生命科学导论结课论文.doc
《生物科学导论》结课论文优秀范本

《生命科学导论》结课报告姓名:詹晓琴学号:1000530234专业:商学院10级电子商务《生命科学导论》主要涵盖的内容,非生命科学专业本科生学习《生命科学导论》课程的意义所有的生物都是由一个或多个细胞组成的,细胞是一切生命活动的基础,细胞是生物的基本组成单位,生命活动的结构基础是细胞内严密组织和高度有序且动态的结构体系,新陈代谢、生长和运动是生命的本能;生命通过繁殖而延续,遗传和变异是生物进化的基础,DNA 是生物遗传的基本物质;生物具有个体发育的经历和系统进化的历史;生物对外界刺激可产生应激反应并对环境具有适应性。
生命是集合这些主要特征的物质存在形式。
“生命科学导论”是生命科学的入门科学。
基础生命科学涵盖的基本内容包括:生命的化学组成、细胞的结构与功能、能量与代谢、繁殖与遗传、遗传信息的传递与控制、生物的起源进化与系统分类、生物个体的发育、结构、功能和行为、生态环境、生物技术和生命科学的前沿与新进展等。
现代生命科学研究正在由宏观向微观深入发展,分子生物学正在向揭示生命的本质方向迈进。
创新性的科学研究推动了生命科学的进步和发展,深刻地影响着人们的世界观、价值观和人生观,也深刻改变了人类文明的发展进程。
热爱科学、追求真理、实事求是、团结协作是一些杰出科学家所具备的基本科学态度和精神。
作为非生物学专业的我,认真学好《生命科学导论》主旨在于培养自己对生命科学的兴趣,主动探索生命的奥秘,把握生命科学中的基本概念及其内在联系,建立进化流、信息流和能量流等知识框架,培养自己带着问题去学习,并留出想象的空间的能力,把学习到的生命科学知识与全面提高科学素质相结合,打开生命科学知识创新大门。
根据生物体的元素及分子组成特点,联系实际浅谈我们现代人健康合理的膳食通过对《生命科学导论》课程的学习,我了解到了生物体的元素及分子组成基本特点和他们对于生物体的重要性,深刻感觉到我们人类也应该根据各类食物构成的不同营养价值合理健康饮食,促进营养需要与饮食供给建立平衡关系,达到合适的热量、合适的蛋白质、合适的无机盐、丰富的维生素、适量的食物纤维、充分的水分等要求。
《生命科学导论》论文llll

动物细胞融合技术的发展研究动物细胞融合是从细胞水平来改变动物细胞的遗传性,用于生产单克隆抗体、疫苗等特定的生物制品,改良培育动物新品种,缩短动物的育种过程。
动物细胞融合的应用范围已广及生物学的各个分支学科,特别是在绘制人类基因图谱方面取得了显著成绩。
虽然细胞杂交属于理论生物学范畴,但在实际应用方面也有重大突破。
在基础理论研究上,动物细胞融合技术对研究细胞分化、基因定位、肿瘤发生机制等方面都有重要意义。
在实际应用方面,动物细胞融合技术在药物定向释放系统、细胞治疗以及抗肿瘤免疫等方面起到重要的作用。
个人认为动物体细胞杂交技术主要应用于以下几个方面。
1)用于基因定位和绘制人类基因图谱JP2 杂种细胞中某一染色体或其片段的存在与否与细胞的某一性状表达与否相联系,从而可以实现把基因定位于某一染色体或某一区段上。
1967年Weise和Green发现在人和鼠的融合细胞中,人的染色体优先丢失,并证明利用这一特点有可能对人染色体上的基因进行定位。
1970年Ruddle等开始系统地用融合细胞作为实验系统来绘制人类基因图。
人类基因图谱的完成,是医学上一场革命的开始,但这场革命的成功将需要更长的时间。
中国科学家承担了这个工程1%的工作量。
人类基因图谱的绘制完成,给即将广泛推行的全新基因医疗手段打下了坚实的基础,它使人类向真正的“个性化医疗”时代又迈进一步。
