温度控制系统

合集下载

温度控制系统要点

温度控制系统要点

温度控制系统要点在现代化的工业生产中,温度控制是至关重要的一部分。

从食品加工到化学反应,从塑料制造到微电子产业,都需要对温度进行精确和可靠的控制。

本文将探讨温度控制系统的要点和关键组成部分。

1、温度传感器温度传感器是温度控制系统的核心组成部分,它能够感知并测量被控对象的温度。

根据不同的应用场景和精度要求,可以选择不同类型的温度传感器,如热电阻、热电偶、红外传感器等。

2、控制器控制器是温度控制系统的中枢,它根据温度传感器的读数来决定如何调整被控对象的温度。

控制器可以是简单的机械式控制器,也可以是更复杂的数字控制器。

数字控制器可以配备PID(比例-积分-微分)算法,以提供更精确的温度控制。

3、执行器执行器是控制系统的末端,它根据控制器的指令来调整被控对象的温度。

执行器可以是加热器、冷却器、风扇等设备。

执行器的选择取决于被控对象的特性和控制要求。

4、被控对象被控对象是温度控制系统需要控制的设备或过程。

在选择执行器和控制器时,需要考虑被控对象的特性和要求。

例如,被控对象可能是塑料成型机、发酵罐、半导体生产线等。

5、反馈系统反馈系统是将控制系统的输出与设定值进行比较的系统。

它向控制器提供信息,使其了解其命令是否已使系统达到所需的温度。

如果需要调整温度,控制器将发送新的指令给执行器。

6、电源和安全设备温度控制系统需要稳定的电源供应以确保其正常工作。

同时,为了确保安全,系统应配备过载保护、短路保护等安全设备。

总结:温度控制系统需要精确和可靠地控制温度,以确保工业过程的稳定性和产品的质量。

在构建或维护温度控制系统时,应考虑温度传感器、控制器、执行器、被控对象、反馈系统和电源及安全设备等关键要素。

通过选择合适的设备并优化系统设计,可以实现对温度的精确控制,从而提高生产效率和质量。

随着科技的不断发展,智能化成为各行各业的主要趋势。

温度控制作为日常生活和工业生产中的重要环节,如何实现智能化以提高效率、节约能源以及提高生产质量,已成为业界的焦点。

温度控制系统的发展概况

温度控制系统的发展概况

时滞温度控制系统是一个具有重要应用价值的系统,其运行过程中存在明显 的滞后效应。滞后效应的产生主要是由于物质传输、热量传递和系统自身动力等 方面的原因,使得控制系统对温度变化的响应变得迟缓。为了有效提高时滞温度 控制系统的性能,研究者们不断探索新的控制方法。
随着科学技术的不断发展,时滞温度控制系统的研究已经取得了一定的成果。 然而,现有的控制方法仍然存在诸多不足,如控制精度不高、稳定性差、不能有 效处理时滞等问题。因此,探索更为有效的控制方法显得尤为重要。
本次演示对时滞温度控制系统控制方法的研究进行了综述,总结了现有方法 的优缺点,并针对存在的问题提出了一种新的自适应控制方法。通过实验设计和 仿真技术验证了该方法的有效性。未来的研究方向可以包括探索更加智能和适应 复杂环境变化的
控制算法,为实际工业应用提供更加可靠和精准的温度控制方案。
感谢观看
总之,温度控制系统的发展概况表明,随着技术的不断进步和创新,温度控 制系统的应用领域越来越广泛,其基本构成更加完善,发展前景广阔。相信未来 温度控制系统会朝着更加智能化、网络化、高精度和高效率的方向迈进,为推动 现代工业和科技的发展做出更大的贡献。
参考内容
随着科技的不断发展,智能化成为各行各业的主要趋势。温度控制作为日常 生活和工业生产中的重要环节,如何实现智能化以提高效率、节约能源以及提高 生产质量,已成为业界的焦点。本次演示将介绍一种智能温度控制系统,包括其 设计、应用及未来发展前景。
此外,温度控制系统在建筑、食品、医药等各个行业中也有着广泛的应用。 例如,在建筑行业中,温度控制系统能够保证室内恒温,提高居住舒适度;在食 品行业中,温度控制系统能够实现对食品的恒温干燥,保证食品的口感和营养价 值;在医药行业
中,温度控制系统能够确保药品生产过程中的温度稳定,提高药品的质量和 安全性。

