数值计算方法(第1章)
《数值计算方法》习题答案

《数值计算方法》课后题答案详解吉 林 大 学第一章 习 题 答 案1. 已知(1)2,(1)1,(2)1f f f −===,求()f x 的Lagrange 插值多项式。
解:由题意知:()01201212001020211012012202121,1,2;2,1,1()()(1)(2)()()6()()(1)(2)()()2()()(1)(1)()()3(1)(2)(1)(2)()2162nj j j x x x y y y x x x x x x l x x x x x x x x x x l x x x x x x x x x x l x x x x x x x x L x y l x ==−=====−−−−==−−−−+−==−−−−−+−==−−−−+−==×+×−∴∑()2(1)(1)131386x x x x +−+×=−+2. 取节点01210,1,,2x x x ===对x y e −=建立Lagrange 型二次插值函数,并估计差。
解11201201210,1,;1,,2x x x y y e y e −−======1)由题意知:则根据二次Lagrange插值公式得:02011201201021012202110.510.520.51()()()()()()()()()()()()()2(1)(0.5)2(0.5)4(1)(224)(43)1x x x x x x x x x x x x L x y y y x x x x x x x x x x x x x x x x e x x e e e x e e x −−−−−−−−−−−−=++−−−−−−=−−+−−−=+−+−−+22)Lagrange 根据余项定理,其误差为(3)2210122()1|()||()||(1)(0.5)|3!61max |(1)(0.5)|,(0,1)6()(1)(0.5),()330.5030.2113()61()0.2113(0.21131)(0.21130.5)0.008026x f R x x e x x x x x x t x x x x t x x x x t x R x ξξωξ−+≤≤==−−≤−−∈′=−−=−+=−==≤××−×−=∴取 并令 可知当时,有极大值3. 已知函数y =在4, 6.25,9x x x ===处的函数值,试通过一个二次插值函数求的近似值,并估计其误差。
数值计算方法习题答案

《数值计算方法》课后题答案详解吉 林 大 学第一章 习 题 答 案1. 已知(1)2,(1)1,(2)1f f f −===,求()f x 的Lagrange 插值多项式。
解:由题意知:()01201212001020211012012202121,1,2;2,1,1()()(1)(2)()()6()()(1)(2)()()2()()(1)(1)()()3(1)(2)(1)(2)()2162nj j j x x x y y y x x x x x x l x x x x x x x x x x l x x x x x x x x x x l x x x x x x x x L x y l x ==−=====−−−−==−−−−+−==−−−−−+−==−−−−+−==×+×−∴∑()2(1)(1)131386x x x x +−+×=−+2. 取节点01210,1,,2x x x ===对x y e −=建立Lagrange 型二次插值函数,并估计差。