2)用于生产树突状细胞抗肿瘤疫苗一般认为肿瘤细胞表面抗原不能诱导强的免疫应答反应,树突状细胞与肿瘤细胞融合形成的树突状细胞疫苗能够有效地激发机体的细胞免疫应答,无论是在动物研究还是在人体早期临床试验中都证明这是一种方便、安全、可行的方法。
并且由于融合细胞可以在体内存活,因此可以维持较长时期的免疫应答,有利于诱发机体产生有效的抗肿瘤免疫。
肿瘤抗原可以肽段或完整蛋白的形式与集散控制技术结合,或者将肿瘤抗原基因转化进集散控制技术中,使其内源性地表达抗原,这两种方法在抗肿瘤免疫应答中均有效,但适于免疫的肿瘤抗原及其基因难以鉴定从而限制了其应用,有实验证明用这两种方法制备的肿瘤疫苗的免疫原性不及肿瘤细胞与树突状细胞直接融合的异核细胞,融合细胞保持了集散控制技术和肿瘤细胞的特性,并且能高效地将未知的肿瘤抗原提呈给免疫系统,今后肿瘤疫苗的研究工作将集中在疫苗的纯化上,以期用高度纯化的杂合细胞来激发更为有效和强烈的免疫应答反应,使得这种方法在临床应用中更为实际。
生命科学导论论文

生命有形梦想无限佛曰:“一花一世界,一草一天堂,一叶一如来……”生命有形,那“形”就体现了世上万千。
然而,生活中所看之花、鸟、虫、鱼固然多姿多彩,但那每个生灵在其有限的生命内,却仅是为生存而终日劳碌,平庸地终其一生。
于是我开始思考,生命,因何立于世?生命有形,但它的根本不在其形,而在其神。
作为植物,若有幸当得孟德尔的豌豆,为遗传学的巨大进展贡献了一份力;或作为动物,成为绵羊里的多莉,作了克隆技术的例证,便可不枉此生。
虽然它们都很普通,其生命的形式不过是蔬果或牲畜,再平凡不过,但因为有了伟大的意义,生命便有了精气神,立于世间,被人永记。
那么人呢?人生命之形,在于“灵长类”、“直立”。
可人生命的神,却在于梦想和对梦想的孜孜以求。
世上各色人等,或匆忙或安逸地,以自己的方式存在于这个星球上,每个人都会有梦想,却不是每个人都能够为它奋斗。
匆忙的人,每天为生计或名利奔波,心在忙碌中迷失,日复一日,梦模糊了、也更遥不可及,而安逸的人,享受着生活慷慨的赐予,生命中什么都不缺,只少了前行的勇气和动力。
想到此不禁心中暗喜,我,二十岁,还不愁生计,也没有名利的困扰,前路并不平坦,却又充满令人兴奋的未知,梦一直在天边挂着,明亮如北极星,这一切都可以激励自己去奋斗,去感受,去追逐。
生命,可贵的生命。
每一个人类生命的诞生,总要经历母亲的十月怀胎,然后便以一声尖锐的哭喊向这个世界宣告他的到来,开始他一生的旅程。
生命是如此的神圣,在任何时候,他都是一个人最最宝贵的财富。
生命是一个旅程,一路上,你总能欣赏到种种异样的风景。
成功的喜悦,收获的满足,抑或是失败的苦闷,错过的遗憾。
换个角度审视生命,生命却不过是无数个细胞体组成的一个细胞集合而已。
一株草,一棵树,一只鸟,一条鱼,再到一个人,都是由无数的细胞组成的细胞集合体。
他们是一个个鲜活的生命,却都是大自然的一个个奇迹。
然而在每一个生命诞生前,都已经被大自然赋予了特殊了形。
鸟儿在天上飞,鱼儿生活在水中,猎豹天生就拥有神速,蝙蝠天生就是昼伏夜出,狮子生就注定是万兽之王……他们都是可贵的生命,都被打自然赋予了属于他们自己的特性,无法改变,这就是大自然赋予每个生命的形。
生命科学导论结课论文

随着社会发展,人民生活水平的提高,人们在物质生活满足的前提下,开始追求从饮食中吃出健康,即所谓的食疗。
而食疗,无非就是通过饮食起到治病的效果,近代医家张锡纯在《医学衷中参西录》中曾指出:食物“病人服之,不但疗病,并可充饥;不但充饥,更可适口,用之对症,病自渐愈,即不对症,亦无他患”。
