第二章 放大电路的基本原理
第二章 放大电路的基本原理和分析方法

' uCE iC RL
iC 0 4 4 (mA )
uCE (4 1.5) 6 (V )
交流负载线是放大电路动态工作点移动的轨迹
假设一个输入 电压uI, 在线性范 围内确定uBE、 iB、 iC、和uCE的波形。
估算电压 放大倍数
u0 uCE Au u I u BE
u
B 'E
iE I S e
iE I S e
rb'e uB' E iE
UT
u
B 'E
UT
u B ' E UT
UT 26 iE I CQ
uBE iB rbb' iE rb'e iB rbb' (1 )iB rb'e
rbe rbb ' 26 (1 ) I CQ
Q2
(c) Rc增大,Vcc、 Rb、β不变 直流负载线变平坦
工作点移近饱和区
Q2
(d) β增大,Vcc、 Rc、 Rb不变
IC增大,工作点移近饱和区
2.4.4 微变等效电路法 微变等效电路 在一个微小的工作范围内,用一 个等效的线性电路来代替三极管,使 得从线性电路的三个引出端看进去, 其电压、电流的变化关系和原来的三 极管基本一样。这样的线性电路称为 三极管的微变等效电路
6. 最大输出功率与效率 放大电路的最大输出功率,是指在输出信号不产 生明显失真的前提下,能够向负载提供的最大输出功 率,通常用符号Pom表示。
放大电路的效率η定义为输出功率P o 与直流电 源消耗的功率PV之比, 即 :
η =PO /PV
7. 非线性失真系数 所有的谐波总量与基波成分之比,定义为 非线性失真系数。符号为D
第二章基本放大电路

Rc Cb1
T
Cb2 VCC
Rc Cb2
Rb VBB
(a)
(b)
(c)
工作原理 放大电路的静态分析
静态 Ui=0时,放大电路的工作状态,也称直流工作状态。
静态分析 确定放大电路的静态值IBQ、ICQ、UCEQ,即静 态工作点Q。静态工作点的位置直接影响放 大电路的质量。
静态分析方法 1. 计算法 计算法 图解分析法
根据所用放大管的类型设置合适的静态工作点Q 。对 于晶体管应使发射结正偏,集电结反偏,以使晶体管工 作于线性放大区; 必须保证从输入到输出信号的正常流通途径。输入信 号能有效地作用于放大电路的输入回路;输出信号能有 效地加到负载上。 对实用放大电路的要求:共地、直流电源种类尽可能 少、负载上无直流分量。
-
动态信号作用时:uI ib ic uRc uCE (uo ) 输入电压ui为零时,晶体管各极的电流、b-e间的电 压、管压降称为静态工作点Q,记作IBQ、 ICQ(IEQ)、 UBEQ、 UCEQ。
Back
Next
Home
由于(IB,UBE) 和( IC,UCE )分别对应于输入、输出 特性曲线上的一个点,所以称为静态工作点。
Back
Next
Home
两种实用放大电路:(1)直接耦合放大电路
- + UBEQ
有交流损失 有直流分量 将两个电源 问题: 合二为一 静态时,U BEQ U Rb1 1. 两种电源 2. 信号源与放大电路不“共地” 动态时,VCC和uI同时作用 于晶体管的输入回路。 共地,且要使信号 驮载在静态之上
大倍数为源增益us、Ais、Ars 和Ags。 A
4
(2)输入电阻: 从输入端看进去的等效电阻
第二章:放大电路分析基础

放大电路分析基础在我们的生活中,经常会把一些微弱的信号放大到便于测量和利用的程度。
这就要用到放大电路,它是我们这门课程的重点。
放大的基础就是能量转换。
在学习时我们把这一章的课程分为六节,它们分别是:§2、1 放大电路工作原理§2、2 放大电路的直流工作状态§2、3 放大电路的动态分析§2、4 静态工作点的稳定及其偏置电路§2、5 多级放大电路§2、6放大电路的频率特性§2、1放大电路工作原理我们知道三极管可以通过控制基极的电流来控制集电极的电流,来达到放大的目的。
放大电路就是利用三极管的这种特性来组成放大电路。
我们下面以共发射极的接法为例来说明一下。
一:放大电路的组成原理放大电路的组成原理(应具备的条件)(1):放大器件工作在放大区(三极管的发射结正向偏置,集电结反向偏置)(2):输入信号能输送至放大器件的输入端(三极管的发射结)(3):有信号电压输出。
