光电子技术基础光学知识

合集下载

光电子技术——精选推荐

光电子技术——精选推荐

光电⼦技术光电⼦技术题型:1,缩略词5分2,填空题5题共10分(基本概念、常识性)3,选择题10题共20分(综合性题⽬)4,简答题7题共35分(不要⼀句话解决)5,计算题+画框图(作图并说明原理)3题共30分考点:绪论1,光电探测器系统的组成:掌握主动探测系统以及被动探测系统的框图P2 举例-主动:光纤通信被动:红外夜视仪第⼀章光辐射源1.1辐射度学与光度学的基础知识1,光的能量公式P11(1-1)2,两套基本单位(辐射度量、光度量)辐射度量特点:与物理学中对电磁辐射量度的规定完全⼀致,适⽤于整个电磁波谱(当然也包括可见光)光度量特点:以⼈的视觉特性为基础⽽建⽴起来,只适⽤于可见光波段。

3,可见光范围:0.38~0.78um红外光范围:约从0.78um向长波⽅向延伸⾄1000um紫外光范围:约从0.38um向短波⽅向延伸到0.01um4,光度量和辐射度量之间的换算关系P15(1-13)坎[德拉]:发光强度的单位5,辐射度学和光度学中的两个基本定律①辐强度余弦定律②距离平⽅反⽐定律1.2半导体的基础知识1,吸收定律P22(1-29)2,本征吸收与⾮本征吸收的区别是什么?①杂质吸收光⼦的截⽌波长⼤于本征吸收的截⽌波长②本征吸收能同时产⽣电⼦-空⽳对;杂质吸收只能产⽣电⼦或空⽳。

1.3⿊体辐射1,什么是⿊体能够在任何温度下全部吸收所有波长辐射的物体叫绝对⿊体--简称⿊体。

2,研究⿊体辐射的意义⿊体是各种辐射体和物质吸收(发射)特性的⽐较基准。

1,⿊体模拟器2,近似⿊体,如太阳、地球、海⽔······ 3,⽤⿊体某些特性表征光源和辐射体。

3,⿊体辐射中的定律普朗克辐射定律:⿊体光谱辐出度与波长和温度的关系---随着温度的升⾼:1,⿊体的总辐出度迅速增加2,峰值波长向短波⽅向移动维恩位移定律:⿊体辐出度峰值对应的波长与⿊体的绝对温度的乘积为⼀定值P31(1-58)斯蒂芬-玻⽿兹曼定律:⿊体的全光谱辐出度与其温度的4次⽅成正⽐P31(1-59)1.4典型光辐射源1,⾊温如果热辐射光源发光的颜⾊与⿊体在某⼀温度下辐射光的颜⾊相同,则⿊体的这⼀温度称为该辐射源的⾊温。

光电子技术基础14_图文_图文

光电子技术基础14_图文_图文

5. 通量阈Pth和噪声等效功率 NEP
从灵敏度R的定义式
可见,如果P=0,应有i=0 实际情况是,当P=0时,光电探测器的输出电流并不为零。 这个电流称为暗电流或噪声电流,记为
它是瞬时噪声电流的有效值。 显然,这时灵敏度R巳失去意义,我们必须定义一个新参量 来描述光电探测器的这种特性。
光功率Ps和Pb分别为信号和背景光功率。 即使Ps和Pb都为零,也会有噪声输出。 噪声的存在,限制了探测微弱信号的能力。 通常认为,如果信号光功率产生的信号光电流is等于噪声 电流in,那么就认为刚刚能探测到光信号存在。
⑶涂膜式 在玻璃基片上直接涂上光敏材料膜后而制成。其结构下图。
四、光敏电阻的 特点
1、优点:
灵敏度高,光电导增益大于1,工作电流大,无极性之分 光谱响应范围宽,尤其对红外有较高的灵敏度 所测光强范围宽,可测强光、弱光
2、不足:
强光下光电转换线性差
光电导弛豫时间长
受温度影响大
光电池
硅光电池结构示意如
2. 光谱灵敏度Rλ
条于件是光下光功不谱率变灵谱的敏密情度度R况λ定R下λ由义,于为光光电电流探将测是器光的波光长谱的选函择数性,,记在为其iλ,它
Rλ是常数时,相应探测器称为无选择性探测器(如光热探测 器),光子探测器则是选择性探测器。
通常给出的是相对光谱灵敏度Sλ定义为
Rλm是指Rλ的最大值,Sλ为无量纲,随λ变化的曲线称为光 谱灵敏度曲线。
依照这一判据,定义探测器的通量阈Pth为
a
例。:即若小于Ri=01.000μ1A微/μ瓦W的,信in=号0.光01功μA率,不则能通被量探阈测P器th=所0得.00知1μ,W所
以,通量阈是探测器所能探测的最小光信号功率。