也就是通过中药里的食物,达到我们想要的效果。
其实,食物和中药的界限并不是特别清楚。
中药大都属于植物和动物,而可供人类饮食的食物,恰好又是植物和动物,比如橘子、粳米、赤小豆、龙眼肉、山楂、乌梅、核桃、杏仁、饴糖、花椒、小茴香、桂皮、砂仁、南瓜子、蜂蜜等等,所以,人们称这为“药食同源”。
食疗是中国人的传统习惯,中国人希望通过饮食达到预防疾病甚至是治疗疾病的效果。
现在的人通过食疗减肥、护肤、护发等。
五谷杂粮,有益于人类而无害于身体,所以性“中”,离得近些就是偏凉,偏热,离得远些,就是“寒”与“热”了。
“热”了就得用“凉”药,但如果不是“热”得很厉害,就可以用偏“凉”的食物调理达到治疗的效果,比如绿豆等,既美味可口又能调理身体治病。
据世界卫生组织调查,亚健康的人群比例已达到70%,这为人们的身体健康敲响了警钟。
但西医并没有调理身体的方法,所以人们把目光转向了中医,这也造成了中国食疗市场的混杂,各种“专家”误导群众,把食疗的作用无限放大,甚至出现了“食疗包治百病”的谬论。
所以,我们有必要自行了解真正的食疗。
下面,我们就来介绍一下那些中药里的食物。
韭菜最常见的韭菜,又名起阳草,为百合科草本植物韭菜的茎叶,在我国多数地区均有栽培,古书史书《夏小正》中有“正月囿(菜园)有韭”的记述。
韭菜既可调味,又可凉拌、做饺子馅,是茶楼酒家菜谱上的知名佳肴。
而韭菜不仅仅是因为其美味而得到青睐,它的营养价值极高,含蛋白质、脂肪、糖类、钙、磷、铁、维生素、胡萝卜素、苷类、纤维素等人体所需的营养成分,还含硫化物和挥发油等。
现代医学研究证明:韭菜含丰富的纤维素,能加快食物在胃肠的蠕动,加速排便,着对于习惯性便秘最有利,也可预防结肠癌、高血压、动脉硬化和冠心病的发生。
生命科学导论结课论文

生命科学导论结课论文《人类基因技术及其伦理》作者:***学号:**********动物科学与技术学院动物医学141班摘要:人类基因组计划(Human Genome Project)是人类科学史发展过程中一次伟大的创举,它是从分子水平上直接探索人类自身奥秘的伟大科学工程,是人类认识自我、追求健康、战胜疾病最为重要的科学研究行为。
基因及基因工程的发展应用给人类社会带来了巨大的社会效应的同时,也带来了一系列的伦理道德、法律、社会等问题。
关键词:人类基因组计划、基因工程、伦理道德问题正文:在人体生命科学探索的历史中,没有比“基因"二字更具有震撼力了。
由于历史的原因,我们对基因一直采取拒绝承认的态度。
直到70年代,经过科学家的努力,“基因"二字才被写进了科教书。
现在“基因”已经被世界各国接受.基因,是遗传信息的基本单位。
一般指位于染色体上编码一个特定功能产物(如蛋白质或RNA分子等)的一段核苷酸序列.人们对基因的认识是不断发展的.20世纪50年代以后,随着分子遗传学的迅速发展,尤其是沃森和克里克提出双螺旋结构以后,人们才真正认识了基因的本质,即基因是具有遗传效应的DNA片断.研究结果还表明,每条染色体只含有1~2个DNA分子,每个DNA分子上有多个基因,每个基因含有成百上千个脱氧核苷酸。
由于不同基因的脱氧核苷酸的排列顺序(碱基序列)不同,不同的基因就含有不同的遗传信息.基因有两个特点,一是能忠实地复制自己,以保持生物的基本特征;二是能够“突变”,突变绝大多数会导致疾病,而另外的一小部分是非致病突变。
这两大特点正是遗传和变异的发生基础。
人类研究基因主要应用于基因工程。
所谓基因工程(genetic engineering)是指在分子水平上对基因进行操作的复杂技术。