判断放大电路是否具有放大作用,就是根据这几点,它们必须同时具备。
例1:判断图(1)电路是否具有放大作用不满足条件(1),所解:图(1)a不能放大,因为是NPN三极管,所加的电压UBE以不具有放大作用。
图(1)b具有放大作用。
二:直流通路和交流通路在分析放大电路时有两类问题:直流问题和交流问题。
(1)直流通路:将放大电路中的电容视为开路,电感视为短路即得。
它又被称为静态分析。
(2)交流通路:将放大电路中的电容视为短路,电感视为开路,直流电源视为短路即得。
它又被称为动态分析。
例2:试画出图(2)所示电路的直流通路和交流通路。
解:图(2)所示电路的直流通路如图(3)所示:交流通路如图(4)所示:§2、2 放大电路的直流工作状态这一节是本章的重点内容,在这一节中我们要掌握公式法计算Q点和图形法计算Q点在学习之前,我们先来了解一个概念:什麽是Q点?它就是直流工作点,又称为静态工作点,简称Q点。
放大电路基本原理和分析方法

RL // RC)
交流负载线
iB=100μA
80
60
Q
40 20
0
0
直流负载线
VCC
UCE/V
Δui
ΔuBE
ΔiB
ΔiC
ΔiCRC
iC
ΔuCE
ΔuO
各点波形:
+ VCC
Cb 2
+
R b1 Cb 1
+
Rc
iB
+
+
ui
_
uEB
_
uCE
uo
_
_
uo比ui幅度放大且相位相反
(2) 交流放大工作情况 iB ib Q ui uBE
0
(mA)
iC/mA
iB=100μA 80
ic
60
40 20 0
ib
UCE/V
uce
假设在静态工作点的基 础上输入一微小的正弦信 号ui。
结论:
a) 放大电路中的信号是交直 流共存,可表示成:
ui
t uBE UBEQ
iB IBQ iC ICQ uCE UCEQ t uo t t
一般来说,Ri 越大越好。
五、输出电阻
ii
+
io
+
RS uS 信号源
放大电路 Ri
+
+
ui +
Ro uo
+
uo +
RL
Ri
Ro
负载
从放大电路的输出端看进去的等效电阻。
RO UO U S 0, RL IO
输出电阻表明放大电路带负载的能力。 Ro越小,放大电路带负载的能力越强,反 之则差。
放大电路的基本原理

放大电路的基本原理
放大电路的基本原理是利用电子元件的特性,将输入信号放大到更高的幅度。
常见的放大电路有共射放大电路、共基放大电路和共集放大电路。
共射放大电路是最常见的一种放大电路,它由晶体管、电阻和电源组成。
在共射放大电路中,输入信号通过电容联结的耦合电容进入基极,经过晶体管的放大作用后,输出信号通过负载电阻形成。
共基放大电路和共射放大电路类似,但是输入信号是通过基极注入的,经过晶体管的放大作用后,输出信号通过电容联结的耦合电容输出。
共集放大电路又称为电压跟随器,其输入信号通过电阻和电容形成的偏置网络输入到基极,经过晶体管的放大作用后,将信号输出到负载电阻上。
共集放大电路具有输入阻抗高、输出阻抗低的特点。
放大电路的基本原理是利用晶体管的放大作用实现信号的放大。
当输入信号通过晶体管时,晶体管内部的电流和电压发生变化,从而使得输出信号的幅度增大。
此外,放大电路中的电阻和电容组成的偏置网络可以对晶体管进行偏置,使其工作在合适的工作点上,从而保证放大电路的稳定性和线性度。
通过合理的设计和匹配,可以实现不同的放大倍数和频率响应。
综上所述,放大电路利用晶体管的放大作用,通过合适的电阻、
电容组成的偏置网络对晶体管进行偏置,实现输入信号的放大。
不同的放大电路具有不同的特点和适用范围,可以根据实际需求选择合适的放大电路。
第2章单级交流放大电路

2.1 放大电路的组成和工作原理
根据放大电路连接方式的不同,可分为共发射极放大电 路、共集电极放大电路和共基极放大电路3种,其中共发 射极放大电路应用最广。
2.1.1 共发射极放大电路的组成
RB
C1 +
+
Rs
us+-
ui -
RC
+UCC C2
+
V
+
RL uo
-
(1)晶体管V。放大元件,用基极电流iB控制集电极电 流iC。 (2)电源UCC和UBB。使晶体管的发射结正偏,集电结 反偏,晶体管处在放大状态,同时也是放大电路的能量
ICQ
IBQ
+
+
V UCEQ
UBEQ
-
-
I BQ
