3}I = \{1, 2, 3\}I={1,2,3},请写出III的所有子集(用逗号分隔):________。
8.若集合J={10,20,30,40}J = \{10, 20, 30,40\}J={10,20,30,40},请写出所有比25小的元素:________。
9.集合K={x∣xK = \{x | xK={x∣x是小于等于5的奇数}\} },则集合KKK的元素是________。
10.若集合L={x∣xL = \{x | xL={x∣x是小于20的偶数}\} },则集合LLL中最大的元素是________。
1.3.2.补集及综合应用

【素养小测】 1.思维辨析(对的打“√”,错的打“×”)
(1)∁UU=∅,∁U∅=U,∁U(∁UA)=A. ( ) (2)若A⊆B⊆U,则∁UA⊇∁UB. ( ) (3)若x∈U,则x∈A或x∈∁UA,二者必居其一. ( )
2.设集合U=R,M={x|x>2或x<0},则∁UM= ( )
A.{x|0≤x≤2}
1.3.2.补集及综合应用
1.全集
(1)概念:如果一个集合含有所研究问题中涉及的所有
元素,那么就称这个集合为全集.
(2)记法:通常记作U. 【思考】 在集合运算问题中,全集一定是实数集吗? 提示:全集是一个相对性的概念,只包含研究问题中涉 及的所有的元素,所以全集因问题的不同而异.
2.补集Biblioteka 【思考】 ∁UA,A,U三者之间有什么关系? 提示:A⊆U,∁UA⊆U,A∪(∁UA)=U,A∩(∁UA)=∅.
【习练·破】
1.若全集U={0,1,2,3}且∁UA ={2},则集合A的真子集共 有( )
A.3个
B.5个
C.7个
D.8个
【解析】选C.因为U={0,1,2,3}且∁UA={2},所以 A={0,1,3},所以集合A的真子集共有7个.
2.已知全集U={x|x≥-3},集合A={x|-3<x≤4},则 ∁UA=________. 【解析】借助数轴得∁UA={x|x=-3或x>4}. 答案:{x|x=-3或x>4}
类型四 集合的基本运算在实际问题中的应用
【生活情境】
某校随机抽取50名学生调查对A,B两事件的态度,有如
下结果:赞成A的人数是这50名学生的 3 ,其余的不赞
5
成;赞成B的比赞成A的多3人,其余的不赞成;另外,对A,B
2020高中数学 第一章 集合与常用逻辑用语 1.1..2 补集及综合应用练习(含解析)第一册

第2课时补集及综合应用知识点补集1.全集在研究集合与集合之间的关系时,如果所要研究的集合都是某一给定集合的子集,那么称这个给定的集合为全集,全集通常用U表示.2.补集状元随笔全集并不是一个含有任何元素的集合,仅包含所研究问题涉及的所有元素.∁U A的三层含义:(1)∁U A表示一个集合;(2)A是U的子集,即A ⊆U;(3)∁U A是U中不属于A的所有元素组成的集合.[基础自测]1.设全集U=R,集合P={x|-2≤x〈3},则∁U P等于( )A.{x|x〈-2或x≥3}B.{x|x<-2或x〉3}C.{x|x≤-2或x>3} D.{x|x≤-2且x≥3}解析:由P={x|-2≤x〈3}得∁U P={x|x〈-2或x≥3}.答案:A2.设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则A∩(∁U B)=( )A.{1,2,5,6} B.{1}C.{2}D.{1,2,3,4}解析:∵∁U B={1,5,6},∴A∩(∁U B)={1,2}∩{1,5,6}={1}.答案:B3.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁(A∪B)等于( )UA.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0〈x<1}解析:A∪B={x|x≤0或x≥1},所以∁U(A∪B)={x|0〈x<1}.故选D。
答案:D4.已知集合U={2,3,6,8},A={2,3},B={2,6,8},则(∁A)∩B=________.U解析:先计算∁U A,再计算(∁U A)∩B.∵U={2,3,6,8},A={2,3},∴∁U A={6,8}.∴(∁U A)∩B={6,8}∩{2,6,8}={6,8}.答案:{6,8}题型一补集的运算[教材P18例5]例1 已知A=(-1,+∞),B=(-∞,2],求∁R A,∁R B.【解析】在数轴上表示出A和B,如图所示.由图可知∁R A=(-∞,-1],∁R B=(2,+∞).教材反思求补集的原则和方法(1)一个基本原则.求给定集合A的补集,从全集U中去掉属于集合A的元素后,由所有剩下的元素组成的集合即为A的补集.(2)两种求解方法:①若所给的集合是有关不等式的集合,则常借助于数轴,把已知集合及全集分别表示在数轴上,然后再根据补集的定义求解,注意端点值的取舍.②若所给的集合是用列举法表示,则用Venn图求解.跟踪训练1 (1)已知全集U={1,2,3,4,5},A={1,3},则∁U A=( )A.∅B.{1,3}C.{2,4,5}D.{1,2,3,4,5}(2)设全集为R,集合A={x|0〈x〈2},B={x|x≥1},则A∩(∁R B)=( )A。
含参类集合综合测试题(含答案).doc

含参类集合综合一、单选题(共10道,每道10分)1.集合八{x||x-4|W2},非空集合B = {x|2aSWa + 3},若兀4,则实数a的取值范围是()A.G,+8)B.[T,+8)C.(l,耳D.[l,3]答案:D 解题思路:V^ = {x||x-4|C2} = {x|2<x<6}, B^A,集合P为非空集合2d《a + 3/. <2a>2a + 3<61W Q W3・故选D.丄二{x|丄A1}2.己知集合x + 1 B = {x\\x\<a)f若则实数a的取值范围是(试题难度:三颗星知识点:集合间的基本关系A.0<a<lB.aW0C^WI D答案:c解题思路:化间集口 , A = (-1, 3), 因为B 中元素不确定,故需分类:I —n 刁—1 由题意得 s '解得dWl ・ [a W 3・・・0<dWl ・ 综上,a W 1・故选C.试题难度:三颗星知识点:含参数的集合(无限集)A = {x\ ----- > 0}o z ..讥 n3.己知集合 x — a ,集合“ = — 若S^A t 则实数&的取值范围是()A.&W1B .X3答案:C 解题思路:化简集合,A = {x (x-l)(x-a)> Ofix —<2 ^0},B =(3, +x)U(—3°, 1);(1) 当 d>l 时,A =(G +8)U (Y, 1],•・• B—4,・••可画数轴如图,(集合,4为红线部分,集合E 为黑线部分)B B1 d 3符合B = (-a, a) •■7 , 0 0 -H 55当当・・.l<aW3・(2)当a=l时,A = {x\x^l, xeR},•••(3, +QD)U(YO,1)C{X|X^1, xeR}, ■■- 符合・(3)当d<l 时,A = [l, +OO)U(YO, d),集合E可画数轴如图,d 1 3不符合B U A,舍去.综上,1 W a W 3・故选C.试题难度:三颗星知识点:含参数的集合(无限集)4.已知集合虫=何1兀一划<1,肚玛,B=(X\ \x-b\>2, xeR)若日匸$,则实数“必满足()|a+i|«3B |^+6|>3AC 3。
补集及集合运算的综合应用强化训练及答案

补集及集合运算的综合应强化练习1.全集:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为________,通常记作________.2.补集(1)∁U U=____;(2)∁U∅=____;(3)∁U(∁U A)=____;(4)A∪(∁U A)=____;(5)A∩(∁U A)=____.一、选择题1.已知集合U={1,3,5,7,9},A={1,5,7},则∁U A等于( )A.{1,3} B.{3,7,9} C.{3,5,9} D.{3,9}2.已知全集U=R,集合M={x|x2-4≤0},则∁U M等于( )A.{x|-2<x<2} B.{x|-2≤x≤2} C.{x|x<-2或x>2} D.{x|x≤-2或x≥2} 3.设全集U={1,2,3,4,5},A={1,3,5},B={2,5},则A∩(∁U B)等于( )A.{2} B.{2,3} C.{3} D.{1,3}4.设全集U和集合A、B、P满足A=∁U B,B=∁U P,则A与P的关系是( )A.A=∁U P B.A=P C.A P D.A P5.如图,I是全集,M、P、S是I的3个子集,则阴影部分所表示的集合是( )A.(M∩P)∩S B.(M∩P)∪S C.(M∩P)∩∁I S D.(M∩P)∪∁I S6.已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},那么集合{2,7}是( ) A.A∪B B.A∩B C.∁U(A∩B) D.∁U(A∪B)二、填空题7.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________. 