是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。
基因工程对人类最大的好处可能就是其应用于医学了,我们知道基因作为机体内的遗传单位,不仅可以决定我们的相貌、高矮,而且它的异常会不可避免地导致各种疾病的出现.目前我们还无法对人类受损的基因进行修复,但我们可以利用正常的人类基因在其他生物体内进行表达,生产出我们所需的激素或是蛋白质等物质,来治疗那些不能自身合成此类物质的病人。
生命科学导论论文(超有用)

生命科学导论论文现代科学技术发展极大的促进了社会的进步与发展,而生命科学技术的飞速发展尤其使人们的生活发生了翻天覆地的变化。
随着研究的不断深入,技术水平的不断提高,生命科学与我们的生活的连系越来越紧密,悄悄地改变着我们生活的方方面面。
生命科学是研究生命现象、生命活动的本质、特征和发生、发展规律,以及各种生物之间和生命与环境之间相互关系的科学。
用于有效地控制生命活动,能动地改造生物界,造福人类生命科学与人类生存、人民健康、经济建设和社会发展有着密切关系,是当今在全球范围内最受关注的基础自然科学。
生命科学是系统地阐述与生命特性有关的重大课题的科学。
支配着无生命世界的物理和化学定律同样也适用于生命世界,无须赋于生活物质一种神秘的活力。
对于生命科学的深入了解,无疑也能促进物理、化学等人类其它知识领域的发展。
比如生命科学中一个世纪性的难题是“智力从何而来?”我们对单一神经元的活动了如指掌,但对数以百亿计的神经元组合成大脑后如何产生出智力却一无所知。
可以说对人类智力的最大挑战就是如何解释智力本身。
对这一问题的逐步深入破解也将会相应地改变人类的知识结构。
生命科学研究不但依赖物理、化学知识,也依靠后者提供的仪器,如光学和电子显微镜、蛋白质电泳仪、超速离机、X-射线仪、核磁共振分光计、正电子发射断层扫描仪等等,举不胜举。
生命科学学家也是由各个学科汇聚而来。
学科间的交叉渗透造成了许多前景无限的生长点与新兴学科。
正是世界上这各种各样些生物物种的存在,使得我们的自然界变得丰富多彩,但是由于人类的快速发展,许多物种面临着灭绝和已灭绝的危机,就拿离我们很近的20世纪来说,大约20多万种的物种从此消失在了地球上,昆士兰毛鼻袋熊,1900灭绝.;澳米氏弹鼠,1901年灭绝.;曾经世界上最凶猛的熊--堪查加棕熊,1920年灭绝了;新墨西哥狼,1920年灭绝;中国豚鹿1960年灭绝;台湾云豹1972年灭绝.;西亚虎,1980年后的人是看不见它了;亚欧水貂灭绝时间大概是1995--1999年之间。
生命科学导论结课小论文

生命科学导论之“长生”自古以来,中国人对于“长生不老”总有着无限的追求,从秦始皇到汉武帝,再到雍正嘉靖,从海外求仙到制丹炼药,不论这些主宰者是否有丰功伟绩,他们对于“长生”的诱惑却没有一丝丝的抵抗力,但不管如何,他们都消失在了历史的长河中,生老病死,是每个人都逃不开的劫。
记得在一部虚幻小说《哑舍》中,虽然含有非常多的想象,但我见到了另一种长生。
小说的主人公老板是秦朝天才丞相——甘罗,老板的长生不死是由于他身体细胞的改变,一种类似癌变的变化,不断增殖生长、衰老死亡,没有变异,永远像是新生的细胞,并且,他身上的衣服始终带有一条龙,一条似乎有生命的可以在不同衣服间游走的龙,以他神奇的能力在老板体外阻止细胞的扩散,使细胞不至于不断地产生,让生命消失。
在现实中,与细胞生命活性有关的是一种叫做端粒的DNA片段。
端粒是真核生物染色体末端由许多简单重复序列和相关蛋白组成的复合结构,具有维持染色体结构完整性和解决其末端复制难题的作用。