解11201201210,1,;1,,2x x x y y e y e −−======1)由题意知:则根据二次Lagrange插值公式得:02011201201021012202110.510.520.51()()()()()()()()()()()()()2(1)(0.5)2(0.5)4(1)(224)(43)1x x x x x x x x x x x x L x y y y x x x x x x x x x x x x x x x x e x x e e e x e e x −−−−−−−−−−−−=++−−−−−−=−−+−−−=+−+−−+22)Lagrange 根据余项定理,其误差为(3)2210122()1|()||()||(1)(0.5)|3!61max |(1)(0.5)|,(0,1)6()(1)(0.5),()330.5030.2113()61()0.2113(0.21131)(0.21130.5)0.008026x f R x x e x x x x x x t x x x x t x x x x t x R x ξξωξ−+≤≤==−−≤−−∈′=−−=−+=−==≤××−×−=∴取 并令 可知当时,有极大值3. 已知函数y =在4, 6.25,9x x x ===处的函数值,试通过一个二次插值函数求的近似值,并估计其误差。
数值计算方法教案

数值计算方法教案第一章:数值计算概述1.1 数值计算的定义与特点引言:介绍数值计算的定义和基本概念数值计算的特点:离散化、近似解、误差分析1.2 数值计算方法分类直接方法:高斯消元法、LU分解法等迭代方法:雅可比迭代、高斯-赛德尔迭代等1.3 数值计算的应用领域科学计算:物理、化学、生物学等领域工程计算:结构分析、流体力学、电路模拟等第二章:误差与稳定性分析2.1 误差的概念与来源绝对误差、相对误差和有效数字误差来源:舍入误差、截断误差等2.2 数值方法的稳定性分析线性稳定性分析:特征值分析、李雅普诺夫方法非线性稳定性分析:李模型、指数稳定性分析2.3 提高数值计算精度的方法改进算法:雅可比法、共轭梯度法等增加计算精度:闰塞法、理查森外推法等第三章:线性方程组的数值解法3.1 高斯消元法算法原理与步骤高斯消元法的优缺点3.2 LU分解法LU分解的步骤与实现LU分解法的应用与优势3.3 迭代法雅可比迭代法与高斯-赛德尔迭代法迭代法的选择与收敛性分析第四章:非线性方程和方程组的数值解法4.1 非线性方程的迭代解法牛顿法、弦截法等收敛性条件与改进方法4.2 非线性方程组的数值解法高斯-赛德尔法、共轭梯度法等方程组解的存在性与唯一性4.3 非线性最小二乘问题的数值解法最小二乘法的原理与方法非线性最小二乘问题的算法实现第五章:插值与逼近方法5.1 插值方法拉格朗日插值、牛顿插值等插值公式的构造与性质5.2 逼近方法最佳逼近问题的定义与方法最小二乘逼近、正交逼近等5.3 数值微积分数值求导与数值积分的方法数值微积分的应用与误差分析第六章:常微分方程的数值解法6.1 初值问题的数值解法欧拉法、改进的欧拉法龙格-库塔法(包括单步和多步法)6.2 边界值问题的数值解法有限差分法、有限元法谱方法与辛普森法6.3 常微分方程组与延迟微分方程的数值解法解耦与耦合方程组的处理方法延迟微分方程的特殊考虑第七章:偏微分方程的数值解法7.1 偏微分方程的弱形式介绍偏微分方程的弱形式应用实例:拉普拉斯方程、波动方程等7.2 有限差分法显式和隐式差分格式稳定性分析与收敛性7.3 有限元法离散化过程与元素形状函数数值求解与误差估计第八章:优化问题的数值方法8.1 优化问题概述引言与基本概念常见优化问题类型8.2 梯度法与共轭梯度法梯度法的基本原理共轭梯度法的实现与特点8.3 序列二次规划法与内点法序列二次规划法的步骤内点法的原理与应用第九章:数值模拟与随机数值方法9.1 蒙特卡洛方法随机数与重要性采样应用实例:黑箱模型、金融衍生品定价等9.2 有限元模拟离散化与求解过程应用实例:结构分析、热传导问题等9.3 分子动力学模拟基本原理与算法应用实例:材料科学、生物物理学等第十章:数值计算软件与应用10.1 常用数值计算软件介绍MATLAB、Python、Mathematica等软件功能与使用方法10.2 数值计算在实际应用中的案例分析工程设计中的数值分析科学研究中的数值模拟10.3 数值计算的展望与挑战高性能计算的发展趋势复杂问题与多尺度模拟的挑战重点解析本教案涵盖了数值计算方法的基本概念、误差分析、线性方程组和非线性方程组的数值解法、插值与逼近方法、常微分方程和偏微分方程的数值解法、优化问题的数值方法、数值模拟与随机数值方法以及数值计算软件与应用等多个方面。