光电子技术基础

光电子技术基础

光电子技术基础•光电子技术概述•光源与光辐射•光电探测器与光电转换目录•光学系统与光路设计•光电子器件与工艺•光电子技术应用实例光电子技术概述01CATALOGUE光电子技术的定义与发展光电子技术的定义光电子技术是研究光与电子相互作用及其应用的科学领域,涉及光的产生、传输、调制、检测和处理等方面。

光电子技术的发展历程自20世纪初爱因斯坦提出光电效应以来,光电子技术经历了从基础研究到应用研究的逐步发展,现已成为现代科技领域的重要分支。

光电子技术在通信领域的应用主要包括光纤通信、无线通信和卫星通信等,实现了高速、大容量的数据传输。

通信领域光电子技术在显示技术方面的应用如液晶显示、有机发光显示等,为现代电子产品提供了丰富多彩的视觉体验。

显示技术光电子技术在太阳能利用、光伏发电等领域的应用,为可再生能源的开发和利用提供了技术支持。

能源领域光电子技术在生物医学领域的应用如光学成像、光动力疗法等,为疾病的诊断和治疗提供了新的手段。

生物医学随着微电子技术的发展,光电子器件将越来越微型化、集成化,实现更高的性能和更小的体积。

微型化与集成化人工智能和自动化技术的引入将进一步提高光电子系统的智能化水平,实现更高效的运行和管理。

智能化与自动化环保意识的提高将推动光电子技术向更环保的方向发展,如开发低能耗、无污染的光电子器件和系统等。

绿色环保光电子技术与材料科学、生物医学等学科的融合将产生更多的交叉学科和创新应用。

跨学科融合光源与光辐射02CATALOGUE利用物体加热到高温后产生的热辐射发光,如白炽灯、卤钨灯等。

具有连续光谱、色温低、显色性好等特点。

热辐射光源利用气体放电时产生的可见光辐射发光,如荧光灯、高压汞灯等。

具有高效、节能、长寿命等优点。

气体放电光源利用固体发光材料在电场或光场激发下产生的发光现象,如LED 、OLED 等。

具有节能环保、响应速度快、可调控性强等特点。

固体发光光源光源的种类与特性表示光源发出的总光能量,单位是流明(lm )。

光学基础知识详细版

光学基础知识详细版

光学基础知识详细版一、光的本质光是一种电磁波,是自然界中的一种能量传递形式。

光的本质可以通过波动理论和粒子理论来解释。

波动理论认为光是一种波动现象,具有波长、频率、振幅等特性;粒子理论则认为光是由光子组成的,光子是光的能量载体。

二、光的传播光在真空中的传播速度是恒定的,约为299,792,458米/秒。

光在不同介质中的传播速度不同,这是由于介质的折射率不同所致。

当光从一种介质传播到另一种介质时,会发生折射现象,即光线方向发生改变。

三、光的反射和折射光的反射是指光线在遇到界面时,按照一定规律返回原介质的现象。

光的折射是指光线在通过两种不同介质的界面时,传播方向发生改变的现象。

光的反射和折射遵循斯涅尔定律,即入射角和折射角满足一定的关系。

四、光的干涉和衍射光的干涉是指两束或多束相干光波相遇时,由于光波的叠加,形成新的光强分布的现象。

光的衍射是指光波在遇到障碍物或通过狭缝时,发生弯曲并绕过障碍物传播的现象。