每当细胞分裂产生新细胞时,端粒就会变短,直到端粒达到一个临界长度,这时细胞也失去活性而死亡。
所以端粒是随着细胞个体的衰老而变短。
控制端粒的端粒酶是一种逆转录酶,由RNA和蛋白质组成,是以自身RNA为模板,合成端粒重复序列,加到新合成DNA链末端。
在人体内端粒酶出现在大多数的胚胎组织、生殖细胞、炎性细胞、更新组织的增生细胞以及肿瘤细胞中。
但每个细胞的端粒长度是天生的,并非一开始就相同,并且之后的缩短速度也各不相同。
端粒损耗的速度是衡量“生物衰老”的一个方法。
大量实验说明端粒、端粒酶活性与细胞衰老及永生有着一定的联系。
第一个提供衰老细胞中端粒缩短的直接证据是来自对体外培养成纤维细胞的观察,当细胞分裂到50代左右时,分裂繁殖就完全停顿,最终死亡,这被称为细胞分裂的海弗利克极限,并且通过对不同年龄供体成纤维细胞端粒长度与年龄及有丝分裂能力的关系观察到随着增龄,端粒的长度逐渐变短,有丝分裂的能力明显渐渐变弱;Hastie 发现结肠端粒限制性片段的长度随供体年龄增加逐渐缩短,平均每年丢失33bp的重复序列;植物中不完整的染色体在受精作用中得以修复,而不能在已经分化的组织中修复,这在较为高等的真核生物中也证实了体细胞中端粒酶的活性受抑制;精子的端粒要比体细胞长,体细胞缺失端粒酶活性就会逐渐衰老,而生殖细胞的端粒却可以维持其长度;转化细胞能够通过端粒酶的活性完全复制端粒以得永生。
生命科学导论论文现代生命科学导论论文

生命科学导论论文现代生命科学导论论文摘要:学习生命科学知识不仅是生物专业学生的需要,对非生物专业的学生来说也是十分必要的。
本文从教学内容、教学方法、教学手段等三个方面介绍了我校为非生物专业学生开设生命科学导论课程的实践和探索,并就师资队伍建设、实验课开设及考核方式等方面存在的问题及解决方法进行了介绍。
关键词:21世纪是生物科学的时代,生物科学日新月异,已渗透到社会生活的方方面面。
当前,人类面临着一系列重大的问题,如人口膨胀、粮食短缺、环境污染等,这些问题不仅是科技问题,也是社会问题,这要求生物类和非生物类专业学生必须有广博的生命科学知识。
因此,面向非生物类专业学生开设生物类相关课程是十分必要的,这是提高学生综合科学素质的手段之一、如果大学生毕业时不懂得什么是DNA、什么叫克隆等基本概念,不了解保护生物多样性的意义,不了解生物技术与人类社会及经济发展的关系,将可能有会成为一种遗憾。
在强调素质教育,培养和提高本科生创新能力的背景下,国内外许多高校已将生命科学导论课程设为本科生通用选修课,并取得了一定的成效。
上海海洋大学作为一所有其自身特色的院校,推进非生物类专业的生命科学素质教育已有十多年,在2000年《生命科学导论》作为公共选修课在学校开设。
根据我国高校课程的教学思路,在多年教学实践的基础上,针对教学过程中存在的一些问题,我们对生命科学导论的教学内容、教学方法和教学手段进行了一些尝试,并作出一些思考。
一、优化教学内容二、更新教学手段课堂教学是本科教学最重要、最核心、最本质的部分,是人才培养的主阵地。
如何提高生命科学导论的课堂教学质量,提升学生的学习兴趣,一直是我们关注的重点。
生命科学导论的课程内容涉及生命的组成、细胞、代谢、遗传、分子生物学、进化、生态、健康与疾病和生物技术等方面的基本概念和理论,教学内容跨度大、面广且不易深入。