U CC
U BEQ RB
ICQ IBQ
UCEQ UCC ICQ RC
2.2.2 图解法
图解步骤:
(1)用估算法求出基极电流IBQ(如40μA)。 (2)根据IBQ在输出特性曲线中找到对应的曲线。 (3)作直流负载线。根据集电极电流IC与集、射间电 压UCE的关系式UCE=UCC-ICRC可画出一条直线,该直 线在纵轴上的截距为UCC/RC,在横轴上的截距为UCC, 其斜率为-1/ RC ,只与集电极负载电阻RC有关,称为 直流负载线。
强,因此总希望Ro越小越好。上式中Ro在几千欧到几十千 欧,一般认为是较大的,也不理想。
例: 图示电路,已知U CC 12V , RB 300 kΩ ,
RC 3 kΩ, RL 3 kΩ,Rs 3 kΩ, 50 ,试求:
数
(1) Au ;
RL
接
入和
断开
模电第二章 基本放大电路

T ( C U B ) 不 E I B I C 变
温度T (C) IC ,
若此时I B
,则I
、
CQ
U CEQ在输出特性坐标
系中的位置就可能
基本不变。
2.4 放大电路静态工作点的稳定
一、典型电路
消除方法:增大Rb,减小Rc,减小β。
例2-1:由于电路参数的改变使静态工作点产生如图所示变化。 试问(1)当Q从Q1移到Q2、 从Q2移到Q3、 从Q3移到Q4时, 分别是电路的哪个参数变化造成的?这些参数是如何变化的?
4mA 3mA 2mA 1mA
40µA
Q3
Q4
30µA 20µA
IB=10µA
2 6 m V
2 6 m V
r b e 2 0 0 ( 1 ) I E Q 2 0 0 ( 1 3 0 ) 1 . 2 m A 8 7 1 . 6 7
R i R b ∥ r b e r b e 8 7 1 . 6 7 R o R c 6 k
2.4 放大电路静态工作点的稳定
温度对Q点的影响
2、放大电路的动态分析(性能指标分析)
(1)放大电路的动态图解分析法
结论: 1. ui uBE iB iC uCE uo
阻容耦合共射放大电路
2、放大电路的动态分析(性能指标分析)
(1)放大电路的动态图解分析法 二、图解分析
结论: 2. uo与ui相位相反;3. 测量电压放大倍数;4. 最大不失 真输出电压Uom (UCEQ -UCES与 VCC- UCEQ ,取其小者,除以 2 )。
Q
UBE/V
UBEQ VCC
1、放大电路的静态工作点 (2)图解法确定静态工作点
放大电路的基本原理

2. 当 值一定时,IEQ 愈大则 rbe 愈小,可以得到较
大的 Au ,这种方法比较有效。
(三) 等效电路法的步骤(归纳)
1. 首先利用图解法或近似估算法确定放大电路 的静态工作点 Q 。
2. 求出静态工作点处的微变等效电路参数 和
rbe 。 3. 画出放大电路的微变等效电路。可先画出三
极管的等效电路,然后画出放大电路其余部分的交 流通路。
误差很小。
4. 电压放大倍数 Au;输入电阻 Ri、输出电阻 RO
Rb C1+ + Ui
Rc +C2
VT RL
+VCC
+
UO
b Ib
+
Ic c
+
Ui Rb
rbe Ib
Rc RLUo
e
图 2.4.12 单管共射放大电路的等效电路
Au 所以
Uo Ui
Au
而
Uo Ui
Ui Ibrbe
RL
rbe
该恒流源为受控源;
Q
iB
iB
为 iB 对 iC 的控制。
O
uCE
图 2.4.10(b)
3. 三极管的简化参数等效电路
iB b
+
uBE
iC c
+
iB b
+
iC c
+
uCE
uBE rbe
iB uCE
rce
e
e
图 2.4.11 三极管的简化 h 参数等效电路
注意:这里忽略了 uCE 对 iC与输出特性的影响,在 大多数情况下,简化的微变等效电路对于工程计算来说
1. 静态工作点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结论:iB 波形失真
iB / µA
Q tO
O
t
ui
uBE/V uBE/V
iC 、 uCE (uo )波形失真
iC / mA iC
NPN 管截止失真时 的输出 uo 波形。
ICQ
O
tO
O
t
Q UCEQ
uo = uce
uCE/V uCE/V
2.
