光纤通信第07篇
《光纤通信》课件

光纤放大器增强信号强度,提高传输距离。
光纤芯层和包层
光纤由芯层和包层构成,光信号通过芯层传输。
光纤接口技术
光纤连接器和光纤插入损耗技术确保信号的高 效传输。
光纤通信的优势
光纤通信相比传统的电缆通信具有如下优势:
1 高带宽
光纤能传输更大容量的数据。
2 低损耗
光纤的传输损耗较小,信号质量更高。
光纤通信的挑战
1 成本
光纤通信的建设和维护成本相对较高。
2 光纤连接
光纤连接需要特殊的技术和设备。
3 光纤安全
保护光纤通信的安全性是一个重要的挑战。
光纤通信的未来展望
5G技术
光纤通信将为5G技术的发展 供高速、稳定的传输支持。
物联网
光纤通信的广泛应用将助力物 联网的快速发展。
量子通信
光纤通信在量子通信领域有着 巨大的潜力和应用前景。
《光纤通信》课件
光纤通信是一种利用光信号传输数据的先进技术。它在现代通信领域有着广 泛的应用和巨大的优势。
发展历程
1
20世纪60年代
光纤通信的概念首次提出。
20世纪70年代
2
光纤通信的第一条实用化系统推出。
3
20世纪80年代
光纤通信开始在长距离通信中广泛应用。
光纤通信原理
全内反射原理
光信号在光纤内不断发生全内反射,实现信号 的传输。
3 抗干扰
光纤对电磁干扰和信号窃听具有较强的抵抗 能力。
4 长距离传输
光纤可以实现长距离的高速传输。
光纤通信的应用
电信网络
光纤通信是现代电信网络的主要传输方式。
数据中心
光纤连接数据中心内的服务器,实现高速数据传输。
光纤通信原理:光信号在光纤中的传播

光纤通信原理:光信号在光纤中的传播光纤通信是一种通过光信号在光纤中传播来进行信息传输的高速通信技术。
以下是光纤通信的基本原理:1. 基本组成:光源:光纤通信系统的起点是光源,通常使用激光器或发光二极管产生光信号。
光纤:光纤是一根细长的玻璃或塑料纤维,具有高折射率,使光信号能够在其内部发生全反射。
接收器:光接收器用于接收光纤中传输的光信号,并将其转换为电信号。
2. 光信号传播过程:全反射:光信号在光纤中传播时,由于光纤的高折射率,发生全反射,使光信号一直保持在光纤内部。
多模和单模:光纤通信可以采用多模光纤或单模光纤。
多模光纤允许多个光模式传播,而单模光纤只允许单个光模式传播,提高了传输距离和带宽。
3. 传输特性:低损耗:光纤通信的传输损耗相对较低,因为光信号在光纤中的传播经历的全反射减小了信号的衰减。
高带宽:光纤通信支持高带宽传输,允许传输大量数据。
抗干扰:光纤通信对电磁干扰具有较强的抗干扰能力,因为光信号在光纤中传播不受电磁场影响。
4. 信号调制与解调:调制与解调:光信号可以通过调制技术携带不同的信息,如振幅调制(AM)、频率调制(FM)和相位调制(PM)。
接收端需要解调光信号以还原传输的信息。
5. 应用领域:通信网络:光纤通信广泛应用于长距离通信网络,包括电话、互联网和有线电视等。
医疗设备:在医疗领域,光纤通信用于内窥镜和激光手术设备,实现高效的图像传输和精准的激光操作。
传感器系统:光纤传感器系统利用光纤的特性,用于测量温度、压力和应变等物理量。
6. 光纤网络拓扑:星型拓扑:在光纤通信网络中,通常采用星型拓扑结构,其中中心设备连接到多个终端设备,使得光信号能够在不同设备之间传输。
7. 光纤技术进展:光纤放大器:引入了光纤放大器,如光纤放大器(EDFA),用于放大光信号,增加通信距离。
光纤通信系统:光纤通信系统的进一步发展包括光波分复用技术(WDM)、光时分复用技术(OTDM)等,提高了系统的容量和效率。
光纤通信

2
§4.3.1 光纤通信原理及构成
光纤通信系统的基本组成如图4.3.1-1所示,主 所示, 光纤通信系统的基本组成如图 所示 要由3部分构成:光发送机,光纤传输线及光接收机。 要由 部分构成:光发送机,光纤传输线及光接收机。 部分构成
第 三 章 光 电 信 息 转 换
光发送机
光接收机
发送机
接收机
图4.3.1-1光纤通信系统的基本组成