因此,除采用板书、讲述、引导和启发等传统的教学手段外,我们积极利用多媒体等现代化教学手段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生命科学导论结课论文《人类基因技术及其伦理》作者:廖卓韵学号:1434130118动物科学与技术学院动物医学141班摘要:人类基因组计划(Human Genome Project)是人类科学史发展过程中一次伟大的创举,它是从分子水平上直接探索人类自身奥秘的伟大科学工程,是人类认识自我、追求健康、战胜疾病最为重要的科学研究行为。
基因及基因工程的发展应用给人类社会带来了巨大的社会效应的同时,也带来了一系列的伦理道德、法律、社会等问题。
关键词:人类基因组计划、基因工程、伦理道德问题正文:在人体生命科学探索的历史中,没有比“基因”二字更具有震撼力了。
由于历史的原因,我们对基因一直采取拒绝承认的态度。
直到70年代,经过科学家的努力,“基因”二字才被写进了科教书。
现在“基因”已经被世界各国接受。
基因,是遗传信息的基本单位。
一般指位于染色体上编码一个特定功能产物(如蛋白质或RNA 分子等)的一段核苷酸序列。
人们对基因的认识是不断发展的。
20世纪50年代以后,随着分子遗传学的迅速发展,尤其是沃森和克里克提出双螺旋结构以后,人们才真正认识了基因的本质,即基因是具有遗传效应的DNA 片断。
研究结果还表明,每条染色体只含有1~2个DNA分子,每个DNA分子上有多个基因,每个基因含有成百上千个脱氧核苷酸。
由于不同基因的脱氧核苷酸的排列顺序(碱基序列)不同,不同的基因就含有不同的遗传信息。
基因有两个特点,一是能忠实地复制自己,以保持生物的基本特征;二是能够“突变”,突变绝大多数会导致疾病,而另外的一小部分是非致病突变。
这两大特点正是遗传和变异的发生基础。
人类研究基因主要应用于基因工程。
所谓基因工程(genetic engineering)是指在分子水平上对基因进行操作的复杂技术。
是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。
基因工程对人类最大的好处可能就是其应用于医学了,我们知道基因作为机体内的遗传单位,不仅可以决定我们的相貌、高矮,而且它的异常会不可避免地导致各种疾病的出现。
目前我们还无法对人类受损的基因进行修复,但我们可以利用正常的人类基因在其他生物体内进行表达,生产出我们所需的激素或是蛋白质等物质,来治疗那些不能自身合成此类物质的病人。
例如: 胰岛素是治疗糖尿病的特效药,长期以来只能依靠从猪、牛等动物的胰腺中提取,100Kg胰腺只能提取4-5g的胰岛素,其产量之低和价格之高可想而知。
而将合成胰岛素的基因导入大肠杆菌,每2000L培养液就能产生100g胰岛素。
大规模工业化生产不但解决了这种比黄金还贵的药品产量问题,还使其价格降低了30%-50%。
基因工程在农业上也有很大的应用,在对农业害虫进行长期防治的实践中,人们逐渐认识到必须采取综合治理的措施,才能有效的控制害虫的危害。
基因工程技术的发展,为防治农林害虫提供了一种有效、减污的新技术手段,微生物农药也因此在世界范围内受到广泛重视。
微生物农药是指非化学合成、具有杀虫防病作用的微生物制剂,如微生物杀虫剂、杀菌剂、农用抗生素等等。
这一类微生物包括杀虫防病的细菌、真菌和病毒。
杀虫微生物是指其代谢产物或微生物本身对宿主昆虫有致死效应或致病的微生物类群,通常也称为昆虫病原微生物。
目前已知的杀虫防病微生物主要有芽孢杆菌科、假单胞菌科、肠杆菌科、链球菌科和杆状病毒科等类群。
尽管不同杀虫微生物引起昆虫致病的症状不尽相同,但杀虫微生物对害虫的作用方式主要是通过产生特异性的杀虫毒素来破坏害虫的代谢平衡,或者是通过营养体在虫体内的繁殖复制而引起昆虫死亡和发生流行病。