8.设全集U={x|x<9且x∈N},A={2,4,6},B={0,1,2,3,4,5,6},则∁U A=____________________,∁U B=________________,∁B A=____________.9.已知全集U,A B,则∁U A与∁U B的关系是____________________.三、解答题10.设全集是数集U={2,3,a2+2a-3},已知A={b,2},∁U A={5},求实数a,b的值.11.已知集合A={1,3,x},B={1,x2},设全集为U,若B∪(∁U B)=A,求∁U B.能力提升12.已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A等于( )A.{1,3} B.{3,7,9} C.{3,5,9} D.{3,9}13.学校开运动会,某班有30名学生,其中20人报名参加赛跑项目,11人报名参加跳跃项目,两项都没有报名的有4人,问两项都参加的有几人?补集及综合应用强化练习 答案知识梳理1.全集 U 2.不属于集合A ∁U A {x |x ∈U ,且x ∉A } 3.(1)∅ (2)U (3)A (4)U (5)∅ 作业设计1.D [在集合U 中,去掉1,5,7,剩下的元素构成∁U A .] 2.C [∵M ={x |-2≤x ≤2}, ∴∁U M ={x |x <-2或x >2}.]3.D [由B ={2,5},知∁U B ={1,3,4}. A ∩(∁U B )={1,3,5}∩{1,3,4}={1,3}.] 4.B [由A =∁U B ,得∁U A =B . 又∵B =∁U P ,∴∁U P =∁U A . 即P =A ,故选B.]5.C [依题意,由图知,阴影部分对应的元素a 具有性质a ∈M ,a ∈P ,a ∈∁I S ,所以阴影部分所表示的集合是(M ∩P )∩∁I S ,故选C.] 6.D [由A ∪B ={1,3,4,5,6}, 得∁U (A ∪B )={2,7},故选D.] 7.-3解析 ∵∁U A ={1,2},∴A ={0,3},故m =-3. 8.{0,1,3,5,7,8} {7,8} {0,1,3,5}解析 由题意得U ={0,1,2,3,4,5,6,7,8},用Venn 图表示出U ,A ,B ,易得∁U A ={0,1,3,5,7,8},∁U B ={7,8},∁B A ={0,1,3,5}. 9.∁U B ∁U A解析 画Venn 图,观察可知∁U B ∁U A .10.解 ∵∁U A ={5},∴5∈U 且5∉A .又b ∈A ,∴b ∈U ,由此得⎩⎨⎧a 2+2a -3=5,b =3.解得⎩⎨⎧ a =2,b =3或⎩⎨⎧a =-4,b =3经检验都符合题意.11.解 因为B ∪(∁U B )=A ,所以B ⊆A ,U =A ,因而x 2=3或x 2=x . ①若x 2=3,则x =± 3.当x =3时,A ={1,3,3},B ={1,3},U =A ={1,3,3},此时∁U B ={3};当x =-3时,A ={1,3,-3},B ={1,3},U =A ={1,3,-3},此时∁U B ={-3}. ②若x 2=x ,则x =0或x =1. 当x =1时,A 中元素x 与1相同,B 中元素x 2与1也相同,不符合元素的互异性,故x ≠1; 当x =0时,A ={1,3,0},B ={1,0},U =A ={1,3,0},从而∁U B ={3}.综上所述,∁U B ={3}或{-3}或{3}.12.D [借助于Venn 图解,因为A ∩B ={3},所以3∈A ,又因为(∁U B )∩A ={9},所以9∈A ,所以选D.]13.解 如图所示,设只参加赛跑、只参加跳跃、两项都参加的人数分别为a ,b ,x .根据题意有⎩⎨⎧a +x =20,b +x =11,a +b +x =30-4.解得x =5,即两项都参加的有5人.。
集合与常用逻辑用语单元综合检测(试卷)解析版--2023年初升高暑假衔接之高一数学

1.6第一单元:集合与常用逻辑用语单元综合检测一、单选题1.设全集{}1,2,3,4,5U =,集合M 满足{}1,2,3U M =ð,则()A .2M ∈B .3M∈C .4MÎD .5M∉【答案】C【分析】由条件求出集合M ,进而求解.【详解】因为{}1,2,3,4,5U =,{}1,2,3U M =ð,所以{}4,5M =.故选:C.2.设Z,x A ∈是奇数集,B 是偶数集,则“2x A x B ∀∈∈,”的否定是()A .2x A xB ∀∈∉,B .2x A x B ∀∉∉,C .2x A x B ∃∉∈,D .2x A x B ∃∈∉,【答案】D【分析】根据全称命题的否定,即可判断出答案.【详解】由题意知命题“2x A x B ∀∈∈,”为全称命题,其否定为特称命题,即2x A x B ∃∈∉,,故选:D3.已知集合{}33A x x =-≤<,{}1B x x =≥,则()R A B ⋂=ð()A .{}3x x ≥-B .{}1x x ≥C .{}13x x ≤<D .{}31x x -≤<【答案】D【分析】根据集合交集,补集运算解决即可.【详解】由题知,集合{}33A x x =-≤<,{}1B x x =≥,所以{}R 1B x x =<ð,所以(){}R 31A B x x ⋂=-≤<ð,故选:D4.已知p :存在一个平面多边形的内角和是540°,则()A .p 为真命题,且p 的否定:所有平面多边形的内角和都不是540°B .p 为真命题,且p 的否定:存在一个平面多边形的内角和不是540°C .p 为假命题,且p 的否定:存在一个平面多边形的内角和不是540°D .p 为假命题,且p 的否定:所有平面多边形的内角和都不是540°【答案】A【分析】举例说明判断命题p 的真假,再利用存在量词命题的否定方法判断p 的否定作答.【详解】平面五边形的内角和为(52)180540-⨯= ,因此命题p 是真命题,CD 错误;又命题p 是存在量词命题,其否定为全称量词命题,因此p 的否定是:所有平面多边形的内角和都不是540°,B 错误,A 正确.故选:A5.已知集合{}|23M x x =-<≤,{}N x x m =≥,若M N M ⋂=,则m 的取值范围是()A .[]2,3-B .(]2,3-C .(),2-∞-D .(],2-∞-【答案】D【分析】根据交集的知识求得m 的取值范围.【详解】依题意,集合{}|23M x x =-<≤,{}N x x m =≥,由于M N M ⋂=,所以2m ≤-,所以m 的取值范围是(],2-∞-.故选:D6.已知集合{A x y ==,{}B x x a =≥,若A B ⊆,则a 的取值范围为()A .2a ≤B .2a ≥C .0a ≤D .0a ≥【答案】A【分析】先根据定义域求出{}2A x x =≥,由A B ⊆得到a 的取值范围.【详解】由题意得20x -≥,解得2x ≥,故{}2A x x =≥,因为A B ⊆,所以2a ≤.故选:A 7.设命题p :14m ≥,命题q :一元二次方程20x x m ++=有实数解.则p ⌝是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】先求命题q 为真时m 的范围,结合条件的定义进行求解.【详解】因为命题1:4p m ≥,命题:q 一元二次方程20x x m ++=有实数解.等价于140m -≥,即14m ≤;因此可知,则p ⌝:14m <是1:4q m ≤的充分不必要条件.故选:A.8.设集合A 、B 、C 均为非空集合,下列命题中为真命题的是()A .若AB BC ⋂=⋂,则A C =B .若A B B C ⋃=⋃,则A C =C .若A B B C ⋃=⋂,则C B ⊆D .若A B B C = ,则C B⊆【答案】D【分析】取特例,根据由集合的运算关系可判断ABC ,根据集合的交、并运算,子集的概念可判断D.【详解】对于A ,A B B C ⋂=⋂,当{}{}{}1,2,1,1,2,3A B C ===时,结论不成立,则A 错误;对于B,A B B C ⋃=⋃,当{}{}{}1,2,3,1,2,3A B C ===时,结论不成立,则B 错误;对于C ,A B B C ⋃=⋂,当{}{}{}1,1,2,1,2,3A B C ===时,结论不成立,则C 错误;对于D ,因为A B B ⊆ ,A B B C = ,所以B C B ⋃⊆,又B B C ⊆ ,所以B B C = ,则C B ⊆,则D 正确.故选:D二、多选题9.若集合{}1,1,3,5M =-,集合{}3,1,5N =-,则正确的是()A .{}1,5M N =B .(){}Z 1,3M N ⋂=-ðC .,x N x M ∀∉∉D .,x N x M∃∈∈【答案】AD【分析】利用集合的交并补运算和对元素是否属于集合的判断即可得到答案.【详解】因为集合{}1,1,3,5M =-,集合{}3,1,5N =-,对A ,{}1,5,M N ⋂=A 正确;对B ,(){}Z 3,M N ⋂=-ðB 不正确;对C ,1N -∉,但1,M -∈C 不正确;对D ,1N ∈,且1,M ∈D 正确.