电信号输入 输入 接口 线路 编码 调制 电路 光源 光信号输出
制电 路
第 三 章 光 电 信 息 转 换
图4.3.1-6 数字光发送机的组成框图
1 码 码
线路编码 数字光纤通信 光 示 1 码 光 制 电 示 0
§4.3.1光纤通信原理及构成
目录 章首 节首 上一张 下一张 结束
14
对来自电端机的信号进行线路编码,主要目的是: 对来自电端机的信号进行线路编码,主要目的是: (1) 限制信号带宽,减小功率谱中的高低频分量。 限制信号带宽,减小功率谱中的高低频分量。 (2) 尽可能减少连“1” 码和“0”码的数目,使“1” 尽可能减少连“ ” 码和“ ”码的数目, ” 码和“ ” 码和“0”码 匀分 , 分 。
所有的光线都将被限制在光纤芯中, 所有的光线都将被限制在光纤芯中,这就是光纤 导光的基本原理。 导光的基本原理。 为实现全反射,对光线的入射角有一个最大值限制, 为实现全反射,对光线的入射角有一个最大值限制, 4.3.1-1 有 成 , , 4.3.1-2
第 三 章 光 电 信 息 转 换
n0 sinθi = n1 cos c = (n − n2 ) ϕ
第 三 章 光 电 信 息 转 换
BLD λ < 1 ∆
光纤通信原理及基础知识

t D • Δ PMD= pmd * LΛ0.5
•
PMD Link
y=
1
n
n k 1
x
2 k
1 2
• PMDQ :99.99% probability of 100000 y
光纤的基本参数
光纤的光学及传输特性参数之一------偏振模色散受限的最大理 论传输距离
偏振模色散受限的最大理论传输距离
光纤的通信原理及基础知识
第一章 光纤通信的基本原理 第二章 光纤的基本结构和分类 第三章 光纤的基本参数 第四章 光纤的制造方法
第一章 光纤、光缆的基本知识
§1.1 光纤通信的基本原理
信号 处理
发送端
光波导
信号 处理
接收端
光纤通信的基本原理
频谱分配
电磁波谱
低频
高频
微波
直流电
LW MW KW UKW dm cm
微观弯曲损耗:是指光纤受到不均匀应力的作
用,光纤轴产生的微小不规则弯曲所引入的附加损耗。
光纤的基本参数
参数典型值 光纤的光学及传输特性参数之一------
• 模场直径: • 衰减系数:
• 色散系数:
• 偏振模色散:
• 截止波长: • 弯曲损耗:
•1310nm: 8-10m; 1550nm: 9-11m
包层(SiO2+F )掺氟二氧化硅
125 µm
标准单模光纤
标准梯度折射率分布多模光纤
涂层(acrylic) 250 µm
涂层 250 µm
涂层
力学影响的防护
塑料光纤
涂层 1000 µm
光纤的基本结构和分类
光纤的分类
按材料分类:
光纤通信调研报告

光纤通信调研报告光纤通信综述报告前言:孙老师,您好!在您给我们从光纤的历史、光纤通信的特点、光纤通信的应用给我们介绍了光纤通信之后,我对光纤通信有了一个更深层次的认识,也引发了我对光纤通信的兴趣,下面就是我结合您给我们讲的知识和我课外了解、收集的材料写的关于光纤通信的综述报告。
摘要:光纤通信技术(optical fiber munications)从光通信中脱颖而出,已成为现代通信的主要支柱之一,在现代电信网中起着举足轻重的作用。
光纤通信作为一门新兴技术,其近年来发展速度之快、应用面之广是通信史上罕见的,也是世界新技术革命的重要标志和未来信息社会中各种信息的主要传送工具。
一、光纤通信的发展史1、世界光纤通信发展史光纤的发明,引起了通信技术的一场革命,是构成21世纪即将到来的信息社会的一大要素。
1966年出生在中国上海的英籍华人高锟,发表论文《光频介质纤维表面波导》,提出用石英玻璃纤维(光纤)传送光信号来进行通信,可实现长距离、大容量通信。
1970年损失为20db/km的光纤研制出来了。
据说康宁公司花费3000万美元,得到30米光纤样品,认为非常值得。
这一突破,引起整个通信界的震动,世界发达国家开始投入巨大力量研究光纤通信。