通过减少化学药品的使用而达到抑制害虫、提升产量的效果,同时能够通过生物防治而控制自然进程。
人类能动的在地球上以利用自身知识改变自认而使得人类的生存更加便捷和自在。
然则,基因工程的广泛运用带来的不仅仅是优点,凡事都有双面性,与之并行而来的负面影响也不可小视。
人类基因组计划的完成,给人类提供了更好的认识自己的途径,也使得人类对疾病的控制能力上升到了一个新的高度,不仅仅是在农业方面基因技术的运用有所优异,在人类社会环境中,基因工程带来的好处也越来越多。
基因工程技术的日渐成熟,运用范围逐渐开阔起来,人们享受到它的优越性。
如:不孕不育的治疗,先天性遗传疾病的治愈。
这些都要归功于人类基因组计划的完成。
人类基因组计划于20世纪80年代提出,由国际合作组织包括有美、英、日、中、德、法等国参加进行了人体基因作图,测定人体23对染色体由3×109核苷酸组成的全部DNA序列,于2000年完成了人类基因组“工作框架图”。
2001年公布了人类基因组图谱及初步分析结果。
其研究内容还包括创建计算机分析管理系统,检验相关的伦理、法律及社会问题,进而通过转录物组学和蛋白质组学等相关技术对基因表达谱、基因突变进行分析,可获得与疾病相关基因的信息。
人类基因组计划与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划。
人类基因组计划在二十多年的时间里取得了较大进展。
人类基因组计划最早在1985年由诺贝尔奖获得者,美国的杜尔贝克Renato Dulbecoo提出。
最初目的是完成人类基因组全长约30亿个核苷酸的碱基序列测定,阐明所有人类基因并确定其在染色体上的位置,从而破译全部的人类遗传基因。
1986年3月7日,杜尔贝克在《科学》杂志上发表了一篇题为“癌症研究的转折点——测定人类基因组序列”的文章,指出癌症和其它疾病的发生都与基因有关,并提出测定人类整个基因组序列的途径和重要意义。
1988年美国能源部和国家卫生研究院率先在美国开展人类基因组计划,并经国会批准由政府给予资助。
此后,成立了一个国际间的合作机构——人类基因组织(Human Genome Organization),由多个国家筹集资金和科研力量,积极参加这一国际性研究计划。
1990年10月,国际人类基因组计划正式启动,预计用15年时间,投资30亿美元,完成30亿对碱基的测序,并对所有基因(当时预计为8万~10万个)进行绘图和排序。
全球性人类基因组计划有美国、英国、日本、法国、德国和中国六个国家负责,其中美国承担了全部任务的54%,英国33%,日本7%,法国2。
8%,德国2。
2%,中国于1999年9月获准加入人类基因组计划并承担了1%的测序任务,即3号染色体断臂自D3S3610标志至端粒区段约3000万个碱基的全序列测定。
中国1993年启动了相关研究项目,相继在上海和北京成立了国家人类基因组南、北两个中心,并承担人类基因组计划中1%的测序任务。
经过多个国家的科学家的共同协作,人类终于在20世纪90年代完成了对自身基因组测序的初步工作。
2003年6月,中、美、日、德、法、英等六国科学家宣布首次绘成人类基因组“工作框架图”。
2003年4月14日,中、美、日、德、法、英等六国科学家宣布人类基因组序列图绘制成功,人类基因组计划的所有目标全部实现。
2004年,人类基因组完成测序;2005年,人类X染色体测序工作基本完成,并公布了该染色体基因草图。
HGP的主要任务是人类的DNA测序,包括下图所示的四张谱图,此外还有测序技术、人类基因组序列变异、功能基因组技术、比较基因组学、社会、法律、伦理研究、生物信息学和计算生物学、教育培训等目的。