故选:AD.10.在下列所示电路图中,下列说法正确的是()A .如图①所示,开关1L 闭合是灯泡M 亮的充分不必要条件B .如图②所示,开关1L 闭合是灯泡M 亮的必要不充分条件C .如图③所示,开关1L 闭合是灯泡M 亮的充要条件D .如图④所示,开关1L 闭合是灯泡M 亮的必要不充分条件【答案】ABC【分析】根据充分条件和必要条件的定义逐一判断即可.【详解】对于选项A ,由图①可得,开关1L 闭合,灯泡M 亮;而灯泡M 亮时,开关1L 不一定闭合,所以开关1L 闭合是灯泡M 亮的充分不必要条件,选项A 正确.对于选项B ,由图②可得,开关1L 闭合,灯泡M 不一定亮;而灯泡M 亮时,开关1L 必须闭合,所以开关1L 闭合是灯泡M 亮的必要不充分条件,选项B 正确.对于选项C ,由图③可得,开关1L 闭合,灯泡M 亮;而灯泡M 亮时,开关1L 必须闭合,所以开关1L 闭合是灯泡M 亮的充要条件,选项C 正确.对于选项D ,由图④可得,开关1L 闭合,灯泡M 不一定亮;而灯泡M 亮时,开关1L 不一定闭合,所以开关1L 闭合是灯泡M 亮的既不充分也不必要条件,选项D 错误.故选:ABC.11.取整函数:[]x =不超过x 的最大整数,如[1.2]1,[3.9]3,[1.5]2==-=-,取整函数在现实生活中有着广泛的应用,如停车收费、出租车收费等等都是按照“取整函数”进行计费的,以下关于“取整函数”的性质是真命题有()A .,[2]2[]x R x x ∀∈=B .,[2]2[]x R x x ∃∈=C .,,[][],x y R x y ∀∈=则1x y -<D .,,[][][]x y R x y x y ∀∈+≤+【答案】BC【分析】根据取整函数的定义,ABD 举列判断,C 根据定义给予证明.【详解】 1.5x =时,[2][3]3x ==,但2[]2[1.5]212x ==⨯=,A 错;2x =时,[2][4]42[2]2[]x x ====,B 正确;设[][]x y k Z ==∈,则1k x k ≤<+,1k y k ≤<+,∴1x y -<,C 正确;0.5,0.6x y ==,则[][]0x y +=,但[][1.1]1x y +==[][]x y >+,D 错.故选:BC .【点睛】本题考查含有一个量词的命题的真假判断,考查新定义函数取整函数,对于全称命题与存在命题的真假判断,要根据量词进行判断是进行证明还是可举例判断.12.给定集合A ,若对于任意a ,b A ∈,有a b A +∈,且a b A -∈,则称集合A 为闭集合,以下结论正确的是()A .集合{}0A =为闭集合;B .集合{}42024A =--,,,,为闭集合;C .集合{}3|A n n k k =∈Z =,为闭集合;D .若集合12A A 、为闭集合,则12A A ⋃为闭集合.【答案】AC,分别判断a b A +∈,且a b A -∈是否满足即可得到结论.【详解】对于A :按照闭集合的定义,000,000,0.A +=-=∈故A 正确;对于B :当4,2a b =-=-时,()()426a b A +=-+-=-∉.故{}42024A =--,,,,不是闭集合.故B 错误;对于C :由于任意两个3的倍数,它们的和、差仍是3的倍数,故{}3|A n n k k =∈Z =,是闭集合.故C 正确;对于D :假设{}1|3,Z A n n k k ==∈,{}2|5,Z A n n k k ==∈.不妨取123,5A A ∈∈,但是,12358A A +=∉⋃,则12A A ⋃不是闭集合.故D 错误.故选:AC三、填空题13.已知{}{}{}()3,4,7,(5,26),U U A B A B B A === 痧,{}*()()|10,N ,6U U A B x x x x =<∈≠ 痧,则()U A B ⋃=ð__________.【答案】{}1,8,9【分析】由题意可画出Venn 图,即可求得答案.【详解】由题意,{}*()()|10,N ,6{1,2,3,4,5,7,8,9}U U A B x x x x =<∈≠= 痧,故画Venn 图如图:即得{}()1,8,9U A B = ð,故答案为:{}1,8,914.向某50名学生调查对A ,B 两事件的态度,其中有30人赞成A ,其余20人不赞成A ;有33人赞成B ,其余17人不赞成B ;且对A ,B 都不赞成的学生人数比对A ,B 都赞成的学生人数的三分之一多1人,则对A ,B 都赞成的学生人数为__________.【答案】21Venn 图列出方程求解作答.【详解】记赞成A 的学生组成集合A ,赞成B 的学生组成集合B ,50名学生组成全集U ,则集合A 有30个元素,集合B 有33个元素.设对A ,B 都赞成的学生人数为x ,则集合()U A B ð的元素个数为13x+,如图,由Venn 图可知,(30)(33)1503x x x x ⎛⎫-+-+++= ⎪⎝⎭,即21403x -=,解得21x =,所以对A ,B 都赞成的学生有21人.故答案为:21.15.已知集合(){}21320A x m x x =-+-=恰有两个非空真子集,则m 的值可以是______.(说明:写出满足条件的一个实数m 的值)【答案】2(答案不唯一)【分析】先根据题意得集合A 中所含元素个数,再通过二次方程0∆>得答案.【详解】集合(){}21320A x m x x =-+-=恰有两个非空真子集,则集合A 中含有2个元素,即方程()21320m x x -+-=由2个不等实根,()10Δ9810m m -≠⎧∴⎨=+->⎩,解得18m >-且1m ≠.故答案为:2(答案不唯一).16.下面六个关系式:①{}a ∅⊆;②{}a a ⊆;③{}{}a a ⊆;④{}{,}a a b ∈;⑤{,,}a a b c ∈;⑥{,}a b ∅∈,其中正确的是__.【答案】①③⑤【分析】根据集合与集合,元素与集合的关系判断即可.【详解】空集是任何集合的子集,故①正确;由元素与集合的关系可知,{},{,,}a a a a b c ∈∈,故②错误,⑤正确;由集合与集合的关系可知,{}{},{}{,},{,}a a a a b a b ⊆⊆∅⊆,故③正确,④⑥错误;故答案为:①③⑤四、解答题17.已知全集{}N 16U x x =∈≤≤,集合{}2680A x x x =-+=,{}3,4,5,6B =.(1)求A B ⋃,A B ⋂;(2)求()U A B I ð,并写出它的所有子集.【答案】(1){2,3,4,5,6}A B = ,{4}A B ⋂=;(2)(){3,5,6}U A B ⋂=ð,对应所有子集见解析.【分析】(1)解一元二次方程求集合A ,应用集合的交、并运算求A B ⋃、A B ⋂;(2)应用交补运算可得(){3,5,6}U A B ⋂=ð,进而写出所有子集.【详解】(1)由题设{1,2,3,4,5,6}U =,{2,4}A =,{}3,4,5,6B =,所以{2,3,4,5,6}A B = ,{4}A B ⋂=.(2)由(1)知:{1,3,5,6}U A =ð,则(){3,5,6}U A B ⋂=ð,对应子集有∅,{3},{5},{6},{3,5},{3,6},{5,6},{3,5,6}.18.已知全集U =R ,集合{}221,20|}|3{A x x B x x x =-≤<=--<.(1)求A B ⋃;(2)如图阴影部分所表示的集合M 可以是(把正确答案序号填到横线处),并求图中阴影部分表示的集合M ;.①()U B A ⋂ð②()U B A ⋃ð③()U A B ∩ð④()U A B ⋃ð【答案】(1){|23}x x -≤<(2)③;{|21}x x -≤≤-【分析】(1)根据集合的并集运算求解;(2)根据韦恩图确定阴影部分所表示的集合M 为()U A B ∩ð,再根据集合的交集与补集求解即可.【详解】(1)因为{}{}2|230|13B x x x x x =--<=-<<,2{}1|,A x x =-≤<所以{|3}2,A B x x ⋃=-≤<(2)根据韦恩图确定阴影部分所表示的集合M 为③:()U A B ∩ð,{|1U B x x =≤-ð或3}x ≥,所以(){|}21U A B x x =-≤≤-∩ð.19.已知集合{}123A x a x a =-≤≤+,{}24B x x =-≤≤,全集U =R .(1)当2a =时,求()()U U A B ⋂痧;(2)若x A ∈是x B ∈成立的充分不必要条件,求实数a 的取值范围.【答案】(1){2x x <-或7}x >(2)4a <-或112a -≤≤【分析】(1)将2a =代入,求出集合,U UA B 痧,再根据集合的交集运算即可;(2)x A ∈是x B ∈成立的充分不必要条件即A 是B 的真子集,分A =∅,A ≠∅两种情况讨论即可.