五、光的偏振光的偏振是指光波的振动方向具有一定的规律性。

自然光是由无数个振动方向不同的光波组成的,因此不具有偏振性。

当光波通过某些特殊材料或经过反射、折射等过程后,可以形成具有一定偏振性的光波。

六、光的吸收和发射光的吸收是指光波在传播过程中,能量被物质吸收的现象。

光的发射是指物质在吸收光能后,以光波的形式释放能量的现象。

光的吸收和发射遵循一定的规律,如光的吸收强度与光的频率有关,光的发射强度与物质的性质有关。

七、光的成像光的成像是指利用光学系统(如透镜、反射镜等)使物体发出的光波或反射的光波在另一位置形成实像或虚像的过程。

光的成像原理是光的折射和反射现象,通过光学系统可以实现对物体形状、大小、位置的观察和研究。

八、光的测量光的测量是光学研究中的重要内容,主要包括光强、光强分布、波长、频率、相位等参数的测量。

光的测量方法有直接测量和间接测量两种,直接测量是通过光学仪器直接测量光波参数,间接测量是通过测量光波与物质相互作用的结果来推算光波参数。

光电子技术(基础光学知识)

光电子技术(基础光学知识)
• 电磁场理论认为,光实际上是一定频率范围内的电磁波,电 磁波的传播实际上就是将变化的电磁场进行的传播。若在空间 某区域有变化电场E (或变化磁场H),那么将在邻近区域引起 磁场H的变化 (或电场E的变化),这种变化的电场和磁场相互 激发、相互感生,由近及远以有限的速度在空间传播,形成电 磁波。 • 与此相关的电磁场的基本性质如下:
真空中电磁波的波长λ与频率υ的关系为
•பைடு நூலகம்
λ= c/υ
(2.2)
•真空中电磁波的传播速度c ≈ 3. 0 ×108m/s为常量,所以频率不同的电磁波在真
空中具有不同的波长。频率愈高,对应的波长就越短。按照电磁波频率或波长的
顺序可以排列起一电磁波谱图,如图2.1所示。
图2.1电磁波及可见光波长分布
表2.1列出了电磁波段的详细划分及用途,这里涵盖了目前已经发现并得到广泛利用 的不同波长的各类电磁波,这里有波长达104m以上的,也有波长短到10-5 nm以下 的。下面对各种不同性质的电磁波分别作简单的介绍。

•c =
(2.1)
•式中:ε0为真空中的介电常数;μ0为真空中的磁导率。
•在国际单位制中,指定μ0 = 4π×10-7 H/m,由精密测定ε0=8. 854 ×10-12 F/m, 推算得c ≈ 3. 0 ×108m/s。
• 电磁波的波谱范围很广,包括无线电波、红外线、可见光、紫外线、X射线和
Y射线等。这些电磁波从波动特性的角度,本质上完全相同,只是波长不同而已。
无线电波我们无法用肉眼直接看见,而我们所讨论的可见光
却是我们睁开眼睛就能见到的。可见光其实也是电磁波,但只 占整个电磁波谱中很小的一部分,只有波长范围在400 ~ 760 nm之间的电磁波能使人眼产生光的感觉。有意思的是不同波 长的电磁波对人眼中所呈现的效果是各不相同,随着波长的缩 短,呈现的感官效果,也可称为“颜色”依次为红、橙、黄、绿 、青、蓝、紫。我们日常感受到的白光则是各种颜色的可见光 的混合,也即是400 ~ 760 nm之间的电磁波的混合。

