第二章 基本放大电路
合集下载
2.基本放大电路(2)

+
~
Re
RL U O
(a)电路图
图 2.5.1 共集电极放大电路
莆田学院三电教研室--模拟电路多媒体课件
第二章 基本放大电路
三、电流放大倍数
Ii b Ib
e Ie Io
Ii Ai
Ib Io Ii
Io
Ie Ib
Ie 所以
(1
RS
U S
Ic Rc
e+
Re Ie vo
-
AV
Vo Vi
( 1) IbRe Ib[rbe (1 )Re ]
( 1) Re rbe (1 )Re
Ri
Vi Ii
rbe
(1 )Re
Ro
Re
//
rbe
1
莆田学院三电教研室--模拟电路多媒体课件
(1
1 )rbe2
e
显然,、rbe 均比一个管子 1、rbe1 提高了很多倍。
莆田学院三电教研室--模拟电路多媒体课件
第二章 基本放大电路
3.构成复合管时注意事项
(1). 前后两个三极管连接关系上,应保证前级输 出电流与后级输入电流实际方向一致。
(2). 外加电压的极性应保证前后两个管子均为发 射结正偏,集电结反偏,使管子工作在放大区。
U o Ib (rbe Rs)
式中
Rs Rs // Rb RS
而 所以
Io Ie (1 )Ib
Ro
U o Io
rbe Rs
1
e Ie Io
rbe
第二章 放大电路的基本原理和分析方法

' uCE iC RL
iC 0 4 4 (mA )
uCE (4 1.5) 6 (V )
交流负载线是放大电路动态工作点移动的轨迹
假设一个输入 电压uI, 在线性范 围内确定uBE、 iB、 iC、和uCE的波形。
估算电压 放大倍数
u0 uCE Au u I u BE
u
B 'E
iE I S e
iE I S e
rb'e uB' E iE
UT
u
B 'E
UT
u B ' E UT
UT 26 iE I CQ
uBE iB rbb' iE rb'e iB rbb' (1 )iB rb'e
rbe rbb ' 26 (1 ) I CQ
Q2
(c) Rc增大,Vcc、 Rb、β不变 直流负载线变平坦
工作点移近饱和区
Q2
(d) β增大,Vcc、 Rc、 Rb不变
IC增大,工作点移近饱和区
2.4.4 微变等效电路法 微变等效电路 在一个微小的工作范围内,用一 个等效的线性电路来代替三极管,使 得从线性电路的三个引出端看进去, 其电压、电流的变化关系和原来的三 极管基本一样。这样的线性电路称为 三极管的微变等效电路
6. 最大输出功率与效率 放大电路的最大输出功率,是指在输出信号不产 生明显失真的前提下,能够向负载提供的最大输出功 率,通常用符号Pom表示。
放大电路的效率η定义为输出功率P o 与直流电 源消耗的功率PV之比, 即 :
η =PO /PV
7. 非线性失真系数 所有的谐波总量与基波成分之比,定义为 非线性失真系数。符号为D
第二章基本放大电路

T
Rc Cb1
T
Cb2 VCC
Rc Cb2
Rb VBB
(a)
(b)
(c)
工作原理 放大电路的静态分析
静态 Ui=0时,放大电路的工作状态,也称直流工作状态。
静态分析 确定放大电路的静态值IBQ、ICQ、UCEQ,即静 态工作点Q。静态工作点的位置直接影响放 大电路的质量。
静态分析方法 1. 计算法 计算法 图解分析法
根据所用放大管的类型设置合适的静态工作点Q 。对 于晶体管应使发射结正偏,集电结反偏,以使晶体管工 作于线性放大区; 必须保证从输入到输出信号的正常流通途径。输入信 号能有效地作用于放大电路的输入回路;输出信号能有 效地加到负载上。 对实用放大电路的要求:共地、直流电源种类尽可能 少、负载上无直流分量。
-
动态信号作用时:uI ib ic uRc uCE (uo ) 输入电压ui为零时,晶体管各极的电流、b-e间的电 压、管压降称为静态工作点Q,记作IBQ、 ICQ(IEQ)、 UBEQ、 UCEQ。