【详解】(1)解:由题知,当2a =时,{}17A x x =≤≤,所以{1U A x x =<ð或7}x >,因为{}24B x x =-≤≤,所以{2U B x x =<-ð或4}x >,所以()(){2U U A B x x ⋂=<-痧或7}x >;(2)由题知x A ∈是x B ∈成立的充分不必要条件,故A 是B 的真子集,①当A =∅时,123a a ->+,解得4a <-,②当A ≠∅时,即12234123a a a a -≥-⎧⎪+<⎨⎪-≤+⎩或12234123a a a a ->-⎧⎪+≤⎨⎪-≤+⎩,解得:112a -≤<或112a -<≤,综上:4a <-或112a -≤≤.20.设集合{}(){}22220,|41410A x x x B x x a x a =+==+++-=∣.(1)若A B B ⋃=,求a 的值;(2)若A B B = ,求a 的取值范围.【答案】(1)12a =-(2)51,82⎛⎫⎧⎫-∞-⋃-⎨⎬⎪⎝⎭⎩⎭【分析】(1)结合A B B ⋃=以及根与系数关系来求得a 的值;(2)根据A B B = ,结合判别式进行分类讨论,由此求得a 的取值范围.【详解】(1)()2220x x x x +=+=,解得10x =或22x =-,所以{}0,2A =-.对于一元二次方程()2241410x a x a +++-=,至多有2个不相等的实数根,由于A B B ⋃=,故{}0,2B A ==-,由根与系数关系得()2204120410a a ⎧-+=-+⎨-⨯=-=⎩,解得12a =-(2)对于一元二次方程()2241410x a x a +++-=,()()221614413220a a a ∆=+--=+,当Δ0<,即58a <-时,B =∅,满足A B B = .当Δ0=,即58a =-时,()2222393414102164x a x a x x x ⎛⎫+++-=++=+= ⎪⎝⎭,解得34x =-,则34B ⎧⎫=-⎨⎬⎩⎭,A B B ≠I ,不符合题意.当0∆>,即58a >-时,一元二次方程()2241410x a x a +++-=有两个不相等的实数根,由于A B B = ,所以{}0,2B A ==-,由(1)得12a =-.综上所述,a 的取值范围是51,82⎛⎫⎧⎫-∞-⋃-⎨⎬ ⎪⎝⎭⎩⎭.21.在①A B A = ,②()R A B A = ð,③A B ⋂=∅这三个条件中任选一个,补充到下面的问题中,求解下列问题:已知集合{}123A x a x a =-<<+,{}2280B x x x =--<.(1)当2a =时,求A B ⋃;(2)若___________,求实数a 的取值范围.【答案】(1){}27A B x x ⋃=-<<(2)见解析【分析】(1)可得出{}24B x x =-<<,2a =时,得出集合A ,然后进行并集的运算即可;(2)若选条件①,可得出A B ⊆,然后讨论A 是否为空集:A =∅时,得出123a a -≥+;A ≠∅时,得出12312234a a a a -<+⎧⎪-≥-⎨⎪+≤⎩,然后解出a 的范围.若选择条件②和③,同样的方法,可得出a 的取值范围.【详解】(1)2a =时,{}17A x x =<<,{}24B x x =-<<,∴{}27A B x x ⋃=-<<;(2)若选择①A B A = ,则A B ⊆,A =∅时,123a a -≥+,解得4a ≤-;A ≠∅时,412234a a a >-⎧⎪-≥-⎨⎪+≤⎩,解得:112a -≤≤;综上知,实数a 的取值范围是(]1,41,2⎡⎤-∞-⋃-⎢⎥⎣⎦;若选择②()R A B A = ð,则R A B ⊆ð的子集,][()R ,24,B =-∞-+∞ð,A =∅时,123a a -≥+,解得4a ≤-;A ≠∅时,4232a a >-⎧⎨+≤-⎩或414a a >-⎧⎨-≥⎩,解得:542a -<≤-或5a ≥综上所述,a 的取值范围是:[)5,5,2⎛⎤-∞-+∞ ⎝⎦ ;若选择③A B ⋂=∅,则:A =∅时,123a a -≥+,解得4a ≤-;A ≠∅时,4232a a >-⎧⎨+≤-⎩或者414a a >-⎧⎨-≥⎩解得:542a -<≤-或5a ≥综上知,实数a 的取值范围是:[)5,5,2⎛⎤-∞-+∞ ⎥⎝⎦ .22.已知集合{}310A x x =-≤≤,{}2132B x m x m =+≤≤-,且B ≠∅.(1)若命题p :“x B ∀∈,x A ∈”是真命题,求实数m 的取值范围;(2)若命题q :“x A ∃∈,x B ∈”是真命题,求实数m 的取值范围.【答案】(1)34m ≤≤(2)392m ≤≤【分析】(1)由命题p :“x B ∀∈,x A ∈”是真命题,可知B A ⊆,根据子集的含义解决问题;(2)命题q :“x A ∃∈,x B ∈”是真命题,所以A B ⋂≠∅,通过关系解决.(1)由命题p :“x B ∀∈,x A ∈”是真命题,可知B A ⊆,又B ≠∅,所以21322133210m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩,解得34m ≤≤.(2)因为B ≠∅,所以2132m m +≤-,得3m ≥.因为命题q :“x A ∃∈,x B ∈”是真命题,所以A B ⋂≠∅,所以32110m -≤+≤,或33210m -≤-≤,得922m -≤≤.综上,392m ≤≤.。
高考数学一轮复习专题一集合与常用逻辑用语1集合综合集训含解析新人教A版

专题一集合与常用逻辑用语备考篇【考情探究】课标解读考情分析备考指导主题内容一、集合的概念与运算1.理解集合的含义,能用自然语言、图形语言、集合语言(列举法或描述法)表示集合.2.理解集合之间的包含关系,能识别给定集合的子集,在具体问题中了解全集与空集的含义.3.理解两个集合的并集与交集的含义,并会求它们的交集与并集;理解给定一个集合的子集的补集含义,会求给定子集的补集;会用韦恩(Venn)图表示集合间的基本关系及运算.1.考查内容:从近五年高考看,本专题重点考查集合的交、并、补运算,所给的数集既有连续型(如2020新高考Ⅰ卷第1题直接给出了两个连续型集合,求它们的并集,而2020课标Ⅰ卷理数第1题则是先求出一元一次、一元二次不等式的解集,后给定了集合交集来求参数的值)、又有离散型的数集(如2020课标Ⅱ卷文数第1题与2020天津卷第1题);对充分条件、必要条件的考查常与其他知识结合(如2020北京卷的第9题以三角函数中的诱导公式为背景考查了充分、必要条件的推理判断);全(特)称命题的考查相对较少.2.本专题是历年必考的内容,在选择题、填空题中出现较多,多以给定的集合或不等式的解集为载体,以集合1.对于给定的集合,首先应明确集合的表示方法,对于描述法表述的集合,要明确集合的元素是什么(是数集、点集等),明确集合是不等式的解集,是函数的定义域还是值域,把握集合中元素的属性是重点.2.了解命题及其逆命题、否命题与逆否命题;通过对概念的理解,会分析四种命题的关系,会写出一个命题的其他三个命题,并判断其真假.能用逻辑联结词正确地表达相关的数学命题.3.对于充分、必要条件的判断问题,必须明确题目中的条件与结论分别是什么,它们之间的互推关系是怎样的,要加强这方面的训练.4.关于全称命题与特称二、常用逻辑用语1.理解必要条件、充分条件与充要条件的意义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.语言和符号语言为表现形式,考查集合的交、并、补运算;也会与解不等式、函数的定义域、值域相结合进行考查.3.对于充分、必要条件的判断,含有一个量词的命题的否定可以与每一专题内容相关联,全称命题及特称命题是重要的数学语言,高考考题充分体现了逻辑推理的核心素养.命题,一般考查命题的否定.对含有一个量词的命题进行真假判断,要学会用特值检验.【真题探秘】命题立意已知给定的两个连续型的数集,求它们的并集.解题指导1.进行集合运算时,首先看集合是否最简,能化简先化简,再运算.2.注意数形结合思想的应用(1)离散型数集或抽象集合间的运算,常借助Venn图求解. (2)连续型数集的运算,常借助数轴求解,运用数轴时要特别注意端点是实心还是空心.拓展延伸1.集合中的元素的三个特征,特别是无序性和互异性在解题时经常用到,解题后要进行检验,要重视符号语言与文字语言之间的相互转化.2.对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意等号能否取到.3.空集是任何集合的子集,是任何非空集合的真子集,关注对空集的讨论,防止漏解.4.解题时注意区分两大关系:一是元素与集合的从属关系:二是集合与集合的包含关系.5.Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法.[教师专用题组]1.