光电子技术基础题库

光电子技术基础题库

光电子技术基础题库一.填空题1、光电子器件按功能分为光源器件、光传输器件、光控制器件、光探测器件、光存储器件,光源器件分为 光源和 光源。

2、某一半导体材料的禁带宽度为3.1 电子伏特,则该半导体本征吸收的长波极限为 纳米。

3、最早的电光源是炭弧光灯,最早的激光器是1960年由美国家的梅曼制作的激光器。

4、当受激辐射大于受激吸收的时候,物质对外表现为光 ,当受激辐射小于受激吸收时候,物质对外表现为光 。

5、激光器的基本结构包括 , , 。

6、受激辐射产生的光的特点是: 好, 好, 好。

7、发光的方式很多,但根据余辉的长短可将发光大致分成 和 两类。

8、光电探测器的物理效应可以分为三大类: 、和 。

9、太阳能电池是利用半导体的 原理直接把光能转化为电能的装置。

10、光纤由传导光的 和外层的 两同心圆形的双层结构组成,且12n n 。

外面再包以一次涂覆护套和二次涂覆护套。

11.根据液晶的分子不同可以将其分为 、 和 液晶。

12. 按照声波频率的高低以及声波和光波作用的长度不同,声光相互作用可以分为 衍射和 衍射 。

13. 在间接带隙半导体中,电子由价带顶跃迁到导带底时,需要同时吸收或发射 ,以补偿电子准动量的变化。

14.光波在光纤中传播有3种模式,导模(传输模),和。

15. 光在各向同性介质中传播时,复极化率的实部表示与频率的关系,虚部表示物质与频率的关系。

16、液晶显示所用的液晶材料是一种兼有和双重性质的物质,它的棒状结构在液晶盒内一般平行排列,但在电场作用下能改变其排列方向。

17、某一半导体材料的禁带宽度为2.6 电子伏特,则该半导体本征吸收的长波极限为纳米。

18、光纤通光电子器件按功能分为光源器件、光传输器件、光控制器件、光探测器件、光存储器件,光传输器件分为光学元件(如棱镜、透镜、光栅、分束器等)、和等。

19、受激辐射产生的光的特点是:好,好,好。

20、激光器按工作方式区分可分为和激光器。

21.光电子技术主要研究光与物质中的电子相互作用及其的相关技术,是一门新兴的综合性交叉学科。

第二章光学基础知识与光场传播规律

第二章光学基础知识与光场传播规律
只推导反射波、折射波和入射波的电场E 的Fresnel公式
方法和步骤
电场 E是矢量,可将其分解为一对正交的电场分量,一个振动方向垂直
于入射面,称为‘s’分量,另外一个振动方向在或者说平行于入射面, 称为‘p’分量。
首先研究入射波仅含‘s’分量和仅含‘p’分量这两种特殊情况。当两种分量 同时存在时,则只要分别先计算由单个分量成分的折射、反射电场; 然后根据矢量叠加原理进行矢量相加即可得到结果。
n1 cost n1 cost
tan(i tan(i
t ) t )
sin 2i sin 2i
sin 22 sin 22
tp
Et0 p Ei 0 p
2n1 cosi n2 cosi n1 cost
2cosi sint sin(i t )cos(i
t )
11/40
《光电子技术》● 第二章 光学基础知识与光场传播规律
菲涅耳公式
再利用E、H 的数值关系及其正交性关系,得到:
rp
Er0 p Ei 0 p
n2 cosi n2 cosi
n1 cost n1 cost
p分量的反射系数
菲 涅
tp
Et0 p Ei 0 p
2n1 cosi n2 cosi n1 cost
p分量的透射系数

公 式
rs
Er 0 s Ei 0s
n1 cosi n1 cosi
n2 cost n2 cost
sin(i sin(i
t ) t )
tani tani
tant tant
ts
Er 0 s Ei 0s
2n1 cosi n1 cosi n2 cost
2cosi sint sin(i t )