第一章 数值计算方法的基本概念

b−a [ f (a) + f (b)] 2
e = x − x∗
为近似值 x 的绝对误差,简称误差。
∗
(2.1)
一般情况下,我们只能知道近似值 x ,而不只准确值 x ,但可以根据测量工具或计算 的情况,对绝对误差的大小范围作出估计,即可以给出一个正数ε,使得
∗
e = x − x∗ ≤ ε
∗
(2.2)
1 1 11 ⎧ ⎪ x1 + 2 x 2 + 3 x3 = 6 ⎪ 1 1 13 ⎪1 ⎨ x1 + x 2 + x3 = 3 4 12 ⎪2 1 1 1 ⎪ x + x + x = 47 1 2 3 ⎪ 4 5 60 ⎩3
求解时,先将系数舍入成两位有效数字的数,变为
⎧ x1 + 0.5 x 2 + 0.33 x3 = 1.8 ⎪ ⎨ 0.50 x1 + 0.33 x 2 + 0.25 x3 = 1.1 ⎪0.33 x + 0.25 x + 0.20 x = 0.78 1 2 3 ⎩
按四舍五入取四位小数,可得 2 = 1.4142 ,前面已经提到,该数的绝对误差不超过末位 数字的半个单位,即
∗
2 − 1.4142 ≤
定义 2.1 设 x 的近似值
1 *10 − 4 = 0.00005 2
(a1 ≠ 0)
(2.6)
x ∗ = ±0.a1 a 2 L a n * 10 m
如果
x − x∗ ≤
§2
误差来源与误差的基本概念
2.1 误差的来源及分类 在数值计算中,误差是不可避免的。引起误差的因素很多,主要的原因有以下几种: 1.模型误差 解决实际问题的科学计算 ,首先要建立数学模型,即将实际问题经过 抽象合理简化,略去一些次要因素。因而它只是对所提出的问题的一种近似描述,包含有误 差,这种误差称为模型误差。 2.观察误差 在数学模型中总含有一些参数,如温度、长度、电压等,它们的值往往
第一章 数值计算方法 绪论

er
e x
因为
e x
e x
er
e x
x x
x
e(x x)
(e )2
xx x ( x e )
( 1
e x
)2
e x
相对误差也可正可负
相对误差限——相对误差的绝对值的上界
r
/* relative accuracy */
e x
x x x
r
Def 1.3 (有效数字/*Significant Digits*/ )
0
e
记为
I
* 0
则初始误差
E0
I0
I
0
0.5 108
此公式精确成立
1
e
1 0
xn
e0
dx
In
1 e
1 x n e1 dx
0
1 e(n 1 )
In
1 n1
I 1
1
1
I 0
0.36787944
... ... ... ...
I 10
1
10
I 9
0.08812800
I 11
1 11
I 10
0.03059200
求函数y y(x)在某些点
xi
n i 1
的近似函数值
数学问题 数值问题
数值问题的来源:
实际 问题
建立数学模型
数值 求解 问题
设计高效、可 靠的数值方法
数值 问题
重点讨论
近似结果
输出
上机 计算
程序 设计
可 收敛性:方法的可行性
则数
靠 性
稳定性:初始数据等产生的误差对结果的影响
值分
数值计算方法马东升等第 版习题解答

第1章 数值计算引论1.1 内容提要一、误差的来源数值计算主要研究以下两类误差。
1. 截断误差数学模型的准确解与用数值方法求得的解的差称为截断误差,又称为方法误差。
这种误差常常是由用有限过程代替无穷过程时产生的误差。