温度控制系统工作原理

温度控制系统工作原理

温度控制系统工作原理温度控制系统工作原理温度控制系统是一种用于控制温度的自动化设备,它能够根据输入信号对环境温度进行调节,以实现期望的空间温度。

温度控制系统具有自动控制、节能、节约、方便等特点,可用于家庭、厂房、机房和其他场所的温度控制。

下面我们就一起来了解一下温度控制系统的工作原理及控制系统的结构与功能。

一、温度控制系统的工作原理1、环境温度检测:温度控制系统首先必须要到采集环境温度,一般使用温度传感器来采集环境温度值,经过温度控制系统的控制器处理,将采集到的温度值发送给控制系统以实现温度控制系统的控制。

2、控制输出:根据温度控制系统的设定值和环境温度值,温度控制系统的控制器能够做出正确的控制决策,控制系统控制器就会根据其决策通过开关来控制负载,实现对负载的控制,使得环境温度满足控制系统的设定值。

3、温度控制系统调节:温度控制系统的调节是持续进行的,当环境温度大于或小于控制系统设定的温度值时,控制器就会持续进行控制,以维持环境温度等于或接近控制系统的设定值。

二、温度控制系统的结构与功能1、温度控制系统的主要组成部分:温度控制系统由温度传感器、控制器、显示装置、开关、负载等部分组成。

2、温度传感器:温度传感器的作用是采集环境温度,然后将采集到的温度值发送给控制器。

3、控制器:控制器的功能是根据温度控制系统的设定值和环境温度值,做出控制输出决策,控制负载,以实现温度控制的目的。

4、显示装置:显示装置的作用是实时显示环境温度值和控制系统的设定值,以便于温度控制系统的调整和监控。

5、开关:温度控制系统的开关的作用是根据控制器的控制输出决策控制负载,以实现温度控制的目的。

6、负载:负载的作用是根据控制器的决策控制负载,以实现温度控制系统控制的目的。

以上就是温度控制系统的工作原理及控制系统的结构与功能介绍,温度控制系统的优点在于它具有自动控制、节能、节约、方便等特点,可用于家庭、厂房、机房和其他场所的温度控制,是大家非常理想的温度控制设备。