《光电子技术基础》第二版朱京平Chap3-113页精选文档

《光电子技术基础》第二版朱京平Chap3-113页精选文档
mdd22 xt m02xmd dxteE
不失普遍性,考虑入射光场为简谐电场情况,则瞬时电场E(t)与位置偏移x(t)为:
E(t)E()eit
x(t)x()eit
3.2.1 光与物质相互作用的经典理论分析
E(ω)、x(ω)表示对应于频率ω的振幅值,将x(t)、E(t)代入运动方程,并求解得:
着重光的单色性 和高速脉冲性
LED)
3.1 相干光源、非相干光源与激光
——非相干光源
来源:原子或分子体系的自发辐射
特点: 各原子自发辐射的光波方向、频率及
相位等都是不确定的、分散的 (与人为形成且相位一致的电波相比)
方向:四面八方无规则辐射 频谱:如同火花放电,是白噪声; 连续性:无数衰减脉冲光的集合(图(a)) 强度:光波亮度很低 ——杂乱无章的噪声光 ——传输衰减,出射光强恒小于入射光强。
pexRp e( ()eit)
p()em2(02E( 2))i
极化介质或分子的辐射次波与入射光波的相互干涉决定了光在介质中的传播规律。 设单位体积中原子数为N,则介质极化强度
PN pRP e ([)eit]
P ()N m 2e (0 2 E ( 2))i ()0E ()
D 0 n0 E r0 E E r0 E 1 0r E ν E
当时对激光的社会需求不迫切,还没有引起资助部门的注意, 学者受微波振荡器金属封闭腔模型束缚,没有找到技术关键
3.1 相干光源、非相干光源与激光 ——激光
1960年秋,美国 Javan等 1.15m连续振荡He-Ne气体激光器。 1962年,美国 Nathan、Hall和Quist 77K GaAs半导体激光器。 1966年,Sorokin 等 激光泵浦若丹明6G可调谐液体有机染料激光器。 1966年,美国 Dimmock、Bulter、Melngailis等 低温工作窄带半导
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光学作为一门学科的真正的发展约在17世纪。由1621年斯涅尔发现光的折 射定律,与早先发现的光的直线传播定律和反射定律一起构成了几何光学的基 础。
关于光的本性问题的研究和讨论很多,最终可以归纳为两种不同的学说,一 种是以牛顿(Newton)为代表的微粒理论,另一种是以惠更斯(C. Huygens)为代 表的波动理论。
19世纪60年代,麦克斯韦 (J. C. Maxwell ) 建立了电磁场理论,并认为光是 一定频率范围内的电磁波,具有一般电磁波的波动特性,为波动说建立起更为 坚实的理论基础。
Nano Porous Materials Group
但是,从19世纪末到21世纪初,人们又陆续发现了一系 列波动理论难以合理解释的现象,如黑体辐射、原子的线 状光谱和光电效应等。 以后,人们在努力解释有关光和物质相互作用的现象时, 越来越多地认识到必须承认光具有粒子特性。 1900年普朗克(M. Planck) 提出辐射的量子理论,1905年 爱因斯坦(Einstein)发展了普朗克的量子化假设,形成了 一种全新意义的光子学说。
1864年麦克斯韦发表了“电磁场的动力理论”这一著名论 文,建立了描述电磁场变化规律的麦克斯韦方程组及相关的理 论。1887年赫兹(H. Hertz)应用电磁振荡的方法证实了电磁 波的客观存在,并证明了电磁波和光波具有共同特性。
电磁场理论认为,光实际上是一定频率范围内的电磁波,电 磁波的传播实际上就是将变化的电磁场进行的传播。若在空间 某区域有变化电场E (或变化磁场H),那么将在邻近区域引起 磁场H的变化 (或电场E的变化),这种变化的电场和磁场相互 激发、相互感生,由近及远以有限的速度在空间传播,形成电 磁波。
19世纪初,杨 (T. Young) 和菲涅耳 (A. J. Fresnel) 等人在研究光的干涉、 衍射和偏振等现象时,发现波动理论可以解释这些现象,而微粒理论则无能为 力。1850年,佛科 (J. B. L. Foucauh)用实验方法测定了水中的光速,证实 水中的光速小于空气中的光速。这些事实都对波动理论提供了重要的实验论据。