例如,要计算级数∑∞==+++++1!1!1!31!211k k n的值,当用计算机计算时,用前n 项(有限项)的和∑==+++++nk k n 1!1!1!31!211来代替无穷项之和,即舍弃了n 项后边的无穷多项,因而产生了截断误差∑∞+=1!1n k k2. 舍入误差由于计算机字长为有限位,原始数据和四则运算过程中进行舍入所产生的误差称为舍入误差。
例如,用3.141 59表示圆周率π时产生的误差0.000 002 6…,用0.333 33表示1÷3的运算结果时所产生的误差1÷3-0.333 33 = 0.000 003 3…都是舍入误差。
二.近似数的误差表示1. 绝对误差设x *是准值x 的一个近似值,称**)(x x x e -=为近似值x *的绝对误差,简称误差。
令|)(|*x e 的一个上界为*ε,即***|||)(|ε≤-=x x x e把*ε称为近似数*x 的绝对误差限,简称误差限。
2. 相对误差设*x 是精确值x 的一个近似值,称xx x xx e **)(-=为近似值x *的相对误差。
在实际应用中常取***)(xx x x e r -=为*x 的相对误差。
令相对误差绝对值 |)(|*x e r 的一个上界为ε*r,即 ****|||||)(|r r x x x x e ε≤-=把ε*r称为近似数*x 的相对误差限。
3. 有效数字对有多位数字的准确值四舍五入原则得到其前若干位的近似值时,该近似值的绝对误差不超过末位的半个单位。
设数x 的近似值m n x x x x 10.021*⨯±= ,其中,i x 是0~9之间的任一个数,但i x ≠0,n i ,2,1=是正整数,m 是整数,若nm x x -⨯≤-1021||*则称*x 为x 的具有n 位有效数字的近似值,*x 准确到第n 位,n x x x ,,,21 是*x 的有效数字。
第一章数值计算方法

*
x
r (x )
*
则称
r (x )
*
r (x )
*
为近似值 x 的相对误差限。
*
*
简记为 r
1.3.2 相对误差和相对误差限 例4. 甲打字每100个错一个,乙打字每1000个 错一个,求其相对误差 解: 根椐定义:甲打字时的相对误差
e
* r
1 100
100
乙打字时的相对误差
Tel:
86613747
E-mail: lss@ 授课: 68
学分:4
在数学发展中,理论和计算是紧密联系的。现代计算机
的出现为大规模的数值计算创造了条件,集中而系统的研究
适用于计算机的数值方法变得十分迫切和必要。数值计算方 法正是在大量的数值计算实践和理论分析工作的基础上发展
起来的,它不仅仅是一些数值方法的简单积累,而且揭示了
<0.5 10-4
m-n=1-n=-4 所以 n=5
x*= 3.1416有5位有效数字
关于有效数字说明 ① 用四舍五入取准确值的前n位x*作为近似值,则 x*必有n位有效数字。如3.142作为 的近似值 有4位有效数字,而3.141为3位有效数字 ② 有效数字相同的两个近似数,绝对误差不一定 相同。例如,设x1*=12345,设x2*=12.345,两者 均有5位有效数字但绝对误差不一样 x- x1* =x- 12345 ≤ 0.5= 1/2 100 x- x2* =x- 12.345≤0.0005=1/210-3 ③ 把任何数乘以10p(p=0,1,…)不影响有效位数 ④ 准确值具有无穷多位有效数字,如三角形面积 S=1/2ah=0.5ah 因为0.5是真值,没有误差 *=0,因此n,准确值具有无穷位有效数字
第一章数值计算方法绪论

er ( y )
e ( y ) f(x)f(x) x xx f ( x ) xx f(x) x
x f(x) f(x)
er (x)
相对误差条件数
注:关于多元函数 yf(x1,x2,...xn ,)可类似讨论, 理论工具:Taylor公式
2、向后误差分析法:把舍入误差的累积与导出 A 的已
数值计算方法
第0章 课程介绍
什么是数值计算方法? 数值计算方法特点 数值计算方法重要性 本课程主要内容 本课程要求
什么是数值计算方法?