1976年,美国贝尔实验室在亚特兰大到华盛顿间建立了世界第一条实用化的光纤通信线路,速率为45mb/s。
在上世纪70年代末,大容量的单模光纤和长寿命的半导体激光器研制成功。
光纤通信系统开始显示出长距离、大容量无比的优越性。
1996年wdm技术取得突破,贝尔实验室发展了wdm技术,美国mci公司在1997年开通了商用的wdm线路。
光纤通信系统的速率从单波长的2.5gb/s和10gb/s爆炸性地发展到多波长的tb/s传输。
当今实验室光系统速率已达10tb/s,几乎是用之不尽的,所以它的前景辉煌。
2、中国光纤通信发展史1973年,世界光纤通信尚未实用。
邮电部武汉邮电科学研究院(当时是武汉邮电学院)就开始研究光纤通信。
《光纤通信原》课件

光放大技术
光放大技术的原 理:通过放大光 信号,提高光信 号的传输距离和
传输质量
光放大技术的种 类:包括光纤放 大器、半导体光 放大器、光栅放
大器等
光放大技术的应 用:在光纤通信 系统中,光放大 技术可以提高光 信号的传输距离 和传输质量,降
低传输损耗
Байду номын сангаас
光放大技术的发 展趋势:随着光 纤通信技术的不 断发展,光放大 技术也在不断进 步,未来可能会 出现更高效、更 稳定的光放大技
添加标题
添加标题
添加标题
添加标题
色散:光在光纤中传输时,由于不 同波长的光在光纤中的传播速度不 同,导致光脉冲在传输过程中发生 展宽和变形的现象
光纤损耗和色散的测量:通过光功 率计、光谱分析仪等仪器进行测量 和评估
光纤通信系统的可靠性
光纤通信系统的可靠性主要取决于光纤的传输性能和设备的稳定性 光纤的传输性能包括光纤的损耗、色散、非线性效应等 设备的稳定性包括设备的可靠性、安全性、可维护性等 光纤通信系统的可靠性还受到环境因素的影响,如温度、湿度、电磁干扰等
光纤通信发展历程
添加标题
1966年,英国科学家高锟提出光纤通信理论
添加标题
1976年,美国贝尔实验室研制出世界上第一根 实用光纤
添加标题
1988年,欧洲电信标准协会(ETSI)发布光纤通 信标准
添加标题
1970年,美国科学家凯文·凯利和乔治·哈克曼首 次实现光纤通信实验
添加标题
1980年,美国电信公司AT&T推出商用光纤通信 系统
光纤通信新技术:WDM、DWDM、OTDM等 发展趋势:高速、大容量、长距离、高可靠性 应用领域:电信、互联网、广播电视等 技术挑战:信号失真、色散、非线性效应等
光纤通信基本知识

光纤通信基本知识第一篇:光纤通信基本知识一、光纤通信的基本知识(一)光纤通信的概念1870年的一天,英国物理学家丁达尔到皇家学会的演讲厅讲光的全反射原理,他做了一个简单的实验:在装满水的木桶上钻个孔,然后用灯从桶上边把水照亮。
结果使观众们大吃一惊。
人们看到,放光的水从水桶的小孔里流了出来,水流弯曲,光线也跟着弯曲,光居然被弯弯曲曲的水俘获了。
这些现象引起了丁达尔的注意,经过他的研究,发现这是由于全反射的作用,由于水等介质密度由于比周围的物质(如空气)大,即光从水中射向空气,当入射角大于某一角度时,折射光线消失,全部光线都反射回水中。
表面上看,光好像在水流中弯曲前进。
后来人们造出一种透明度很高、粗细像蜘蛛丝一样的玻璃丝──玻璃纤维,当光线以合适的角度射入玻璃纤维时,光就沿着弯弯曲曲的玻璃纤维前进。
由于这种纤维能够用来传输光线,所以称它为光导纤维。
(视频)光纤通信的原理是:在发送端首先要把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。
(视频)(二)光纤通信的发展光纤通信是现代通信网的主要传输手段,它的发展历史只有一二十年,已经历三代:短波长多模光纤、长波长多模光纤和长波长单模光纤。
采用光纤通信是通信史上的重大变革,美、日、英、法等20多个国家已宣布不再建设电缆通信线路,而致力于发展光纤通信。
中国光纤通信已进入实用阶段。