单片机温度控制系统

单片机温度控制系统

单片机温度控制系统简介单片机温度控制系统是一种基于单片机的自动温度调节系统,它能够根据预设的温度范围,自动控制外部设备以调节温度。

本文档将介绍单片机温度控制系统的工作原理、硬件架构和软件设计。

工作原理单片机温度控制系统通过温度传感器获取当前环境的温度值,并与预设的温度范围进行比较。

如果当前温度低于预设值,则系统会启动加热设备;如果当前温度高于预设值,则系统会启动冷却设备。

通过不断的检测和调节,系统能够实现对环境温度的精确控制。

硬件架构单片机温度控制系统的硬件架构主要包括以下几个部分:单片机模块单片机模块是整个系统的核心部分,它负责接收温度传感器的数据、进行数据处理和控制外部设备。

常用的单片机有Arduino、Raspberry Pi等。

温度传感器温度传感器用于获取环境的温度值,常用的传感器有NTC 热敏电阻、DS18B20数字温度传感器等。

传感器将获取的温度值转换成数字信号,通过模拟输入引脚或数字引脚传递给单片机。

加热设备和冷却设备加热设备和冷却设备根据温度的情况进行相应的操作,以调节环境温度。

加热设备可以是电热丝、电热器等,冷却设备可以是风扇、制冷装置等。

单片机通过控制输出引脚的电平来控制加热设备和冷却设备的启动与停止。

软件设计单片机温度控制系统的软件设计可以分为以下几个模块:温度采集模块温度采集模块负责读取温度传感器的数据,并进行相应的处理。

通过模拟输入引脚或数字引脚接收传感器的输出信号,并将其转换成温度值。

温度比较模块温度比较模块将采集到的温度值与预设的温度范围进行比较。

如果当前温度小于最低温度,系统将启动加热设备;如果当前温度大于最高温度,系统将启动冷却设备;如果当前温度在最低温度和最高温度之间,则系统将关闭所有设备。

控制模块控制模块根据温度比较模块的结果来控制加热设备和冷却设备的启停。

通过控制输出引脚的电平,控制加热设备和冷却设备的开关状态。

显示模块显示模块用于显示当前的温度值和系统状态。

温度控制系统实验报告

温度控制系统实验报告

温度控制系统实验报告温度控制系统实验报告一、引言温度控制系统作为现代自动化领域的重要组成部分,广泛应用于工业生产、家电和环境控制等领域。

本实验旨在通过搭建一个简单的温度控制系统,了解其工作原理和性能特点。

二、实验目的1. 了解温度控制系统的基本原理;2. 掌握温度传感器的使用方法;3. 熟悉PID控制算法的应用;4. 分析温度控制系统的稳定性和响应速度。

三、实验装置本实验使用的温度控制系统由以下组件组成:1. 温度传感器:用于测量环境温度,常见的有热敏电阻和热电偶等;2. 控制器:根据温度传感器的反馈信号,进行温度控制;3. 加热器:根据控制器的输出信号,调节加热功率;4. 冷却装置:用于降低环境温度,以实现温度控制。

四、实验步骤1. 搭建温度控制系统:将温度传感器与控制器、加热器和冷却装置连接起来,确保各组件正常工作。

2. 设置控制器参数:根据实际需求,设置控制器的比例、积分和微分参数,以实现稳定的温度控制。

3. 测量环境温度:使用温度传感器测量环境温度,并将测量结果输入控制器。

4. 控制温度:根据控制器输出的控制信号,调节加热器和冷却装置的工作状态,使环境温度保持在设定值附近。

5. 记录数据:记录实验过程中的环境温度、控制器输出信号和加热器/冷却装置的工作状态等数据。

五、实验结果与分析通过实验数据的记录和分析,我们可以得出以下结论:1. 温度控制系统的稳定性:根据控制器的调节算法,系统能够在设定值附近维持稳定的温度。

但是,由于传感器的精度、控制器参数的选择等因素,系统可能存在一定的温度波动。

2. 温度控制系统的响应速度:根据实验数据,我们可以计算出系统的响应时间和超调量等参数,以评估系统的控制性能。

3. 温度传感器的准确性:通过与已知准确度的温度计进行对比,我们可以评估温度传感器的准确性和误差范围。

六、实验总结本实验通过搭建温度控制系统,探究了其工作原理和性能特点。

通过实验数据的分析,我们对温度控制系统的稳定性、响应速度和传感器准确性有了更深入的了解。

温度控制系统设计

温度控制系统设计

温度控制系统设计概述温度控制系统是一种广泛应用于工业生产、实验室环境以及家庭生活中的系统。

它通过感知环境温度并根据设定的温度范围来控制加热或制冷设备,以维持特定温度水平。

本文将介绍温度控制系统的设计原理、硬件组成和软件实现。

设计原理温度控制系统的设计基于负反馈原理,即通过对环境温度进行实时监测,并将监测结果与目标温度进行比较,从而确定加热或制冷设备的控制量。

当环境温度偏离目标温度时,控制系统会调节加热或制冷设备的工作状态,使环境温度逐渐趋向目标温度。

硬件组成1. 传感器传感器是温度控制系统的核心组成部分,用于感知环境温度。

常见的温度传感器包括热敏电阻(Thermistor)、温度传感器芯片(Temperature Sensor Chip)和红外温度传感器(Infrared Temperature Sensor)等。

传感器将环境温度转换为电信号,并输出给微控制器进行处理。

微控制器是温度控制系统的中央处理单元,用于接收传感器输入的温度信号,并进行数据处理和控制逻辑的执行。

常见的微控制器包括Arduino、Raspberry Pi 和STM32等。

微控制器可以通过GPIO(General Purpose Input/Output)口实现与其他硬件模块的连接。

3. 控制器控制器是温度控制系统的核心部件,用于根据目标温度和实际温度之间的差异来调节加热或制冷设备的运行状态。

常见的控制器包括PID控制器(Proportional-Integral-Derivative Controller)和模糊控制器(Fuzzy Controller)等。