Back
Next
Home
由于(IB,UBE) 和( IC,UCE )分别对应于输入、输出 特性曲线上的一个点,所以称为静态工作点。
Back
Next
Home
两种实用放大电路:(1)直接耦合放大电路
- + UBEQ
有交流损失 有直流分量 将两个电源 问题: 合二为一 静态时,U BEQ U Rb1 1. 两种电源 2. 信号源与放大电路不“共地” 动态时,VCC和uI同时作用 于晶体管的输入回路。 共地,且要使信号 驮载在静态之上
大倍数为源增益us、Ais、Ars 和Ags。 A
4
(2)输入电阻: 从输入端看进去的等效电阻
Rc Cb1
T
Cb2 VCC
Rc Cb2
Rb VBB
(a)
(b)
(c)
工作原理 放大电路的静态分析
静态 Ui=0时,放大电路的工作状态,也称直流工作状态。
静态分析 确定放大电路的静态值IBQ、ICQ、UCEQ,即静 态工作点Q。静态工作点的位置直接影响放 大电路的质量。
静态分析方法 1. 计算法 计算法 图解分析法
根据所用放大管的类型设置合适的静态工作点Q 。对 于晶体管应使发射结正偏,集电结反偏,以使晶体管工 作于线性放大区; 必须保证从输入到输出信号的正常流通途径。输入信 号能有效地作用于放大电路的输入回路;输出信号能有 效地加到负载上。 对实用放大电路的要求:共地、直流电源种类尽可能 少、负载上无直流分量。
-
动态信号作用时:uI ib ic uRc uCE (uo ) 输入电压ui为零时,晶体管各极的电流、b-e间的电 压、管压降称为静态工作点Q,记作IBQ、 ICQ(IEQ)、 UBEQ、 UCEQ。
Back
Next
Home
由于(IB,UBE) 和( IC,UCE )分别对应于输入、输出 特性曲线上的一个点,所以称为静态工作点。
Back
Next
Home
两种实用放大电路:(1)直接耦合放大电路
- + UBEQ
有交流损失 有直流分量 将两个电源 问题: 合二为一 静态时,U BEQ U Rb1 1. 两种电源 2. 信号源与放大电路不“共地” 动态时,VCC和uI同时作用 于晶体管的输入回路。 共地,且要使信号 驮载在静态之上
大倍数为源增益us、Ais、Ars 和Ags。 A
4
(2)输入电阻: 从输入端看进去的等效电阻
电子技术基础第二章 基本放大电路

图2.3.4 基本共 (2)输出电路方程:uCE=VCC-iCRc
图2.3.5 用图解法求解静态工作点和电压放大倍数
二、电压放大倍数的分析 当加入输入信号△uI时,输入回路方程为 uBE=VBB+ △uI-iBRb
Q点高,同样的△uI产生的△iB越大,因而Au大。 Rc变化时,影响负载线的斜率,从而影响Au的大小。
图2.1.1 扩音机示意图
2.1.2
放大电路的性能指标
图2.1.2 放大电路 的示意图
一、放大倍数
二、输入电阻
三、输出电阻
根据图2.1.2有
输入电阻和输出电阻是影响多级放大电路 连接的重要参数。
图2.1.3
两个放大电路的连接
四、 通频带
通频带用于衡量放大电路对不同频率 信号的放大能力。
图2.1.4 fbw=fH-fL
2、输入电阻Ri 3、输出电阻Ro 分析输出电阻,也可令其信号源电压 ,但 保留其内阻Rs。然后在输出端加一正弦波测试信 号Uo,必然产生动态电流Io, 为恒压源,其内 阻为0,且 =0时, =0, =0,所以
2.4
放大电路工作点的稳定
2.4.1 静态工作点稳定的必要性
图2.4.1
2.4.2 典型的静态工作点稳定电路 一、电路组成和Q点稳定原理
图2.4.2 静态工作点稳定电路 (a) 直接耦合 (b) 阻容耦合 (c) 直流通路