实际 问题
建立数学模型
近似结果 输
上机
出
计算
设计高效、 可靠的数值 方法
程序 设计
什么是数值计算方法? 数值计算方法是一种研究并解决数学问题的数值
若 x 的每一位都是有效数字,则x 称是有效数。
特别地,经“四舍五入”得到的数均为有效数
5.定理:
将 x 近似值 x 表示为 x 0.a 1a2 ak an 10m,
若 x * 有k位有效数字,则
; | er
|
1 2a1
10(k1)
x 反之,若
er
1 , 10(k1) 则
注:(1)
近似数
x
1
,
x
2
四则运算得到的误差分别为
| e(x1 x2)| |e(x1)e(x2)|,
er ( x1 x2 )
e(x1) x1 x2
e(x2) x1 x2
,
(避免两近似数相减)
e
(
x x
1 2
)
x1e(x2) x2e(x1) x22
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d 2 所以 ml mg sin 2 dt 2 d g 即 sin 0 2 dt l g 当很小时, sin , 令 l d 2 2 则有 0 2 dt
2
解微分方程得1, 2 ,故有
c1 cost c2 sin t c c . sin(t )
x e (x ) x e (x )
* 2 r * 1 * 1 r * 2
同理得
x1* * * er ( * ) er ( x1 ) er ( x2 ) x2
* * * x1* x2 e( x1* ) x1 e ( x2 ) e( * ) * 2 x2 ( x2 )
设函数y f ( x), 当x用近似数x 代替
0
由Newton Leibniz公式无法求解,仅可用数值方 1 法求解。仍选择n 2, h ,的复化simpson公式进 2 行数值求解有 I 2 0.746855379 。
例1.1.3
求解初值问题
2x dy y y dx y ( 0) 1 解 该方程是Bernoulli 方程,令u y 2解得 2 x 1。本题数值方法很多,如
1 0.00000734 ...... 10 4 2 * 称 3.1416 具有五位有效数字的近似数。
1 mn 设x 10 0.a1a2 a3 ...an ..., 若 10 则 2 an为有效数字,且a1 , a2 ...an 1均为有效数。
m
在计算机中表示为:
数值计算方法
主讲 刘玲 南京大学计算机科学与技术系
第1章 绪论
随着科学技术的飞速发展,科学计算愈 来愈显示出其重要性。科学计算的应用 之广已遍及各行各业,例如:气象资料 的分析图像,飞机、汽车及轮船的外形 设计,高科技研究等都离不开科学计算。 因此,作为科学计算的数学工具数值计 算方法已成为各高等院校数学、物理和 计算机应用专业等理工科本科生的专业 基础课,也是工科硕士研究生的学位必修 课。
2 1 2 2
因此
l T 2 g
2
现在我们来分析单摆周期求解过程的误差情况:
忽略空气阻力 1 模型误差 忽略o点处的摩擦力
0
2 0 截断误差: sin 由Taglor展式: sin [
3
3! 5! 30 观察误差:g 9.8米 / 秒 2 , l长度 4 0 舍入误差.: ,,*, /, 开方
* *
* x f (x ) * 若记C | f ( x ) |, C r | |, 当C 1, * f (x ) *
C r 1时有 e( f ) e( x * ) er ( f ) er ( x )
*
这表明当C 1, C r 1时,函数值的误差 是可以控制的,或是稳定的。
*
在实际计算绝对误差和相对误差时, 哟由于准确 书 x 未知,因此常用
* e ( x ) * er ( x ) * x
表示 er ( x* ) 。
有效数字
在工程上,误差的概念就转化为有效数字。
例如 则
3.14159265 ......的近似数 3.1416
*
e( * ) 3.1416 3.14159265 ...
数值计算方法——〉程序设计——〉计算结 果:根据数学模型提出求解的数值计算方法, 直到编出程序上机算出解,是计算数学的任 务。
数值计算方法重点研究:求解的数值方 法及与此有关的理论
包括:方法的收敛性,稳定性,误差分析, 计算时间的最小(也就是计算费用),占用 内存空间少.
有的方法在理论上虽不够严格,但通过 实际计算,对比分析等手段,被证明是 行之有效的方法,也可以采用。因此, 数值分析既有纯数学高度抽象性与严密 科学性的特点,又有应用的广泛性与实 验的高度技术性特点,是一门与使用计 算机密切结合的实用性很强的数学课程。
数值分析或数值计算方法主要是研究如 何运用计算机去获得数学问题的数值解 的理论和方法.对那些在经典数学中,用解 析方法在理论上已作出解的存在,但要求 出他的解析解又十分困难,甚至是不可能 的这类数学问题,数值解法就显得不可缺 少,同时有十分有效.
计算机解决科学计算问题时经历的几个 过程
实际问题——〉数学模型——〉数值计算方 法——〉程序设计——〉上机运行求出解 实际问题——〉数学模型:由实际问题应用 科学知识和数学理论建立数学模型的过程, 是应用数学的任务。
5
...]