控制器通过电压或电流输出信号,控制加热或制冷设备的开关状态。

4. 加热或制冷设备加热或制冷设备是温度控制系统的输出组件,用于增加或降低环境温度。

根据具体应用需求,常见的加热设备包括电炉、电热丝和电热器等;常见的制冷设备包括压缩机和热泵等。

软件实现温度控制系统的软件实现主要涉及以下几个方面:1. 温度采集软件需要通过与传感器的接口读取环境温度值。

温度控制系统原理

温度控制系统原理

温度控制系统原理一、温度控制系统概述温度控制系统是一种用于控制和调节温度的技术系统,广泛应用于工业生产、科研实验、家电家居等领域。

二、温度感知技术温度感知技术是温度控制系统的基础,用于实时监测当前温度值。

常见的温度感知技术包括热电阻、热敏电阻、铂电阻等,通过测量材料的电阻随温度变化的特性,可以得到温度值的反馈。

三、温度控制算法温度控制系统的关键是设计合理的控制算法,以实现温度的精确控制和稳定调节。

常用的温度控制算法有比例控制、比例-积分控制、比例-积分-微分控制等。

控制算法根据温度偏差与设定值的关系,调节控制执行器的输出信号,使温度保持在设定值附近。

四、温度调节执行器温度调节执行器是温度控制系统中的关键组成部分,用于根据控制算法的输出信号,调节恒温器、加热器、制冷器等设备。

温度调节执行器可通过控制阀门、电磁阀、电器元件等方式,实现温度的精确调节和控制。

五、温度控制系统的应用温度控制系统广泛应用于各个领域。

在工业生产中,温度控制系统用于控制炉温、温度梯度,保证工业生产的质量和效率。

在科研实验中,温度控制系统用于模拟实验环境、控制反应温度,以便于研究人员的实验操作和观察。

在家电家居中,温度控制系统用于家庭空调、恒温器、温度报警器等,提供舒适的居住环境和保障家庭安全。

六、温度控制系统的优势与发展趋势温度控制系统具有精准度高、稳定性好、可靠性强等优势。

随着科技的发展,温度控制系统的智能化程度不断提高,采用了先进的控制算法和感知技术,实现更加精确的温度控制和调节。

未来,温度控制系统有望在能源节约、环境保护等方面发挥更大的作用,为人们的生活和工作带来便利与舒适。

温度控制系统的设计与实现

温度控制系统的设计与实现

温度控制系统的设计与实现汇报人:2023-12-26•引言•温度控制系统基础知识•温度控制系统设计目录•温度控制系统实现•温度控制系统应用与优化01引言目的和背景研究温度控制系统的设计和实现方法,以满足特定应用场景的需求。

随着工业自动化和智能制造的快速发展,温度控制系统的性能和稳定性对于产品质量、生产效率和能源消耗等方面具有重要影响。

03高效、节能的温度控制系统有助于降低生产成本、减少能源浪费,并提高企业的竞争力。

01温度是工业生产过程中最常见的参数之一,对产品的质量和性能具有关键作用。

02温度控制系统的稳定性、准确性和可靠性直接关系到生产过程的稳定性和产品质量。

温度控制系统的重要性02温度控制系统基础知识温度控制系统的性能指标包括控制精度、响应速度、稳定性和可靠性等,这些指标直接影响着系统的性能和效果。

温度控制原理是利用温度传感器检测当前温度,并将该信号传输到控制器。

控制器根据预设的温度值与实际温度值的差异,通过调节加热元件的功率来控制温度。

温度控制系统通常由温度传感器、控制器和加热元件组成,其中温度传感器负责检测温度,控制器负责控制加热元件的开关和功率,加热元件则是实现温度升高的设备。

温度控制原理温度传感器是温度控制系统中非常重要的组成部分,其工作原理是将温度信号转换为电信号或数字信号,以便控制器能够接收和处理。

常见的温度传感器有热敏电阻、热电偶、集成温度传感器等,它们具有不同的特点和适用范围。

选择合适的温度传感器对于温度控制系统的性能和稳定性至关重要。

温度传感器的工作原理加热元件的工作原理加热元件是温度控制系统中实现温度升高的设备,其工作原理是通过电流或电阻加热产生热量,从而升高环境温度。

常见的加热元件有电热丝、红外线灯等,它们具有不同的特点和适用范围。

选择合适的加热元件对于温度控制系统的性能和安全性至关重要。

控制算法是温度控制系统的核心部分,其作用是根据预设的温度值和实际温度值的差异,计算出加热元件的功率调节量,以实现温度的精确控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