B点的电流方程为 I2=I1+IBQ 一般选择 I1» IBQ 所以, I2I1 B点电位为
五、非线性失真系数
六、最大不失真输出电压
当输入电压再增大就会使输出波形 产生非线性失真时的输出电压。此时的 非线性失真系数要被定义,如10%。
七、最大输出功率与效率
2、基本放大电路

9
2.2.1 放大电路的组成
在三种组态放大电路中,共发射极电路用得比 较普遍。这里就以NPN共射极放大电路为例,讨论 放大电路的组成、工作原理以及分析方法。
10
共发射极放大电路
11
2.2.1 放大电路的组成
电路中各元件的作用如下: (1)三极管 (2)隔直耦合电容C1和C2 (3)基极回路电源UBB和基极偏置电阻Rb (4)集电极电源UCC和集电极电阻Rc
30
2.2.2 放大电路的分析方法
交流负载线如下图所示
31
2.2.2 放大电路的分析方法
总结: 交流负载线与直流负载线相交于Q点 当负载开路时,交流负载线与直流负载线 重合。 带负载后的电压放大倍数会减小
32
2.2.2 放大电路的分析方法
(3) 静态工作点的选择 三极管是一个非线性器件,有截止区、放 大区、饱和区三个工作区,如果信号在放 大的过程中,放大器的工作范围超出了特 性曲线的线性放大区域,进入了截止区或 饱和区,集电极电流ic与基极电流ib 不再成 线性比例的关系,则会导致输出信号出现 非线性失真。 非线性失真有两类:截止失真和饱和失真
12
2.2.1 放大电路的组成
电压、电流等符号的规定
放大电路中既有直流电源UCC,又有交流电压 ui,电路中三极管各电极的电压和电流包含直流量 和交流量两部分。
大写字母,大写下标表示直流量 直流量,如IB、UBE等。 直流量 小写字母,小写下标表示交流量 交流量,如ib、ube等。 交流量 小写字母,大写下标表示瞬时量 瞬时量,如iB、uBE等。 瞬时量 大写字母,小写下标表示有效值 有效值,如Ib、Ube等。 有效值
48
2.2.3 分压式共发射极放大电路
2、分压式共发射极放大电路分析
2.2.1 放大电路的组成
在三种组态放大电路中,共发射极电路用得比 较普遍。这里就以NPN共射极放大电路为例,讨论 放大电路的组成、工作原理以及分析方法。
10
共发射极放大电路
11
2.2.1 放大电路的组成
电路中各元件的作用如下: (1)三极管 (2)隔直耦合电容C1和C2 (3)基极回路电源UBB和基极偏置电阻Rb (4)集电极电源UCC和集电极电阻Rc
30
2.2.2 放大电路的分析方法
交流负载线如下图所示
31
2.2.2 放大电路的分析方法
总结: 交流负载线与直流负载线相交于Q点 当负载开路时,交流负载线与直流负载线 重合。 带负载后的电压放大倍数会减小
32
2.2.2 放大电路的分析方法
(3) 静态工作点的选择 三极管是一个非线性器件,有截止区、放 大区、饱和区三个工作区,如果信号在放 大的过程中,放大器的工作范围超出了特 性曲线的线性放大区域,进入了截止区或 饱和区,集电极电流ic与基极电流ib 不再成 线性比例的关系,则会导致输出信号出现 非线性失真。 非线性失真有两类:截止失真和饱和失真
12
2.2.1 放大电路的组成
电压、电流等符号的规定
放大电路中既有直流电源UCC,又有交流电压 ui,电路中三极管各电极的电压和电流包含直流量 和交流量两部分。
大写字母,大写下标表示直流量 直流量,如IB、UBE等。 直流量 小写字母,小写下标表示交流量 交流量,如ib、ube等。 交流量 小写字母,大写下标表示瞬时量 瞬时量,如iB、uBE等。 瞬时量 大写字母,小写下标表示有效值 有效值,如Ib、Ube等。 有效值
48
2.2.3 分压式共发射极放大电路
2、分压式共发射极放大电路分析
第二章(简好用新)-基本放大电路..