iC
Q 点过高,引起 iC、uCE的波形失真—饱和失真
iC / mA
Q 尽量设在线段 AB 的中点。则 AQ = QB,CD = DE
(三)用图解法分析电路参数对静态工作点的影响
1. 改变 Rb,保持
VCC ,Rc , 不变;
iC
2. 改变 VCC,保持 Rb,
Rc , 不变;
iC
Q3 Q1
IB
Q2
O
uCE
图 2.4.9(a)
Rb 增大, Q 点下移; Rb 减小, Q 点上移;
4. 列出电路方程并求解。
二、 微变等效电路法的应用
例:接有发射极电阻的单管放大电路,计算电压放
大倍数和输入、输出电阻。
1. 计算电压放大倍 Au 数
+VCC
Rb Rc +C2
第二章 放大电路的基 本原理
2.1 放大的概念
本质:实现能量的控制。 在放大电路中提供一个能源,由能量较小的输入 信号控制这个能源,使之输出较大的能量,然后推动 负载。
小能量对大能量的控制作用称为放大作用。
放大的对象是变化量。
元件:双极型三极管和场效应管。
2.2 单管共发射极放大电路
2.2.1 单管共发射极放大电路的组成
2.3 放大电路的主要技术指标
一、放大倍数
电压放大倍 (Au数 )
A u
U U
o i
电压放大倍 (Ai数 )
A i IIoi
图 2.3.1 放大电路技术指标测试示意图
二、最大输出幅度
在输出波形没有明显失真情况下放大电路能够提供 给负载的最大输出电压(或最大输出电流)可用峰-峰值表 示,或有效值表示(Uom 、Iom)。
C1+ + U i
Rc +C2
VT RL
+VCC
+
U O
b I b
+
I c c
U i Rb
rbe Ib
Rc
e
+
RLU o
图 2.4.12 单管共射放大电路的等效电路
所 A u UU以 A oiu而 U U o i U irb IR bL e rbe
U o I cR L I b
(R L R c/R /L )
2.4 放大电路的基本分析方法
基本分析方法两种 图解法 微变等效电路法
2.4.1 直流通路与交流通路
图 2.2.2(b)
图 2.4.1(a)
图 2.4.1(b)
2.4.2 静态工作点的近似计算
IBQVCCRU b BEQ
硅管 UBEQ = (0.6 ~ 0.8) V 锗管 UBEQ = (0.1 ~ 0.2) V
Q
iC 2
0
t0
图 2.4.5(b) 0
输出回路工作 情况分析
t
Q
IB = 4 0 µA
4.5 6 7.5 9
uCE
20 直流负载线 0
12 uCE/V
uCE/V
UCEQ
4. 电压放大倍数
Au
ΔuO ΔuI
ΔuCE ΔuBE
【例】用图解法求图示电路电压放大倍数。输入、输
出特性曲线如右图,RL = 3 k 。
一、放大作用:
Δu Ι Δu B EΔiB ΔiC (ΔiB)
Δu O Δu C(E ΔiC R C )
ΔuO ΔuΙ 实现了放大作用。
图 2.2.1 单管共射放大电路 的原理电路
二、组成放大电路的原则:
1. 外加直流电源的 极性必须使发射结正偏, 集电结反偏。则有:
ΔiCΔiB
2. 输入回路的接法应使输入电压 u 能够传送到三 极管的基极回路,使基极电流产生相应的变化量 iB。
U
o
、U
。
o
Uo
U o RL Ro RL
Ro (U Uoo 1)RL
输出电阻愈小,带载能力愈强。
六、通频带
Aum 1 2 Aum
BW
fL:下限频率 fH:上限频率
图 2.3.2
fL
fH
七、最大输出功率与效率
输出不产生明显失真的最大输出功率。用符号 Pom
表示。
Pom PV
:效率
PV:直流电源消耗的功率
一、图解法的过程
(一)图解分析静态 1. 先用估算的方法计算输入回路 IBQ、 UBEQ。 2. 用图解法确定输出回路静态值 方法:根据 uCE = VCC iCRc 式确定两个特殊点
当 iC 0 时,uCEVCC 当 uCE0 时,iC VRCcC
输出回路 输出特性