引言
电加热炉是典型工业过程控制对象,其温度控制具有升温单向性,大惯性,纯滞后,时变性等特点,很难用数学方法建立精确的模型和确定参数。

而PID控制因其成熟,容易实现,并具有可消除稳态误差的优点,在大多数情况下可以满足系统性能要求,但其性能取决于参数的整定情况。

且快速性和超调量之间存在矛盾,使其不一定满足快速升温、超调小的技术要求。

模糊控制在快速性和保持较小的超调量方面有着自身的优势,但其理论并不完善,算法复杂,控制过程会存在稳态误差。

将模糊控制算法引入传统的加热炉控制系统构成智能模糊控制系统,利用模糊控制规则自适应在线修改PID参数,构成模糊自整定:PID控制系统,借此提高其控制效果。

基于PID控制算法,以ADuC845单片机为主体,构成一个能处理较复杂数据和控制功能的智能控制器,使其既可作为独立的单片机控制系统,又可与微机配合构成两级控制系统。

该控制器控制精度高,具有较高的灵活性和可靠性。

2 温度控制系统硬件设计
该系统设计的硬件设计主要由单片机主控、前向通道、后向通道、人机接口和接口扩展等模块组成,如图l所示。

由图1可见,以内含C52兼容单片机的ADuC845为控制核心.配有640 KB的非易失RAM数据存储器、外扩键盘输人、320x240点阵的图形液晶显示器进行汉字、图形、曲线和数据显示,超温报警装置等外围电路;预留微型打印机接口,可以现场打印输出结果;预留RS232接口,能和PC机联机,将现场检测的数据传输至PC机来进一步处理、显示、打印和存档。

电阻炉的温度先由热电偶温度传感器检测并转换成微弱的电压信号,温度变送器将此弱信号进行非线性校正及电压放大后,由单片机内部A/D转换器将其转换
成数字量。

此数字量经数字滤波、误差校正、标度变换、线性拟合、查表等处理后。

一方面将炉窑温度经人机面板上的LCD显示:另一方面将该温度值与被控制值(由键盘输入的设定温度值)比较,根据其偏差值的大小,提供给控制算法进行运算,最后输出移相控制脉冲,放大后触发可控硅导通(即控制电阻炉平均功率)。

达到控制电炉温度的目的。

如果实际测得的温度值超过了该系统所要求的温度范围,单片机就向报警装置发出指令,系统进行报警。

2.1 系统主控模块
系统主控模块电路如图2所示,它主要由CPU及数据存储器,晶体振荡器、复位电路、图形液晶显示器(LCD)及控制电路、微型打印机接口控制电路、实时日历时钟,热电偶信号处理电路等构成。

这里,该系统设计可测量3点温度。

传感器选择K型(镍铬-镍硅)热电偶,可用于从室温到1 200°C的温度测量,测量范围宽,精度高。

在温度测量范围内K型热电偶的输出热电势只有0~45.119 mV 为了和ADuC845的A/D转换器相匹配,采用ACl226和1B51作为信号调理电路,由AC1226、1B51构成热电偶冷端温度补偿及信号调理器电路。

当热端距测温仪表较远时,需利用热电偶匹配导线将冷端延长。

CD4051为多路模拟开关,由ABC 控制接通,当5~3接通时,输入接地,UO输出UOmin,用于零点校准当4~3接通时,单片机1.25 V稳定参考电压Uref,再经电阻R1、R2分压,得到毫伏级参考输入电压,UO输出UOmax,用于增益校准;当2~3、1~3、12~3分别分时接通时,依次输入3个热电偶正常测温所得变换电压,UO从而输出3个温度点所对应的电压UOA,UOB,UOC。

在HI端与+UISO端之间串上一只220 MΩ上拉电阻,一旦热电偶开路,HI端即被偏置为+UISO,迫使1B51的输出电压超量程,由此判定热电偶已开路。

多路模拟开关和测量数据采集过程在单片机协调下工作,每次数据采集都进行自动判断和校准阁。

2.2 控制输出驱动电路
对温度的控制是通过可控硅调功器电路实现,如图3所示。

双向可控硅管和硅碳棒串接在交流220 V、50 Hz交流市电回路中,图3中只给出了A相。

移相触发脉冲由ADuC845用软件在P1.3引脚上产生的,零同步脉冲同步后,经光耦合管和驱动器输出送到可控硅的控制极。

过零同步脉冲由过零触发电路产生,利用同步变压器和电压比较器LM311组成正弦交流电的正半波过零检测电路,它在交流电每一个正半周的起始零点处产生上升沿.并在正半周回零处产生一个下降沿,电压比较器LM311用于把50 Hz正弦交流电压变成方波。