五、实用共发射极放大电路
1.温度对工作点的影响
温度升高
UBE减小 ICBO增大
β增大
注:旁路电容的作用。接人发射极电阻 RE,一方面发射极电流的直流分量IE 通过它能起到自动稳定静态工作点的作 用;另一方面发射极电流的交流分量ie 也会产生交流压降,使uBE减小,这样 就会降低电压放大倍数,因此增加了旁 路电容,使交流信号从电容上流过。
ic
ii
ib
C
+ BE
+ Rs ui RB RE
RL
+
uo
us
–
E B
V
us+-
Rs
RB C ui+-
RE
RL
+-uo
交流通路
二、共集电极放大电路分析 1.静态工作点的计算
VCC IBQRB U BEQ IEQRE
I BQ
VCC U BE
RB (1 )RE
ICQ I BQ I EQ
动态分析步骤:
1.先画出交流通路, 有时为了便于分析, 还要把电路变形为我 们便于分析的方式。
2.根据交流通路画微 变等效电路
E B
V
RB C ui+-
RE
RL
+-uo
ic
ii
ib
C
+ BE
+ Rs ui RB RE
RL
+
uo
us
–
Ii B
Ib
Ic
画微变等效电路时需注意的 问题:
1.交流通路变化成微变等效
RC
C2
+-
uCE
模电第二章 基本放大电路

温 T ( C 度 ) I C T ( C I C ) E I C O
T ( C U B ) 不 E I B I C 变
温度T (C) IC ,
若此时I B
,则I
、
CQ
U CEQ在输出特性坐标
系中的位置就可能
基本不变。
2.4 放大电路静态工作点的稳定
一、典型电路
消除方法:增大Rb,减小Rc,减小β。
例2-1:由于电路参数的改变使静态工作点产生如图所示变化。 试问(1)当Q从Q1移到Q2、 从Q2移到Q3、 从Q3移到Q4时, 分别是电路的哪个参数变化造成的?这些参数是如何变化的?
4mA 3mA 2mA 1mA
40µA
Q3
Q4
30µA 20µA
IB=10µA
2 6 m V
2 6 m V
r b e 2 0 0 ( 1 ) I E Q 2 0 0 ( 1 3 0 ) 1 . 2 m A 8 7 1 . 6 7
R i R b ∥ r b e r b e 8 7 1 . 6 7 R o R c 6 k
2.4 放大电路静态工作点的稳定
温度对Q点的影响
2、放大电路的动态分析(性能指标分析)
(1)放大电路的动态图解分析法
结论: 1. ui uBE iB iC uCE uo
阻容耦合共射放大电路
2、放大电路的动态分析(性能指标分析)
(1)放大电路的动态图解分析法 二、图解分析
结论: 2. uo与ui相位相反;3. 测量电压放大倍数;4. 最大不失 真输出电压Uom (UCEQ -UCES与 VCC- UCEQ ,取其小者,除以 2 )。
Q
UBE/V
UBEQ VCC
1、放大电路的静态工作点 (2)图解法确定静态工作点
T ( C U B ) 不 E I B I C 变
温度T (C) IC ,
若此时I B
,则I
、
CQ
U CEQ在输出特性坐标
系中的位置就可能
基本不变。
2.4 放大电路静态工作点的稳定
一、典型电路
消除方法:增大Rb,减小Rc,减小β。
例2-1:由于电路参数的改变使静态工作点产生如图所示变化。 试问(1)当Q从Q1移到Q2、 从Q2移到Q3、 从Q3移到Q4时, 分别是电路的哪个参数变化造成的?这些参数是如何变化的?