真题多维细目表考题涉分题型难度考点考向解题方法核心素养2020新高考Ⅰ,1 5单项选择题易集合的运算集合的并集运算数轴法数学运算2020新高考Ⅱ,1 5单项选择题易集合的运算集合的并集运算定义法数学运算2020课标Ⅰ理,2 5选择题易集合的运算解不等式、集合的交集运算定义法数学运算2020课标Ⅰ文,1 5选择题易集合的运算解不等式、集合的交集运算定义法数学运算2020北京,1 4选择题易集合的运算集合的交集运算定义法数学运算2020天津,1 5选择题易集合的运算集合的交、补集运算定义法数学运算2020天津,2 5选择题易充分、必要条件解不等式、充分、必要条件的判断定义法逻辑推理2020北京,9 4选择题难充分、必要条件诱导公式、角的终边位置与角大小关系、充分、必要条件的判断定义法逻辑推理风格.2.2020年新高考考查内容主要体现在以下方面:①新高考Ⅰ卷第1题,新高考Ⅱ卷第1题直接给出了两个集合求它们的并集或交集,课标Ⅰ卷理数则是需要求出一元一次、一元二次不等式的解集,同时通过它们的交集确定参数的值,北京卷与新高考Ⅰ卷相近,直接求两个给定集合的交集;②2020年新高考Ⅰ卷第5题以学生参加体育锻炼为背景考查了利用韦恩(Venn)图求两个集合交集中元素所占总体的比例问题,体现了集合的应用价值;③2020年北京卷第9题以三角函数中的诱导公式为背景考查了充分、必要条件的判断.3.在备考时还要适当关注求集合的补集运算,对含有一个量词的命题的真假判断,集合与充分、必要条件相结合的命题方式,在不同背景下抽象出数学本质的方法等.应强化在知识的形成过程、知识的迁移中渗透学科素养.§1.1 集合 基础篇 【基础集训】考点一 集合及其关系1.若用列举法表示集合A ={(x ,x )|{2x +x =6x -x =3},则下列表示正确的是 ( )A.A ={x =3,y =0}B.A ={(3,0)}C.A ={3,0}D.A ={(0,3)} 答案 B2.若集合M ={x ||x |≤1},N ={y |y =x 2,|x |≤1},则 ( ) A.M =N B.M ⊆N C.M ∩N =⌀ D.N ⫋M 答案 D3.已知集合A ={x ∈R|x 2+x -6=0},B ={x ∈R|ax -1=0},若B ⊆A ,则实数a 的值为 ( ) A.13或-12B.-13或12C.13或-12或0 D.-13或12或0答案 D4.已知含有三个实数的集合既可表示成{x ,x x,1},又可表示成{a 2,a +b ,0},则a 2021+b 2021等于 . 答案 -1考点二 集合的基本运算5.已知集合M ={x |-1<x <3},N ={x |-2<x <1},则M ∩N = ( )A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3) 答案 B6.已知全集U =R,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=( ) A.{x |x ≥0} B.{x |x ≤1}C.{x|0≤x≤1}D.{x|0<x<1}答案 D7.已知集合A={x|x2-2x-3>0},B={x|lg(x+1)≤1},则(∁R A)∩B= ()A.{x|-1≤x<3}B.{x|-1≤x≤9}C.{x|-1<x≤3}D.{x|-1<x<9}答案 C8.全集U={x|x<10,x∈N*},A⊆U,B⊆U,(∁U B)∩A={1,9},A∩B={3},(∁U A)∩(∁U B)={4,6,7},则A∪B=.答案{1,2,3,5,8,9}[教师专用题组]【基础集训】考点一集合及其关系1.(2018广东茂名化州二模,1)设集合A={-1,0,1},B={x|x>0,x∈A},则B= ()A.{-1,0}B.{-1}C.{0,1}D.{1}答案D由题意可知,集合B由集合A中为正数的元素组成,因为集合A={-1,0,1},所以B={1}.2.设集合A={y|y=x2+2x+5,x∈R},有下列说法:①1∉A;②4∈A;③(0,5)∈A.其中正确的说法个数是()A.0B.1C.2D.3答案C易知A={y|y≥4},所以①②都是正确的;(0,5)是点,而集合A中元素是数,所以③是错误的.故选C.3.(2020陕西西安中学第一次月考,1)已知集合A={x|x≥-1},则正确的是 ()A.0⊆AB.{0}∈AC.⌀∈AD.{0}⊆A答案D对于A,0∈A,故A错误;对于B,{0}⊆A,故B错误;对于C,空集⌀是任何集合的子集,即⌀⊆A,故C错误;对于D,由于集合{0}是集合A的子集,故D正确.故选D.4.(2019辽宁沈阳质量检测三,2)已知集合A={(x,y)|x+y≤2,x,y∈N},则A中元素的个数为()A.1B.5C.6D.无数个答案C由题意得A={(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)},所以A中元素的个数为6.故选C.5.(2020广西桂林十八中8月月考,1)已知集合A={1,a},B={1,2,3},那么 ()A.若a=3,则B⊆AB.若a=3,则A⫋BC.若A⊆B,则a=2D.若A⊆B,则a=3答案B当a=3时,A={1,3},又因为B={1,2,3},所以A⫋B.若A⊆B,则a=2或3.故选B. 6.(2019辽宁师大附中月考,2)已知集合A={0,1},B={x|x⊆A},则下列集合A与B的关系中正确的是()A.A⊆BB.A⫋BC.B⫋AD.A∈B答案D因为x⊆A,所以B={⌀,{0},{1},{0,1}},则集合A={0,1}是集合B中的一个元素,所以A∈B,故选D.,x≠0},集合B={x|x2-4 7.(2020安徽江淮十校第一次联考,1)已知集合A={x|x=x+1x≤0},若A∩B=P,则集合P的子集个数为()A.2B.4C.8D.16答案B A={y|y≤-2或y≥2},B={-2≤x≤2},则P=A∩B={-2,2},所以P的子集个数为4,故选B.8.(2019广东六校9月联考,2)已知集合A={-1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值的集合为()A.{-1}B.{1}C.{-1,1}D.{-1,0,1}答案D因为B⊆A,所以当B=⌀,即a=0时满足条件;},又知B⊆A,当B≠⌀时,a≠0,∴B={x|x=-1x∈A,∴a=±1.∴-1x综上可得实数a的所有可能取值集合为{-1,0,1},故选D.易错警示由于空集是任何集合的子集,又是任何非空集合的真子集,所以遇到“A⊆B或A⫋B且B≠⌀”时,一定要注意讨论A=⌀和A≠⌀两种情况,A=⌀的情况易被忽略,从而导致失分.9.(2019河南豫南九校第一次联考,13)已知集合A={1,2,3},B={1,m},若3-m∈A,则非零实数m的值是.答案 2解析若3-m=1,则m=2,符合题意;若3-m=2,则m=1,此时集合B中的元素不满足互异性,故m≠1;若3-m=3,则m=0,不符合题意.故答案为2.考点二集合的基本运算1.(2019金丽衢十二校高三第一次联考,1)若集合A=(-∞,5),B=[3,+∞),则(∁R A)∪(∁R B)=()A.RB.⌀C.[3,5)D.(-∞,3)∪[5,+∞)答案D∁R A=[5,+∞),∁R B=(-∞,3),所以(∁R A)∪(∁R B)=(-∞,3)∪[5,+∞).2.(2019河南中原联盟9月联考,1)已知集合A={x|(x-1)·(x-2)>0},B={x|y=√2x-1},则A ∩B= ()A.[12,1)∪(2,+∞) B.[12,1)C.(12,1)∪(2,+∞) D.R答案A因为集合A={x|(x-1)(x-2)>0}={x|x<1或x>2},B={x|y=√2x-1}={x|x≥12},所以A∩B=[12,1)∪(2,+∞),故选A.3.(2018河北石家庄3月质检,1)设集合A={x|-1<x≤2},B={x|x<0},则下列结论正确的是()A.(∁R A)∩B={x|x<-1}B.A∩B={x|-1<x<0}C.A∪(∁R B)={x|x≥0}D.A∪B={x|x<0}答案B∵A={x|-1<x≤2},B={x|x<0},∴∁R A={x|x≤-1或x>2},∁R B={x|x≥0}.对于选项A,(∁R A)∩B={x|x≤-1},故A错误;对于选项B,A∩B={x|-1<x<0},故B正确;对于选项C,A∪(∁R B)={x|x>-1},故C错误;对于选项D,A∪B={x|x≤2},故D错误.故选B.名师点拨 对于集合的交、并、补运算,利用数轴求解能减少失误.4.(2020山东夏季高考模拟,1)设集合A ={(x ,y )|x +y =2},B ={(x ,y )|y =x 2},则A ∩B = ( ) A.{(1,1)} B.{(-2,4)} C.{(1,1),(-2,4)} D.⌀ 答案 C 本题主要考查集合的含义及集合的运算. 联立{x +x =2,x =x 2,消y 可得x 2+x -2=0,∴x =1或-2, ∴方程组的解为{x =1,x =1或{x =-2,x =4,从而A ∩B ={(1,1),(-2,4)},故选C .5.(2019山东济南外国语学校10月月考,1)已知R 为实数集,集合A ={x |(x +1)2(x -1)x>0},B ={x |(x +1)(x -12)>0},则图中阴影部分表示的集合为 ( )A.{-1}∪[0,1]B.[0,12]C.[-1,12]D.{-1}∪[0,12] 答案 D ∵(x +1)2(x -1)x>0,∴x ≠-1且x (x -1)>0,∴x <-1或-1<x <0或x >1,∴A ={x |x <-1或-1<x <0或x >1}. ∵(x +1)(x -12)>0,∴x >12或x <-1,∴B ={x |x >12或x <-1}.