(三)光纤通信的优缺点1、光纤通信的优点现代通信网的三大支柱是光纤通信、卫星通信和无线电通信,而其中光纤通信是主体,这是因为光纤通信本身具有许多突出的优点:①频带宽,通信容量大。
光纤可利用的带宽约为50000GHz,1987年投入使用的1.7Gb/s光纤通信系统,一对光纤能同时传输24192路电话,2.4Gb/s系统,能同时传输30000多路电话。
07.相干光通信系统讲解

7.1 相干检测基本原理
在外差检测中,L=S+IF,IF为中频频 率(一般为几十到几千MHz); 在零差检测中,IF=0,即L=S。
7.1 相干检测基本原理
设ES(t)和EL(t)方向互相平行,且均在探测 器表面内,则检测的光电流正比于入射光 强(总电场平方)。入射光强为
7.1 相干检测基本原理
2ASK信号解调原理
2ASK信号解调波形
2. FSK频移键控 若正弦载波的频率随二进制基带信号在f1和 f2两个频率点间变化,则产生二进制移频键 控信号(2FSK)。 二进制移频键控信号可以看成是两个不同 载波的二进制振幅键控信号的叠加。 2FSK信号能够采用非相干解调(包络检波法) 和相干解调(同步检测法)。
2FSK时间波形
2FSK调制原理
2FSK解调原理
2FSK解调波形
3. PSK相移键控 正弦载波的相位随二进制数字基带信号离 散变化,则产生二进制移相键控(2PSK)信 号。 2PSK信号的解调通常都是采用相干解调。
2PSK时间波形
2PSK调制原理
2PSK解调原理
2PSK解调波形
7.1 相干检测基本原理
同时注意到式中的相位角,本振相位和信 号相位是直接相加的,因此,本振相位的 任何变化都将干扰信号相位中包含的信息, 这就是说,本振光的相位稳定是很重要的。
7.2 相干光通信系统的组成
相干光通信系统由光发射机、光纤和光接 收机组成
7.2 相干光通信系统的组成
1.光发射机 由光频振荡器发出相干性很好的光载波通 过调制器调制后,变成受数字信号控制的 已调光波,并经光匹配器后输出,这里的 光匹配器有两个作用:一是使从调制器输 出已调光波的空间复数振幅分布和单模光 纤的基模之间有最好的匹配;二是保证已 调光波的偏振态和单模光纤的本征偏振态 相匹配。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ê(2)
人们希望放大器的增益在很宽的频带 内与波长无关。这样在应用这些放大器的 系统中,便可放宽单信道传输波长的容限, 也可在不降低系统性能的情况下,极大地 增加WDM系统的信道数目。
Ê(3)
由于信号放大过程消耗了高能级上粒 子,因而使增益系数减小,当放大器增益 减小为峰值的一半时,所对应的输出功率 就叫饱和输出功率,这是放大器的一个重 要的参数,饱和功率用Pouts表示。
ý7.2.1 掺铒光纤放大器的工作原
理
第五章已经介绍过激光器的工作原理: 经泵浦源的作用,工作物质粒子由低能级 跃迁到高能级(一般通过另一辅助能级), 在一定泵浦强度下,得到了粒子数反转分 布而具有光放大作用。当工作频带范围内 的信号光输入时便得到放大。这也就是掺 铒光纤放大器的基本工作原理。
只是EDFA(及其他掺杂光纤放大器)细 长的纤形结构使得有源区能量密度很高, 光与物质的作用区很长,有利于降低对泵 浦源功率的要求。
š2. EDFA
图7.9所示是掺铒硅光纤的g-λ曲线, 从图中可以看出增益系数随着波长的不同 而不同。
EDFA实现宽频带和增益平坦度经过 了3个阶段,如表7.1所示。
光纤在1.55μm低损耗区具有200nm带 宽 , 而 目 前 使 用 的 E D FA 增 益 带 宽 仅 为 35nm左右。
.
(2) 耦合效率高。因为是光纤型放大 器,易于光纤耦合连接,也可用熔接技术 与传输光纤熔接在一起,损耗可降至0.1dB, 这样的熔接反射损耗也很小,不易自激。
(3) 能量转换效率高。激光工作物质集 中在光纤芯子,且集中在光纤芯子中的近 轴部分,而信号光和泵浦光也是在近轴部
š4.