方波的正边沿和负边沿分别作为两个单稳态触发器的输入触发信号,单稳态触发器输出的2个窄脉冲经
二极管或门混合后通过可重复触发集成单稳态触发器MC14528,单稳态输出的路窄脉冲再叠加,就可得到对应于交流市电的100 Hz过零同步脉冲。

脉冲宽度可由MC14528的外接电阻R4和外接电容C1、C2调节。

此脉冲加到ADUC845的TO 作为计数脉冲和INT1中断口触发INT1中断。

可控硅的过流、过压保护采用一般阻容保护电路。

R5是触发器输出限流电阻,R3用以消除漏电流,防止KP150的误触发。

3 温度控制系统软件设计
3.1 主程序及其功能
软件设计采用模块化设计原则。

控制程序主要由测量采样操作,温度参数设置界面的显示,操作按键的管理,测量过程,数据算法处理,输出控制的处理及测量结果显示等模块组成。

主模块是为其他模块构建整体框架及初始化工作。

调用运算和显示构成一个无限循环圈,温控的所有功能都在该循环圈中周而复始有选择执行。

除非掉电或复位,否则系统程序不会跳出该循环圈。

因浮点数运算占用时间较多,应将其作为单独模块。

控制算法模块包括:PID运算模块和PID参数自整定模块两部分,主要是相应控制算法的初始化及运算程序。

数学运算模块主要包括诸如带符号浮点数求补运算、带符号浮点数乘法、无符号浮点数除法以及浮点数加减法等运算子程序,供其他模块根据算法的需要随时调用。

显示设定和操作界面由菜单显示,用INTO中断完成。

界面中用线框框起来的符号和汉字表示当前起作用的按键,用“上下左右”按键移动光标和改变数据,按下确认键后选中有效,开始执行所选功能,按下返回键就回到上一级界面(菜单)。

数据的采集及预处理模块由TO计数定时产中断,包括数字滤波、标度变换、显示刷新等部分,完成数据预处理及人机交互功能。

过零同步由交流过零触发产生INT1中断并确定移相顺序,触发T1定时,产生移相脉冲,控制输出。

一旦中断,首先判断具体的中断源。

若是定时中断,则调用相应的模块完成定时服务;若是人机面板的按键中断,则在识别按键后,进入散转程序,随之调用相应的键盘处理服务模块。

无论是哪一个中断源产生中断,执行完相应的程序后均返回主模块,必要时修改显示内容,并开始下一轮循环。

图4所示为系统软件主程序流程。

3.2 模糊自整定PID算法程序
模糊自整定PID算法程序程序的总流程为:首先模糊整定,然后根据误差和误差变化率对PID的3个参数进行在线调整,把经过模糊调整后的PID参数作为最终的控制参数进行PID控制。

温度误差e和温度误差变化率△e的最坏情况值均取为100℃,在此建立的温度误差e和温度误差变化率△e的基本论域,数字量化确定e(k)的论域区间为[-128,128]。

这样就必须对温度误差e和温度误差变化率△e超过100°C.变换后的e和△e其动态范围限幅压缩,这样就可以使温度误差和温度误差变化率△e在整个测控温度变化范围[0℃,1 2°C]内,控制量都可以起到作用。

图5为模糊PID控制流程。

4 结语
将系统温度设置不同的温度值,观测记录温度变化曲线。

电加热炉温度控制系统实际输
出的响应曲线如图6所示。

从电加热炉温度控制的实际效果来看,Fuzzy-PID复合控制器具有以下特点:
①系统具有较好动态特性。

不仅升温速度快,而且超调量很小;
②系统具有比较理想的稳态品质,稳态过程没有振荡,温度控制精度在±3℃以内;
③系统的抗干扰能力增强,对生产现场的各种噪声和干扰具有较好的抑制作用;
④当被控过程参数发生变化时,控制系统仍能保持较好的适应能力和鲁棒性。

相关文档
最新文档