误差的分类
模型误差 从实际问题建立的数学模型往 往都忽略了许多次要的因素,因此产生的 误差称为模型误差. 观测误差 一般数学问题包含若干参数,他 们是通过观测得到的,受观测方式、仪器 精度以及外部观测条件等多种因素,不 可能获得精确值,由此而来产生的误差 称为观测误差。
I1 4 arctan x |1 0 4 arctan1 4 arctan 0 1 数值方法有多种,如选择n 2, h , 被积函数 2 4 f ( x) 的复化Simpson公式有 2 1 x
h 1 1 3 I1 [ f (0) 4 f ( ) 2 f ( ) 4 f ( ) f (1)] 6 4 2 4 3.141568627 1 2 -x 2 x (2)I 2 e dx,由于f ( x) e 无原函数,因此,
* *
绝对误差,相对误差,有效数是度量近似数 精度的常用三种。实际计算时最终结果均以 有效数给出。同时也就隐含了绝对误差和相 对误差界。
如
*
x 2 , x* 1.4142 , m 1, n 5
1 4 则x 的绝对误差界 10 2
而相对误差界估计为 1 4 10 * 5 2 | e r ( x ) | * 4 10 1.4142 x 即 r 4 10 5
一般分别称C , Cr为f ( x)在绝对意义下 和相对意义下的条件数 。 当C 1称f ( x)为良态; 当C 1称f ( x)为病态。
例题
例1.2.2 讨论函数
*
f ( x) x x 10100 在正根附近的性态。 解 由f ( x) 0解得x1 101, x2 100 x 100
*
计算函数值则f ( x * )时,则误差为 e( f ) f ( x * ) f ( x ) df ( x * )
* * * * f ( x )( x x) f ( x )e( x )
或
x f ( x ) * er ( f ) er ( x ) * f (x )
解析解y
我们选择经典的四阶R K方法 :
1 yn 1 yn 6 (k1 2k 2 2k3 k 4 ) k hf (t , y ) n n 1 h k1 k 2 hf (t n , yn ) 2 2 k hf (t h , y k 2 ) n n 3 2 2 k 4 hf (t n h, yn k3 )) 2x 这里, f ( x, y ) y ;h为步长。 y
2.04939 2.04939
2.14476 2.14476 2.23607 2.23607 … …
1.2误差概念和有效数
在任何科学计算中其解的精确性总是相
对的,而误差则是绝对的.我们从下面这个
例子就可以了解误差产生的原因.
例1.2.1 试求摆长为L的单摆运动周期.
l 在物理学中我们知道单摆周期T 2 g 其中 : l为摆长;g为自由落体加速度;m是质点 的质量。如图所示:由牛顿定律 d f mg sin ma ml 2 dt
法计算的,但有可能给出估计。误
差界就是用于误差估计的。
误差估计
定义1.2.2 设x 是精确数x的一个近似数,
*
若有正数和 r 满足 : | e( x ) || x x |
* * * | x x| * | er ( x ) | r | x|
则称和 r为近似数x 的绝对误差界和相对误差界。
数学问题的数值解法例示
例1..1.1试求函数方程x=cosx在区间 内的 一个根。 解 令f ( x) x cos x, 易知f ( x)在[0, ]上是连续函数, 且
(0, ) 2
f (0) f ( ) (1) * 0 2 2
2
由零点定理知, 方程f ( x) 0在(0, )内至少有一个零点. 2 又由f ( x) 1 sin x 0, x (0, ) 2 知上述零点唯一.
* 1
* 2
e( x ) e( x )
* 1 * 2
er ( x x ) d ln( x x ) d (ln x ln x )
* * 1 2 * * 1 2 * 1 * 2 * * * * d ln x1 d ln x2 er ( x1 ) er ( x2 )
* * * * * * * 故:e( x1* x2 ) x1* x2 er ( x1 x2 ) x1 x2 [er ( x1* ) er ( x2 )]
截断误差 在求解过程中,往往以近似替 代,化繁为简,这样产生的误差称为截 断误差。 舍入误差 在计算机上运算时受机器字长 的限制,一般必须进行舍入,此时产生 的误差称为舍入误差。
误差和有效数字
定义1.2.2
*
设x *为准确数x的一个近似数, 称
*
e( x ) x x 和 e( x ) er ( x ) ( x 0) x 为近似数x *的绝对误差和相对误差。
现取h=0.05,其结果见下表: xn yn y xn yn y