电磁波的波谱范围很广,包括无线电波、红外线、可见光、紫外线、X射线和Y
射线等。这些电磁波从波动特性的角度,本质上完全相同,只是波长不同而已。
真空中电磁波的波长λ与频率υ的关系为
λ= c/υ
(2.2)
真空中电磁波的传播速度c ≈ 3. 0 ×108m/s为常量,所以频率不同的电磁波在真
空中具有不同的波长。频率愈高,对应的波长就越短。按照电磁波频率或波长的
(3)空间各点E和H都作周期性变化,并且它们的相位相同;
(4)电磁波在真空中的传播速度为
1
c=
00
(2.1)
式中:ε0为真空中的介电常数;μ0为真空中的磁导率。
在国际单位制中,指定μ0 = 4π×10-7 H/m,由精密测定ε0=8. 854 ×10-12 F/m,推 算得c ≈ 3. 0 ×108m/s。
Nano Porous Materials Group
微粒理论认为,光是由发光体发出的光粒子(微粒)流所组成的,这些光微粒 具有质量,与普通的实物小球一样遵从相同的力学规律。 而波动理论则认为,光和声一样是一种波动,是由机械振动的传播而引起的一 种波动。尽管这两种学说都能解释光的反射和折射现象,但是,在解释光线从 空气进入水中的折射现象时,微粒理论需要假设水中的光速大于空气中的光速; 而波动理论则需要假设水中的光速小于空气中的光速。 由于当时人们还不能准确地用实验方法测定光速,因而难以根据折射现象去判 断这两种学说的优劣。但由于牛顿在科学界的祟高威望,使得光的微粒理论在 很长一段时间内占据着统治地位。
这个光子学说的理论认为,光是具有一定能量和动量的粒 子所组成的粒子流,这种遵从崭新量子力学规律的粒子称 为光子。
于是,人们对光是具有波动和粒子的双重性质,即光具有 波粒二重性取得了较普遍的共识。
Nano Porous Materials Group
2.2光是一种电磁波
我们已经看到,光具有波动性,其波动特性符合电磁波的特 征,那么我们有必要再回过头来认识一下电磁波。
与此相关的电磁场的基本性质如下:
Nano Porous Materials Group
(1)在电磁场中,电场矢量E、磁场矢量H和传播方向k三者相互垂直。E,H和k三个 矢量的方向成右手螺旋关系;
(2)电磁波是横波,沿给定方向传播的电磁波,E与H的振动方向都是在各自垂直于 传播方向k的平面内,这一特性称为偏振性;
顺序可以排列起一电磁波谱图,如图2.1所示。
Nano Porous Materials Group
图2.1电磁波及可见光波长分布
Nano Porous Materials Group
表2.1列出了电磁波段的详细划分及用途,这里涵盖了目前已经发现并得到广泛利用 的不同波长的各类电磁波,这里有波长达104m以上的,也有波长短到10-5 nm以下 的。下面对各种不同性质的电磁波分别作简单的介绍。
第二章 光电子技术的基础光学知识
2.1光的基本属性—波粒二重
在日常生活中,光是最为人们所熟悉的东西。 关于光学的研究大概至少可以追溯到2000多年前。约在公元前400多年,中 国的《墨经》记载了可能是世界上最早的光学实验以及所获得的关于影、针孔 成像、镜面成像、虹霓和月蚀的知识。差不多相同的时期,西方也有不少关于 光学的实验和研究,公元前300年,希腊欧几里得的《反射光学》里就有光的 直线传播性和反射定律的叙述。
越洋长距离通讯、导航
0.1~1.5
AM广播、电报通讯
1.5~30
AM广播、电报通讯
30~300
FM广播、电视、导航
300~3×105
电视、雷达、导航
电磁波谱
无 长波 线 电 中波 波
短波
超短 波
微波
光 红外 波线
可见 光
主要形成手段 电子线路
Байду номын сангаас
波长范围 3~30km 200m~3km 10~200m 1~10m
行波管、调速 管、磁控管
1mm~1m
热体
激 0.76um~1mm 光
电弧灯
0.40~0.76um
频率范围/MHz 目前的主要应用
0.01~0.1
相关文档
最新文档