4mA 3mA 2mA 1mA
40µA
Q3
Q4
30µA 20µA
IB=10µA
2 6 m V
2 6 m V
r b e 2 0 0 ( 1 ) I E Q 2 0 0 ( 1 3 0 ) 1 . 2 m A 8 7 1 . 6 7
R i R b ∥ r b e r b e 8 7 1 . 6 7 R o R c 6 k
2.4 放大电路静态工作点的稳定
温度对Q点的影响
2、放大电路的动态分析(性能指标分析)
(1)放大电路的动态图解分析法
结论: 1. ui uBE iB iC uCE uo
阻容耦合共射放大电路
2、放大电路的动态分析(性能指标分析)
(1)放大电路的动态图解分析法 二、图解分析
结论: 2. uo与ui相位相反;3. 测量电压放大倍数;4. 最大不失 真输出电压Uom (UCEQ -UCES与 VCC- UCEQ ,取其小者,除以 2 )。
Q
UBE/V
UBEQ VCC
1、放大电路的静态工作点 (2)图解法确定静态工作点
第二章 基本放大电路 2.1 放大的概念和放大电路的主要性能指标2.2 基本共射放大电路的工作原理2.3 放大电

电流能够作用于负载.
RC +C2
RS +
es –
C1 +
+
ui + ––
iB iC + + TuCE
RBuB–E – RL
VBB iE
+ uo –
共发射极基本电路
晶体管T--放大元
件, iC= iB。要保
+ 证集电结反偏,发 VCC射结正偏,使晶体 – 管工作在放大区 。
基极电源VBB与基极 电阻RB--使发射结 处于正偏,并提供 大小适当的基极电 流。
直接耦合共射放大电路 直 流 通 路
视为短路
直接耦合共射放大电路
直 流 通 路
直接耦合共射放大电路
视为 接地
交 流 通 路
直接耦合共射放大电路 交 流 通 路
阻容耦合共射放大电路
1、直流通路 对直流信号电容 C 可看作开路(即将电容断开)
断开 RB
C1 +
RS +
+ ui
es –
–
+UCC
RC +C2 断开
iB iC + + TuCE + uB–E – RL uo
iE
–
+UCC
RB
RC IB IC
+
U+B–ETU–CE
直流通路
IE
直流通路用来计算静态工作点Q ( IB 、 IC 、 UCE )
2、对交流信号(有输入信号ui时的交流分量)
+UCC
RB
RC
+C2
XC 0,C 可看作 对地短路 短路。忽略电源的
ib:IBQIBQ IB
RC +C2
RS +
es –
C1 +
+
ui + ––
iB iC + + TuCE
RBuB–E – RL
VBB iE
+ uo –
共发射极基本电路
晶体管T--放大元
件, iC= iB。要保
+ 证集电结反偏,发 VCC射结正偏,使晶体 – 管工作在放大区 。
基极电源VBB与基极 电阻RB--使发射结 处于正偏,并提供 大小适当的基极电 流。
直接耦合共射放大电路 直 流 通 路
视为短路
直接耦合共射放大电路
直 流 通 路
直接耦合共射放大电路
视为 接地
交 流 通 路
直接耦合共射放大电路 交 流 通 路
阻容耦合共射放大电路
1、直流通路 对直流信号电容 C 可看作开路(即将电容断开)
断开 RB
C1 +
RS +
+ ui
es –
–
+UCC
RC +C2 断开
iB iC + + TuCE + uB–E – RL uo
iE
–
+UCC
RB
RC IB IC
+
U+B–ETU–CE
直流通路
IE
直流通路用来计算静态工作点Q ( IB 、 IC 、 UCE )
2、对交流信号(有输入信号ui时的交流分量)
+UCC
RB
RC
+C2
XC 0,C 可看作 对地短路 短路。忽略电源的
ib:IBQIBQ IB
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2) 画出微变等效电路;
(3) 输入电阻ri、ro、 Au及Aus。
解: (1)同上; (2) B
Ib
Ic
C + RC RL U o -
RS
+
RB2
Ui
rbe
RB1 RE1 -
β Ib
+
US -
E
§2.3 射极输出器
+UCC RB C1 + RS + + ui us – – RE C2 + RL
+UCC C2 + RE RL
(2) 画出微变等效电路;
(3) Au、Aus、ri 和 ro 。
RB C1 + RS + + ui us – –
+ uo –
解: (1)
I BQ
U CC U BE 12 0.6 mA 0.035mA R B (1 β )R E 200 (1 60) 2
解决方法:采用电流源!