∴A ∪B ={x |x <-1或-1<x <0或x >12}.故图中阴影部分表示的集合为∁R (A ∪B )={-1}∪{x |0≤x ≤12},即{-1}∪[0,12].故选D .综合篇 【综合集训】考法一 集合间基本关系的求解方法1.(2021届江苏扬州二中期初检测,2)已知集合A ={x |x 2+x =0,x ∈R},则满足A ∪B ={0,-1,1}的集合B 的个数是( )A.4B.3C.2D.1 答案 A2.(2020山东滨州6月三模)已知集合M ={x |x =4n +1,n ∈Z},N ={x |x =2n +1,n ∈Z},则 ( ) A.M ⫋N B.N ⫋M C.M ∈N D.N ∈M 答案 A3.(2019辽宁沈阳二中9月月考,14)设集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22}.若A⊆(A∩B),则实数a的取值范围为.答案(-∞,9]考法二集合运算问题的求解方法}, 4.(2021届河南郑州一中开学测试,1)已知全集U=R,集合A={x|y=lg(1-x)},B={x|x=√x 则(∁U A)∩B= ()A.(1,+∞)B.(0,1)C.(0,+∞)D.[1,+∞)答案 D5.(2020浙江超级全能生第一次联考,1)记全集U=R,集合A={x|x2-4≥0},集合B={x|2x≥2},则(∁U A)∩B= ()A.[2,+∞)B.⌀C.[1,2)D.(1,2)答案 C6.(2021届湖湘名校教育联合体入学考,1)设全集U=A∪B={x|-1≤x<3},A∩(∁U B)={x|2<x<3},则集合B= ()A.{x|-1≤x<2}B.{x|-1≤x≤2}C.{x|2<x<3}D.{x|2≤x<3}答案 B7.(2020山东德州6月二模,1)若全集U={1,2,3,4,5,6},M={1,3,4},N={2,3,4},则集合(∁U M)∪(∁U N)等于()A.{5,6}B.{1,5,6}C.{2,5,6}D.{1,2,5,6}答案 D8.(2021届重庆育才中学入学考试,1)已知集合A={x|0<x<4,x∈Z},集合B={y|y=m2,m∈A},则A∩B= ()A.{1}B.{1,2,3}C.{1,4,9}D.⌀答案 A[教师专用题组]【综合集训】考法一集合间基本关系的解题方法1.已知集合M={1,m},N={n,log2n},若M=N,则(m-n)2015=.答案-1或0解析 因为M =N ,所以{1,m }={n ,log 2n }. 当n =1时,log 2n =0,则m =0,所以(m -n )2015=-1; 当log 2n =1时,n =2,则m =2,所以(m -n )2015=0.故(m -n )2015=-1或0.2.已知集合A ={x |x =2x +13,x ∈Z },B =,则集合A 、B 的关系为 . 答案 A =B 解析 A =,B ={x |x =13(2x +3),x ∈Z }.∵{x |x =2n +1,n ∈Z}={x |x =2n +3,n ∈Z},∴A =B.故答案为A =B.3.设集合A ={-2},B ={x |ax +1=0,a ∈R},若A ∩B =B ,则a 的值为 . 答案 0或12解析 ∵A ∩B =B ,∴B ⊆A. ∵A ={-2}≠⌀,∴B =⌀或B ≠⌀.当B =⌀时,方程ax +1=0无解,此时a =0,满足B ⊆A. 当B ≠⌀时,a ≠0,则B ={-1x }, ∴-1x∈A ,即-1x=-2,解得a =12.综上,a =0或a =12.4.已知集合A ={x |x <-1或x >4},B ={x |2a ≤x ≤a +3}.若B ⊆A ,则实数a 的取值范围为 .答案 (-∞,-4)∪(2,+∞)解析 ①当B =⌀时,只需2a >a +3,即a >3; ②当B ≠⌀时,根据题意作出如图所示的数轴.可得{x +3≥2x ,x +3<-1或{x +3≥2x ,2x >4, 解得a <-4或2<a ≤3.综上可得,实数a的取值范围为(-∞,-4)∪(2,+∞).考法二集合运算问题的求解方法1.(2017北京东城二模,1)已知全集U是实数集R.如图所示的韦恩图表示集合M={x|x>2}与N={x|1<x<3}的关系,那么阴影部分所表示的集合为()A.{x|x<2}B.{x|1<x<2}C.{x|x>3}D.{x|x≤1}答案D由题中韦恩图知阴影部分表示的集合是∁U(M∪N).∵M∪N={x|x>1},∴∁U(M∪N)={x|x≤1}.2.(2017安徽淮北第二次模拟,2)已知全集U=R,集合M={x|x+2a≥0},N={x|log2(x-1)<1},若集合M∩(∁U N)={x|x=1或x≥3},则()A.a=12B.a≤12C.a=-12D.a≥12答案C∵log2(x-1)<1,∴x-1>0且x-1<2,即1<x<3,则N={x|1<x<3},∵U=R,∴∁U N={x|x≤1或x≥3},又∵M={x|x+2a≥0}={x|x≥-2a},M∩(∁U N)={x|x=1或x≥3},∴-2a=1,解得a=-12.故选C.3.设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(∁U A)∩B=⌀,则m=.答案1或2解析A={-2,-1},由(∁U A)∩B=⌀,得B⊆A,∵方程x2+(m+1)x+m=0的判别式Δ=(m+1)2-4m=(m-1)2≥0,∴B≠⌀.∴B={-1}或B={-2}或B={-1,-2}.①若B={-1},则m=1;②若B={-2},则-(m+1)=(-2)+(-2)=-4,且m=(-2)×(-2)=4,这两式不能同时成立,∴B≠{-2};③若B={-1,-2},则-(m+1)=(-1)+(-2)=-3,且m=(-1)×(-2)=2,由这两式得m=2.经检验,m=1和m=2符合条件.∴m=1或2.11。
高一数学集合综合训练以及解析

1.设a ,b 都是不等于1的正数,则“5a >5b ”是“log 5log 5a b <”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件2.设集合{}1,0,1M =-,{}2N x x x =≤,则MN =( )A. {}0B. {}0,1C. {}1,1-D.{}1,0,1-3.设命题:22x p <,命题2:1q x <,则p 是q 成立的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.已知集合{}12A x x =-<,{}1,0,1,2B =-,则A ∩B 等于( ) A. {}0,1,2 B.1,0,1,2C. {}1,0,2,3-D. {}0,1,2,35.下列说法正确的是( )A. “a b >”是“22a b >”的充分不必要条件B. 命题“200,10x R x ∃∈+<”的否定是:“2,10x x ∀∈+>R ”C. ,x R ∀∈则44x x+≥ D. 若(1)f x +为R 上的偶函数,则()f x 的图象关于直线1x =对称 6.设x ∈R ,则“|1|2x -< “是“2x x <”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必条件7.已知全集U =R ,集合{}1,2,3,4,5A =,(){}lg 3B x R y x =∈=-,则如图中阴影部分表示的集合为( )A. {}1,2,3,4,5B. {}1,2,3C. {}1,2D.{}3,4,58.设集合{}220A x x x =--≤,{}21B x x =-<≤,则A B =( )A. []1,1-B. (]2,2-C. []1,2-D. []22-,9.以下四个命题:①若p q ∧为假命题,则p ,q 均为假命题;②对于命题2000:,10,R p x x x ∈∃++<则p 为:2,10;R x x x ++∀∉;③2a =是函数()log a f x x =在区间0,上为增函数的充分不必要条件;④()()sin f x x ωϕ=+为偶函数的充要条件是2ϕπ= 其中真命题的个数是( ) A. 1 B. 2C. 3D. 410.已知集合22{|1,},{|2},M y y x x N R x y x ==-==-∈则M N ⋂=( ) A. ∅B. [)1,+∞C. 2⎡-⎣D.)2,⎡-+∞⎣11.“cos20θ=”是“sin cos θθ=”的( ). A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件12.已知集合{|12}A x x =<<,集合2{|}B x y m x ==-,若A B A =,则m 的取值范围是( ). A. (0,1] B. (1,4]C. [1,)+∞D. [4,)+∞13.设R α∈,则“α是第一象限角”是“sin cos 1αα+>”的 ( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件14.