基因图谱的意义在于它能有效地反应在正常或受控条件中表达的全基因的时空图。
通过这张图可以了解某一基因在不同时间不同组织、不同水平的表达;也可以了解一种组织中不同时间、不同基因中不同水平的表达,还可以了解某一特定时间、不同组织中的不同基因不同水平的表达。
人类基因组计划的实施具有重大意义和影响。
第一,揭示人类发展历史。
破译生命密码的人类基因组计划有助于人们对基因的表达调控有更深入的了解。
同时,人类基因组图谱对揭示人类发展、进化的历史具有重要意义。
对进化的研究,不再建立在假说的基础上,利用比较基因组学,通过研究古代DNA,可揭示生命进化的奥秘以及古今生物的联系,帮助人们更好地认识人类在自然界中的地位。
第二,基因治疗。
获得人类全部基因序列将有助于人类认识许多遗传疾病以及癌症等疾病的致病机理,为分子诊断、基因治疗等新方法提供理论依据。
在不远的将来,根据每个人DNA序列的差异,可了解不同个体对疾病的抵抗力,依照每个人的“基因特点”对症下药,这便是21世纪的医学——个体化医学。
更重要的是,通过基因治疗,不但可预防当事人日后发生疾病,还可预防其后代发生同样的疾病。
第三,基因工程药物研究。
基因工程药物,是重组DNA的表达产物。
广义的说,凡是在药物生产过程中涉及用基因工程的,都可以成为基因工程药物。
基因技术应用于制药工业,可以生产出高效、高产、廉价、不再苦口的防治疾病的新药物,从而引起制药工业的革命性变革。
对于肝炎、心血管疾病、肿瘤、艾滋病等目前尚无良药可治的重大疑难病,人们对生物工程寄予厚望,期待基因工程技术生产出有效地治疗药物。
第四,DNA鉴定。
DNA 鉴定已经给法医科学和犯罪司法系统带来了一场革命。
DNA已经成为无数审判中的关键证据,帮助警察和法庭鉴别暴力犯罪中的罪犯,而且可信度非常高。
它能够确定犯罪的人,同时也能够证明误判的人无罪。
不仅如此,DNA鉴定还可以用于帮助寻找失踪的人、谋杀或事故中的受害者;还可以用于证明或否认父子关系。
由以上的事实我们可以看出,要想解开人类自身的秘密,就要从破解基因的密码做起。
对人类基因的了解和掌控,也将对人类物种的进化、人类社会的进步产生强大推动作用。
通过对人类基因已知和未知领域的探索,可以找到更好的基因更有利人类进步的基因,人类社会将从本质上发生突破性的飞越。
因此我们可以说,这项耗资大耗时长的人类基因组计划确实是非常必要而且永世受益的。
对于生物学界来说这可能是很小的一步,但对人类社会来说却是非常大的一步。
尽管该计划已宣告完成,但该计划尚未得出令人满意的人类基因图谱,因此,科学工作者们对人类基因组的探索研究仍在紧张的进行中。
但同时,人类基因组的破译引也发了社会各界对人类基因伦理的探讨。
“人类基因组计划”的目标不仅从整体上阐明人类遗传信息的组成,还要识别人类基因的结构,包括所有与生殖有关的遗传疾病及其若干有遗传背景多因素疾病的相关基因,破译生命之书在人类掌握自身密码之时,也涉及到伦理、法律和其他一系列社会问题。
人们应该如何看待人与人之间的基因差异,以及其主观情感的干扰。
一,人类基因信息隐私的伦理问题众所周知,隐私权是人的基本权利之一。
隐私被公布于众,可能给本人造成不可估量的伤害和损失,对社会的稳定与发展也不利。
因此,人们都很重视隐私,隐私也在各国法律的保护范围之内。
有关基因隐私问题往往成为基困组研究中伦理争论的焦点。
例如,一些公司在雇用员工时会使用基因信息对存在基因缺陷的人另眼看待;因基因缺陷极易患上某些疾病的人群被保险公司打入另册。