iC 0,uCE VCC
解: 求 RL 确定交流负载线
R L R C /R /L 1 .5 k
取 iB = (60 – 20) A = 40A
则输入、输出特性曲线上有
uBE = (0.72 – 0.68) V = 0.04 V uCE = (4.5 – 7.5) V = 3 V
图 2.4.3(a) AuΔ Δu uC BE E0.0347 5
三、非线性失真系数 D
所有谐波总量与基波成分之比,即
D U22 U32 U1
四、输入电阻 Ri
从放大电路输入端看进去的等
效电阻。
Ri
U I
i i
五、输出电阻 Ro
从放大电路输出端看进去的等效电阻。
测量 Ro:
输入端正弦电压
Ro U i
UIoo
U S 0 RL
,分别测量空载和输出端接负载
RL
的输出电压
rbedduiB BErbb
(1) 26
IEQ
低频、小功率管 rbb 约为 300 。
讨论
电流放大倍数与电压放大倍数之间关系
因:
A u
RL
rbe
r 300 (1 ) 26
be
I EQ
1. 当 IEQ 一定时, 愈大则 rbe 也愈大,选用 值
较大的三极管其 Au 并不能按比例地提高;
VT:NPN 型三极管,为放大元件;
VCC:为输出信号提供能量; RC:当 iC 通过 Rc,将 电流的变化转化为集电极
电压的变化,传送到电路
的输出端;
VBB 、Rb:为发射结提 供正向偏置电压,提供静
态基极电流(静态基流)。
图 2.2.1 单管共射放大电路 的原理电路
2.2.2 单管共发射极放大电路的 工作原理
CUB Rb
EQ
120.7
(
)mA40μA
280
做直流负载线,确定 Q 点
根据 UCEQ = VCC – ICQ Rc
iC = 0,uCE = 12 V ; uCE = 0,iC = 4 mA .
图 2.4.3(a)
iC /mA
4
80 µA
3
60 µA
静态工作点
40 µA
2
Q
20 µA
1
M iB = 0 µA
0
2
4
6
8
10 12
uCE /V
图 2.4.3(b)
由 Q 点确定静态值为:
IBQ = 40 µA ,ICQ = 2 mA,UCEQ = 6 V.
(二) 图解分析动态
1. 交流通路的输出回路 输出通路的外电路是 Rc 和 RL 的并联。 2. 交流负载线
iC / mA
交流负载线斜率为:
R 1L ,其 R L 中 R C//R L
( 12 0 .7 ) mA 280
40 A
ICQ IBQ
= (50 0.04) mA = 2 mA
图 2.4.3(a)
UCEQ = VCC – ICQ Rc = (12 2 3)V = 6 V
2.4.3 图解法
在三极管的输入、输出特性曲线上直接用作图的方 法求解放大电路的工作情况。
2. 输出电路
假设在 Q 点附近特性曲线基本上是水平的(iC 与 uCE
无关),数量关系上, iC 比 iB 大 倍;
从三极管输出端看,
可以用 iB 恒流源代
iC
替三极管;
该恒流源为受控源;
Q
iB
iB
为 iB 对 iC 的控制。
O
uCE
图 2.4.10(b)
3. 三极管的简化参数等效电路
iB b
+
uBE
iC c
+
uCE
iB b
+
uBE rbe
iC c
+
iB uCE
e
e
图 2.4.11 三极管的简化 h 参数等效电路
注意:这里忽略了 uCE 对 iC与输出特性的影响,在 大多数情况下,简化的微变等效电路对于工程计算来说
误差很小。
4. 电压放大倍数 Au;输入电阻 Ri、输出电阻 RO
Rb
uCE
0,iC
VCC RC
图 2.4.2
Q 直流负载线
由静态工作点 Q 确 定 的 ICQ 、 UCEQ 为静态值。
【例】图示单管共射放大电路及特性曲线中,已知
Rb = 280 k,Rc = 3 k ,集电极直流电源 VCC = 12 V, 试用图解法确定静态工作点。
解:首先估算 IBQ