若全集U =R ,{|1}A x x =<,{|1}B x x =>-,则( ) A. A B ⊆ B. B A ⊆ C. U B C A ⊆ D. U C A B ⊆15.(多选题)下列说法正确的是( ) A. “0a b >>”是“lg lg a b >”的充要条件B. 已知,a b 是非零向量,若0a b ⋅>,则a 与b 的夹角为锐角C. 已知,,a b c ∈R ,若a b >,则22ac bc >D. 命题“,20x x R ∀∈>”的否定为“00,20x x R ∃∈≤”16.已知集合{|,}xA y y e x R ==∈,集合{|ln(3)}B x y x ==-,A ∩B =( )A. (0,3)B. (0,3]C. (,3)-∞D. (,3]-∞17.设a 、b 为实数,则“0a b <<”是“1133a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件18.命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是( ) A. 0(0,)x ∃∈+∞,00ln 1x x ≠- B. 0(0,)x ∃∉+∞,00ln 1x x =- C. (0,)x ∀∈+∞,ln 1x x ≠- D. (0,)x ∀∉+∞,ln 1x x =- 19.集合{}24M x x =>,{}12N x x =-≤,则图中阴影部分所表示的集合是( )A. {}23x x <≤B. {}21x x -≤<-C. {}12x x -≤≤ D. {}23x x ≤<20.若命题:0P x ∀≥,210x e x +-≥,则命题Р的否定为( )A. 00x ∃<,00210xe x +-< B. 00x ∀≥,210x e x +-<C. 00x ∃≥,00210xe x +-<D. 00x ∃<,00210xe x +-≥21.已知α∈R ,则“cos α=”是“526k παπ=+,k Z ∈”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件22.已知全集U =R ,集合{0,1,2,3,4,5}A =,{|3}B x x =∈≥R ,则U A C B ⋂=( ) A. {4,5} B. {3,4,5} C. {0,1,2}D. {0,1,2,3}23.命题“0x R ∃∈,00x e x <”的否定是_______________.24.给出下列四个命题正确的是______________: ①函数()ln 2f x x x =-+在区间(1,)e 上存在零点; ②将函数cos()6y x π=-的图象的横坐标变为原来的12倍得到函数cos(2)3y x π=-; ③若1m ≥-,则函数22log (2)y x x m =--的值域为R ;④“1a =”是“函数()1xxa e f x ae-=+在定义域上是奇函数”的充分不必要条件; 25.设集合101x A x x ⎧⎫-=<⎨⎬+⎩⎭,{}2,x B y y x A ==∈,则A B =__________.26.能够说明“存在不相等的正数,a b ,使得a b ab +=”是真命题的一组,a b 的值为______试卷答案1.D 【分析】求解指数不等式以及对数不等式,等价求得,a b 范围,即可从充分性和必要性判断选择. 【详解】因为,a b 都是不等于1的正数,由5a >5b ,故可得1a b >>或10a b >>>或10a b >>>; 由log 5log 5a b <,故可得01b a <<<或01a b <<<或1a b >> 显然充分性和必要性均不成立. 故选:D.【点睛】本题考查充分性和必要性的判断,涉及指数函数和对数函数的性质,属综合基础题. 2.B 【分析】先解不等式求出N ,再求M N ⋂即可. 【详解】由2x x ≤, 解得01x ≤≤, 则{|01}N x x =≤≤. 又{1,0,1}M,所以{0,1}M N ⋂=. 故选:B.【点睛】本题主要考查了列举法、描述法表示集合,一元二次不等式的解法,以及交集的运算.属于较易题. 3.B 【分析】求出p 、q 中两个不等式的解,利用集合的包含关系即可判断出p 、q 之间的充分条件和必要条件关系.【详解】解不等式22x <,得1x <,解不等式21x <,得11x -<<,即:1p x <,:11q x -<<,因此,p 是q 成立的必要不充分条件.故选:B.【点睛】本题考查充分条件和必要条件的判断,在涉及不等式与方程时,一般转化为集合的包含关系来判断,考查推理能力与运算求解能力,属于基础题. 4.A 【分析】先求出集合A,再求交集.【详解】{}()121,3A x x =-<=-, {}1,0,1,2B =-{}0,1,2A B =故选:A【点睛】本题考查解绝对值不等式和集合求交集运算,属于基础题. 5.D 【分析】分别根据充分不必要条件的定义,命题的否定,举反例,函数的奇偶性与对称性判断各选项.【详解】A .0a b >>时,22a b <,不充分,反之22a b >时也不能得出a b >,只能有a b >,不必要,A 错;B .命题“200,10x R x ∃∈+<”的否定是:“2,10x R x ∀∈+≥”,B 错;C .0x <时.40x x+<,C 错; D .(1)f x +偶函数,即它的图象关于y 轴对称,把它的图象向右平移1个单位得()y f x =的图象,关于直线1x =对称,D 正确.故选:D .【点睛】本题考查命题的真假判断,考查了充分不必要条件的定义,命题的否定,基本不等式,函数的奇偶性与对称性等知识,属于中档题. 6.B 【分析】解出两个不等式的解集,根据充分条件和必要条件的定义,即可得到本题答案. 【详解】由|1|2x -<,得13x,又由2x x <,得01x <<,因为集合{|01}{|13}x x x x <<⊂-<<,所以“|1|2x -<”是“2x x <”的必要不充分条件. 故选:B【点睛】本题主要考查必要不充分条件的判断,其中涉及到绝对值不等式和一元二次不等式的解法. 7.B 【分析】先求函数定义域得集合B ,再求B 的补集,最后求B 的补集与A 的交集得结果. 【详解】因为(){}{}lg 330(3,)B x R y x x R x =∈=-=∈->=+∞ 所以(,3]UB =-∞因此图中阴影部分表示的集合为{1,2,3}UA B =故选:B【点睛】本题考查函数定义域、集合补集与交集,考查基本分析求解能力,属基础题. 8.B 【分析】先利用一元二次不等式的解法化简集合A ,再利用并集的定义求解. 【详解】因为{}{}22012A x x x x x =--≤=-≤≤, 又{}21B x x =-<≤, 所以A B =(]2,2-.故选:B【点睛】本题主要考查集合的基本运算以及一元二次不等式的解法,还考查了运算求解的能力,属于基础题. 9.A 【分析】根据且命题的定义判断①;根据否定的定义判断②;根据对数函数的性质以及充分条件和必要条件的定义判断③;举反例结合函数奇偶性的定义判断④.【详解】对①,若p q ∧为假命题,则,p q 中至少一个为假命题,故①错误;对②,命题2000:1R,0p x x x ∃++<∈的否定为:p ⌝210R,x x x ++∀∈,故②错误;对③,当2a =时,函数()log a f x x =在区间0,上为增函数;当函数()log a f x x=在区间0,上为增函数时,1a >,即2a =是函数()log a f x x =在区间0,上为增函数的充分不必要条件,故③正确; 对④,当32πϕ=时,3()sin cos 2f x x x πωω⎛⎫=+=-⎪⎝⎭,()cos()cos ()f x x x f x ωω-=--=-=,此时函数()()sin f x x ωϕ=+也是偶函数,故④错误; 故选:A【点睛】本题主要考查了判断命题的真假,涉及了特称命题的否定,判断充分不必要条件,函数奇偶性定义的应用,属于中档题. 10.C 【分析】求出函数21y x =-的值域化简集合M 的表示,求出函数y =的定义域化简集合N 的表示,最后根据集合交集的定义进行求解即可.【详解】因为2{|1,}{|1}M y y x x y y R ∈==-=≥-,{|{|N x y x x ==≤,所以{|1M N x x ⋂=-≤≤.故选:C【点睛】本题考查了集合交集的运算,本题考查了求函数的定义域和值域,考查了数学运算能力. 11.B 【分析】由二倍角公式对条件变形得cos sin θθ=或cos sin θθ=-,再通过充分必要条件的定义,即可得到答案; 【详解】22cos 20cos sin cos sin θθθθθ=⇔=⇔=或cos sin θθ=-,∴“cos20θ=”是“sin cos θθ=”的必要而不充分条件,故选:B.【点睛】本题考查根据三角恒等变换判断必要而不充分条件,考查转化与化归思想,考查逻辑推理能力. 12.D【分析】 根据A B A =可得A B ⊆,从而得到关于m 的不等式,解不等式即可得答案; 【详解】A B A A B ⋂=⇒⊆,{|12}A x x =<<,∴B ≠∅,∴0m ≥,∴{|{|B x y x x ===≤,∴1,2,⎧≤-⎪≥,解得:4m ≥, 故选:D.