等效电阻为 无穷大
近似为 恒流
R2 VEE U BEQ R R2 I 2 I B3,I E3 1 R3
– 引入直流负反馈 – 加温度补偿 – 采用差分放大电路
一.典型差分放大电路(长尾式差分)
• 参数理想对称:
Rb1= Rb2,Rc1= Rc2 T1、T2在任何温度下特性均相同
• 在理想对称情况下:
克服零点漂移 2. 零输入零输出
1.
静态分析
令uI1=uI2=0, VEE=IBQRb+UBEQ+2IEQRe IBQ=(VEE-UBEQ)/[Rb+2(1+β)Re] ICQ=βIBQ UCQ=VCC-ICQRc
输入方式: ri均为2(Rb+rbe);双端输入时无共模信号输入,单端输入时有共模信 号输入。 输出方式:Q点、Ad、 Ac、 KCMR、ro均与之有关。
双端输出: Ad
( Rc ∥
Rb rbe
RL ) 2
单端输出: Ad
( Rc ∥ RL )
2( Rb rbe )
Ac 0 K CMR Ro 2 Rc
I CQ β
U CEQ U CC I CQ R C I EQ R E U CC I CQ (R C R E )
二.动态分析
RL Au β rbe
B + RS
Ib
βIb
RB2 rbe E
Ic
C + RC RL
ri R B1 // RB2 // rbe
ro RC
+ uo –
• 静态分析
U CC U BE IBQ R B (1 )R E I CQ I B Q
RB IB
+
IC
+
+UCC UCE
–
UBE
RE
–
IE
UCE Q UCC I E Q R E UCC (IBQ ICQ)RE
• 动态分析
UO=(1+β)(RE//RL)Ib Ui=Ibrbe+(1+β)(RE//RL)Ib
二.差分电路的四种接法
1.双端输入双端输出 2.双端输入单端输出
由于输入回路没有变化, 所以IEQ、IBQ、ICQ与双端输 出时一样。但是UCQ1≠ UCQ2
U CQ1
RL VCC I CQ ( Rc ∥ RL ) Rc RL
U CQ2 VCC I CQ Rc
A ud
1 (R c ∥ R L ) 2 R b rbe
第二章 基本放大电路
§2.1 放大电路的性能指标和组成原则
扩音机电路
• 放大的实质:
– 将放大电路中直流电源的能量转化成交流能量输出。
• 性能指标:
1. 2. 3. 4. 5. 6. 7. 8. 放大倍数 输入电阻 输出电阻 最大不失真输出幅度 非线性失真 最大输出功率 效率 通频带
• 放大电路组成原则:
( 1 ) (RE // RL) Au rbe (1 )(RE // RL)
RS
Ib
+
B
C
Ic
rbe
E
RB
βI b
US
+
Ui
-
+ RE RL
ri R B //rbe (1 )(RE // RL)
-
Uo
-
• 求输出电阻电路如下:
rbe R s // RB ro Uot / Iot // RE 1 β
+UCC RB C1 + RS + + ui us – – RB1 C3 + C2 + + uo1 –
RL1
RC
T2
C4 +
T1
RB2
RE1
RE2
+ CE
RL
+ uo –
(2) 交流通路如下:
I b1 rbe1
+ RS
Ib2
+
β2 I b 2
Ic 2
+
RC RL
rbe2
US
+
Ui
ri
RB
β1I b1
• 由图解法可求: 1. 由uO和ui的峰值(或峰峰值)之比可得放大电路的电压 放大倍数。 2. 最大不失真输出电压幅度值。 3. 判别工作点是否合适(包括处于安全区)。
工作点太低,产生截止失真
工作点太高,产生饱和失真
2.