Ê(1) Ê(2)
图7.5所示表示噪声指数与输出光功率之间 的关系。
Ê(3)
同向泵浦式EDFA的饱和输出光功率最小。
图7.5 噪声指数与输出功率之间的关系
ý7.2.3EDFA
š1. EDFA
增益系数g(z)与高能级和低能级的粒 子数目差及泵浦功率有关,对增益系数g(z) 在整个掺铒光纤长度上进行积分,就可求 出光纤放大器的增益G,所以,放大器的 增益应与泵浦强度及光纤的长度有关。
光放大器还将促进光孤子通信技术的 实用化。光孤子通信是利用光纤的非线性 来补偿光纤的色散作用的一种新型通信方 式。
ý7.1.2
光放大器的发展最早可追溯到1923年 A·斯梅卡尔预示的自发喇曼散射。1928年 印度加尔各答大学的喇曼观测到自发喇曼 效应。
ý7.1.3
光放大器按原理不同大体上有三种类 型。
泵浦效率Wp可以用来衡量泵浦的有效 性,其表达式如下:
Wp=放大器增益(dB)/泵浦功率(mW)
ý7.2.2 掺铒光纤放大器的结构
š1.
在同向泵浦方案中,泵浦光与信号光 从同一端注入掺铒光纤。
š2.
反向泵浦,泵浦光与信号光从不同的 方向输入掺杂光纤,两者在掺铒光纤中反 向传输。
š3.
为了使掺铒光纤中的铒离子能够得到充分 的激励,必须提高泵浦功率。
以1989年诞生的掺铒光纤放大器 (Erbium Doped Fiber Amplifier,EDFA)代 表的光放大器技术可以说是光纤通信技术 上的一次革命。
光放大器在光纤通信系统目前最重要 的应用就是促使了波分复用技术 (Wavelength Division Multiplexing,WDM) 走向实用化。
(3) 半导体激光放大器。其结构大体 上与激光二极管(Laser Diode,LD)相同。
这几种类型的光放大器的工作原理和 激励方式各不相同。
ý7.1.4 光纤放大器的重要指标
š1.
Ê(1) 增益G与增益系数g
放大器的增益定义为
式 中 : Pout,Pin 分 别 为 放 大 器 输 出 端 与 输 入端的连续信号功率。
第七章 光 放 大 器
7.1 光放大器概述 7.2 掺铒光纤放大器 7.3 光纤喇曼放大器 7.4 其他光放大器
7.1 光放大器概述
ý7.1.1 光放大器在现代光纤通信
光纤通信中用光纤来传输光信号。光 纤的中继距离受限于光纤的损耗和色散。 就损耗而言,目前光纤损耗典型值在 1.31μm波段为0.35dB/km左右,在1.55μm 波段为0.25dB/km左右。
由于放大器中产生自发辐射噪声,使 得放大后的信噪比下降。它定义为输入信 噪比与输出信噪比之比。
(SNR)in和(SNR)out分别代表输入与输 出的信噪比。它们都是在接收机端将光信 号转换成光电流后的功率来计算的。
7.2 掺铒光纤放大器
掺铒光纤放大器是将掺铒光纤在泵浦 源的作用下而形成的光纤放大器。对这种 掺杂光纤放大器影响较大的工作可追溯到 1963年对玻璃激光器的研究。
š3. EDFA
EDFA用作线路放大器是它在光纤通 信系统的一个重要应用。
š4. EDFA
EDFA可在宽带本地网,特别在电视 分配网中得到应用。
ý7.2.5 掺铒光纤放大器的优缺点
EDFA之所以得到迅速的发展,源于 它的一系列优点。
(1) 工作波长与光纤最小损耗窗口一 噪声,放大器噪声使 信号的信噪比(Signal-to-Noise Ratio,SNR) 下降,造成对传输距离的限制,是光放大 器的另一重要指标。
Ê(1)
光纤放大器的噪声主要来自它的放大 自发辐射(Amplified Spontaneous Emission, ASE)。
Ê(2)
(1) 掺杂光纤放大器,就是利用稀土 金属离子作为激光工作物质的一种放大器。
(2) 传输光纤放大器,其中有受激喇 曼散射(Stimulated Raman Scattering, SRS)光纤放大器、受激布里渊散射 (Stimulated Brilliouin Scattering,SBS)光 纤放大器和利用四波混频效应(FWM)的光 放大器等。
图 7 9 掺 铒 离 子 硅 光 纤 的
曲 线
g-λ
š3. EDFA
EDFA的噪声系数Fn决定于自发辐射, 即噪声系数与粒子反转差ΔN有关。
ý7.2.4 掺铒光纤放大器的系统应用
š1. EDFA
由于EDFA的低噪声特性,使它很适 于作接收机的前置放大器。
š2. EDFA
功率放大器是将EDFA直接放在光发 射机之后用来提升输出功率。