【点睛】本题考查集合间的基本关系求参数取值范围,考查运算求解能力,求解时注意借助数轴进行分析求解. 13.C 充分性:若α是第一象限角,则sin 0,cos 0αα>>,()2cos 12cos 1sin sin αααα+=+> ,可得sin cos 1αα+>,必要性:若sin cos 1αα+>,α不是第三象限角,()2cos 12cos 1sin sin αααα+=+>,sin cos 0αα>,则α是第一象限角,“α是第一象限角”是“sin cos 1αα+>”的充分必要条件,故选C. 14.D 【分析】计算{}1U C A x x =≥,再依次判断每个选项得到答案.【详解】U =R ,{|1}A x x =<,{|1}B x x =>-,则{}1U C A x x =≥,故U C A B ⊆,D 正确;A B ⊄且B A ⊄,U B C A ⊄,ABC 错误;故选:D.【点睛】本题考查了集合的包含关系,补集运算,属于简单题. 15.AD 【分析】根据充要条件定义有A 正确,B 中向量数量积公式有cos 0θ>,C 中令0c ,D 中由全称命题的否定为任意改为存在,否定结论,即可知选项正误.【详解】A :0a b >>可得lg lg a b >,同样lg lg a b >有0a b >>,正确.B :||||cos 0a b a b θ⋅=>有cos 0θ>,而[0,]θπ∈,即a 与b 的夹角为锐角或0°,错误.C :当0c,a b >有22ac bc =,错误.D :由全称命题的否定知:,20x x R ∀∈>的否定为00,20x x R ∃∈≤,正确.故选:AD 16.A 【分析】求得指数函数的值域和对数型函数的定义域,再求交集即可. 【详解】{|,}{|0}==∈=>x A y y e x R y y ,{|ln(3)}{|30}{|3}==-=->=<B x y x x x x x {|03}=<∴<x B x A故选:A.【点睛】易错点睛:本题考查集合的交集运算,解题时要注意集合的元素代表,从而转化为求指数函数的值域和对数型复合函数的定义域,考查学生的逻辑推理能力与运算能力,属于基础题. 17.A 【分析】利用指数函数的单调性得出1133a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭的等价条件,结合充分条件和必要条件的定义可得出结论.【详解】因为指数函数13x y ⎛⎫= ⎪⎝⎭为R 上的减函数,则1133a ba b ⎛⎫⎛⎫>⇔< ⎪ ⎪⎝⎭⎝⎭. 0a b a b <<⇒<,但0a b a b <<⇐</因此,“0a b <<”是“1133ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭”的充分不必要条件. 故选:A. 18.C试题分析:特称命题的否定是全称命题,并将结论加以否定,所以命题的否定为:(0,)x ∀∈+∞,ln 1x x ≠-考点:全称命题与特称命题19.C【分析】求出集合M 、N ,由图可知阴影部分区域所表示的集合为()N M N ,由此可得结果. 【详解】{}{242M x x x x =>=<-或}2x >,{}{}{}1221213N x x x x x x =-≤=-≤-≤=-≤≤, 所以,{}23M N x x ⋂=<≤,由图可知,阴影部分区域所表示的集合为(){}12N M N x x ⋂=-≤≤.故选:C.20.C【分析】根据含有一个量词命题的否定,得到答案.【详解】命题:0P x ∀≥,210x e x +-≥,则命题Р的否定为00x ∃≥,00210x e x +-< 故选:C【点睛】本题考查含有一个量词命题的否定,属于简单题.21.B【分析】cos α=,解得526k παπ=±,k Z ∈,即可判断出结论.【详解】解:cos α=,解得526k παπ=±,k Z ∈,∴ “cos 2α=-”是“526k παπ=+,k Z ∈”的必要但非充分条件. 故选:B .【点睛】本题考查了三角函数求值、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.22.C通过补集的概念与交集运算即可得到答案.【详解】根据题意得{}|3U C B x x =<,故{}0,1,2U A C B ⋂=,答案选C.【点睛】本题主要考查集合的运算,难度很小.23.x R ∀∈,x e x ≥【分析】利用特称命题的否定可得出结果.【详解】命题“0x R ∃∈,00x e x <”为特称命题,该命题的否定为“x R ∀∈,x e x ≥”. 故答案为:x R ∀∈,x e x ≥.【点睛】本题考查特称命题的否定,属于基础题.24.①③④【分析】根据零点存在定理,三角函数图象变换,对数函数的性质,充分不必要条件的定义判断各选项.【详解】①()ln 2f x x x =-+,(1)10f =-<,()10f e e =->,由零点存在定理得()f x 在(1,)e 上有零点,①正确; ②函数cos()6y x π=-的图象的横坐标变为原来的12得到函数cos 26y x π⎛⎫=- ⎪⎝⎭,②错误;③1m ≥-时,440m ∆=+≥,故函数值域为R ,③正确; ④()1x x a e f x ae -=+是奇函数,则1()11x x xx x x a e ae a e f x ae e a ae------===-+++,22(1)(1)0xa e --=,1a =±,因此“1a =”是“函数()1xx a e f x ae -=+在定义域上是奇函数”的充分不必要条件,④正确.故答案为:①③④【点睛】本题考查命题的真假判断,掌握零点存在定理,三角函数图象变换,对数函数的性质,充分不必要条件的定义是解题基础.25.【分析】解分式不等式得集合A ,由指数函数性质得集合B ,再由并集的定义求并集.【详解】由已知10{|11}(1,1)1x A x x x x ⎧⎫-=<=-<<=-⎨⎬+⎩⎭,{}112,|2,222x B y y x A y y ⎧⎫⎛⎫==∈=<<=⎨⎬ ⎪⎩⎭⎝⎭, ∴(1,2)A B -=,故答案为:(1,2)-【点睛】本题考查集合的并集运算,考查解分式不等式、指数函数的性质,属于基础题. 26.32a =,3b = 【分析】本题先假设a b ab +=成立,再求出1b a b =-,最后令值即可. 【详解】解:-假设a b ab +=成立,则1b a b =-, 当3b =时,32a =,此时a 、b 是不相等的正数, 故命题为真命题的一组a ,b 的值为:32a =,3b = 故答案为:32a =,3b = 【点睛】本题考查利用命题的真假求参数值,答案不唯一,是开放性试题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合综合应用
一、单选题(共10道,每道10分)
1.若集合,集合,则集合B的子集个数为( )
A.1个
B.2个
C.4个
D.8个
答案:C
解题思路:
试题难度:三颗星知识点:子集与真子集
2.已知集合,则集合A的非空真子集个数为( )
A.14
B.512
C.511
D.510
答案:D
解题思路:
试题难度:三颗星知识点:子集与真子集
3.非空集合{1,2,3,4,5},且若,则必有,那么所有满足上述条件的集合S共有( )
A.6个
B.7个
C.8个
D.9个
答案:B
解题思路:
试题难度:三颗星知识点:集合间的基本关系
4.对于数集,定义:,
,若集合,则集合中所有元素之和为( )
A.14
B.16
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:交、并、补集的混合运算
5.给定全集U,若非空集合A,B满足,,且集合A中的最大元素小于B中的最小元素,则称(A,B)为U的一个有序子集对.若U={1,2,3,4},则U的有序子集对的个数为( )
A.16个
B.17个
C.18个
D.19个
答案:B
解题思路:
试题难度:三颗星知识点:新定义集合
6.已知集合M={1,2,3,…,11},A是M的子集,把满足条件:若,则的集合称为好集,那么含有至少4个偶数的好集A的个数为( )
A.7个
B.8个
C.9个
D.10个
答案:B
解题思路:
试题难度:三颗星知识点:新定义集合
7.已知元素为实数的集合A满足条件:若,则,那么集合A中所有元素的乘积为( )
A.-1
B.1
C.0
D.±1
答案:B
解题思路:
试题难度:三颗星知识点:集合中元素的确定性、互异性、无序性
8.设集合,,若,则a的取值范围是( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:含参数的集合
9.已知集合,集合,且,则的取值范围是( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:含参数的集合(无限集)
10.已知集合,,若,则实数的取值范围是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:集合性质的综合应用。