微变等效电路法
• rbe的确定
• 分析步骤:
– 画出交流通路,再画微变等效电路图。 – 求解动态指标。
ri 提高
RB RB1 // RB 2
ro RC
ro不变
B +
Ib
βIb
RB2 rbe
Ic
C
RS
+
RC RL
US
+
RB1
Ui
-
Uo
-
-
E
例:在图示放大电路中,已知UCC=12V, RC= 2kΩ, RE1= 200Ω, RE2= 1.8kΩ, RB1= 20kΩ, RB2= 10kΩ RL= 6kΩ ,晶体管β =37.5, UBE=0.6V, 试求: (1) 静态工作点 IBQ、ICQ 及 UCEQ;
1. E结正偏,C结反偏 2. 合理设置静态工作点 3. 被放大信号控制基极电流或发射极电流(输入回路) 4. 使集电极或发射极电流尽可能多地流向负载(输出回 路)
• 分析方法:
– 图解法 – 微变等效电路法
• 步骤:
– 直流分析 画直流通路,求静态工作点Q。 – 交流分析 画交流通路,求放大器的性能指标。
2.
动态分析 (1)输入差模信号
若uI1 = – uI2大小相等、极性相反, 这样的信号就叫差模输入信号。
输入差模信号时,Re中电流不变, 即Re 对差模信号无反馈作用。
差模放大倍数: A ud
u od u Id
(R c ∥
R b rbe
RL ) 2
差模输入电阻: ri 2(R b rbe ) 差模输出电阻: ro 2R c
K CMR
R r 2(1 ) Re b be Rb rbe
ri 2( Rb rbe ) ro Rc
3.单端输入双端输出
共模输入电压
输入差模信号的同时总是伴随着共模信号输入
uId uI
uIc uI / 2
差模输入电压
动态指标公式同双人双出。
4.单端输入单端输出
(2)输入共模信号
若uI1 = uI2=uIc大小相等、极性相同
这样的信号叫共模信号。
共模放大倍数 A uc
u Oc ,参数理想对称时 A uc 0 u Ic
共模抑制比KCMR:综合考察差分放大电路放大差模信号的能力和抑制共模信号
的能力。
共模抑制比KCMR=|Aud/Auc|
(3) 输入任意信号 uI1、uI2为任意 分解出差模分量:uId1=-uId2=(uI1-uI2)/2 分解出共模分量:uIc=(uI1+uI2)/2 uI1=uId1+uIc uI2=uId2+uIc uO=Aud(uId1-uId2)+AucuIC=Aud(uId1-uId2)
§2.1 共射极放大电路
一.静态分析
计算静态工作点Q ( IBQ 、 ICQ 、 UBEQ、UCEQ ) 1. 解析法(估算法)
I BQ
U CC U BEQ RB
I CQ I BQ
UCEQ = UCC – ICQ RC
直流通路
二.动态分析
1. 图解法
直流负载线斜率为-1/RC, 交流负载线斜率为-1/R’L, 当负载开路时,二者重合。
US
+
RB1
Ui
-
Uo
-
-
若原电路无旁路电容CE,则
βRL Au rbe (1 β ) RE
B +
Ui
Ib
Ic
C + RC RL U o -
RS
rbe
RB1 RE -
β Ib
Au减小
+ RB2
US
E
ri RB1 // RB2 // rbe (1 β ) RE
-
+ RS
Ib
B
C
Ic
rbe
E
βI b
I ot
+ RE