第4章时变电磁场
合集下载
时谐电磁场

磁铁 S
运动
N 静 止 线圈
+ -
i
图4 - 1 由磁通量增加产生的感应电动势与电流
+
K
U -
+ -
线圈2
线圈1
图4 - 2 接通线圈1的开关K时,在线圈2中的与穿过曲 面S和回路C交链的磁通Ψ的正向成右手 螺旋关系。 时变磁通可通过在线圈附近
移动磁铁来产生, 如图4-1所示, 或者 由打开或接通另一个线圈的电路来建立,
如图4-2所示。
❖
2章知道, 在导体内维持电
流 以必用须导在体导内体 的 内 感 存 应C 在 电Ei非 场n 保 (dl 守非场库,仑电我场们)可
来定义感应电动势
❖
如果空间中同时存在由静止电荷
产生的保守电场Ec, 则总电场E=Ein+Ec, 因此电场沿闭合路径的积分为
C E dl C (Ein Ec ) dl C Ein dl
第4章 时谐电磁场与电磁波
❖ 4.1 法拉第电磁感应定律 ❖ 4.2 位移电流 ❖ 4.3 麦克斯韦方程及边界条件 ❖ 4.4 坡印廷定理与坡印廷矢量 ❖ 4.5 时谐电磁场 ❖ 4.6 平面电磁波 ❖ 4.7 电磁波的极化 ❖ 4.8 电磁波的色散与群速 ❖ 4.9 均匀平面电磁波对平面边
界的垂直入射
利用式
1 R
aR R2
,式
B(r) 0 4 V
J (r) aR R2
dV
又可以写为
B(r) 0
4
V
J
(r)
1 R
dV
应用恒等式
▽ ×(ψA)=▽ ψ×A+ψ▽ ×A
同时注意到▽ 是对场点作用的算子, 故 ▽ ×J(r′)=0, 磁通密度可以表达如下
电磁场与电磁波课件第4章要点

•
Exme j x E xm
Eyme j y
•
E ym
•
Ezme j z E zm
称为时谐电场的复振幅
故
E(x,
y,
z,t)
E
x
ex
E
y
ey
E
z
ez
E(x,
y,
z,t)
•
Re[E
xm
e
jt
ex
•
E
ym
e
jt
ey
•
E
zm
e
jt
ez
]
)ez
E0 00sin( 00 z t)ey
H
ey
1
0
E0
00 sin(
00 z t)dt
ey
E0
0 cos( 0
00 z t)
ey
0 E 0
S EH
ez
E02
0 cos2 ( 0
z)e
j (t 2
)
]
ex
Exm
c
os
(k
z
z
)
c
os(t
2
)
4.5.2 复矢量的麦克斯韦方程
· 时谐场对时间的导数
E t
t
Re
Egm
e
jt
Re
t
g
Em
e
jt
Re
j
电磁场与电磁波第四章时变电磁场

电磁场与电磁波
第 4 章 时变电磁场
电磁场与电磁波第四章时变电磁 场..
电磁场与电磁波
第 4 章 时变电磁场
2
4.1 电磁场波动方程
麦克斯韦方程 —— 一阶矢量微分方程组,描述电场与磁场 间的相互作用关系。
波动方程 —— 二阶矢量微分方程,揭示电磁场的波动性。
麦克斯韦方程组
波动方程。
无源区域中电磁场波动方程
时变电磁场唯一性定理
在以闭曲面S为边界的有界区域V 中,
V
如果给定t=0 时刻的电场强度和磁场强度 S
的初始值,并且当t 0 时,给定边界面S
上的电场强度或者磁场强度的切向分量已知,那么,在 t > 0 的
任何时刻,区域V 中的电磁场都由麦克斯韦方程组唯一确定。
唯一性定理指出了获得唯一解所必须给定的边界条件。
第 4 章 时变电磁场
17
4.5.1 简谐电磁场的复数表示
简谐场量的复数表示形式
设 A(r,t)是一个以角频率 随时间t 作余弦变化的场量,它
可以是电场或磁场的任意一个分量,也可以是电荷或电流等变量,
它与时间的变化关系可以表示为:
A ( r ,t) A 0 c o s [t ( r ) ]
实数表示法 或称瞬时表示法
只要把微分算子 用 j 代替,就可把麦克斯韦方程转换为
t
简谐电磁场复矢量之间的关系,而得到简谐场的麦克斯韦方程。
H
J D t
E
B t
B 0
D
Hm
Jm
j D m
Em
j B m
Bm 0
D m m
H J j D
E j B
D
式中A0代表振幅、 ( r )为与坐标有关的相位因子。
第 4 章 时变电磁场
电磁场与电磁波第四章时变电磁 场..
电磁场与电磁波
第 4 章 时变电磁场
2
4.1 电磁场波动方程
麦克斯韦方程 —— 一阶矢量微分方程组,描述电场与磁场 间的相互作用关系。
波动方程 —— 二阶矢量微分方程,揭示电磁场的波动性。
麦克斯韦方程组
波动方程。
无源区域中电磁场波动方程
时变电磁场唯一性定理
在以闭曲面S为边界的有界区域V 中,
V
如果给定t=0 时刻的电场强度和磁场强度 S
的初始值,并且当t 0 时,给定边界面S
上的电场强度或者磁场强度的切向分量已知,那么,在 t > 0 的
任何时刻,区域V 中的电磁场都由麦克斯韦方程组唯一确定。
唯一性定理指出了获得唯一解所必须给定的边界条件。
第 4 章 时变电磁场
17
4.5.1 简谐电磁场的复数表示
简谐场量的复数表示形式
设 A(r,t)是一个以角频率 随时间t 作余弦变化的场量,它
可以是电场或磁场的任意一个分量,也可以是电荷或电流等变量,
它与时间的变化关系可以表示为:
A ( r ,t) A 0 c o s [t ( r ) ]
实数表示法 或称瞬时表示法
只要把微分算子 用 j 代替,就可把麦克斯韦方程转换为
t
简谐电磁场复矢量之间的关系,而得到简谐场的麦克斯韦方程。
H
J D t
E
B t
B 0
D
Hm
Jm
j D m
Em
j B m
Bm 0
D m m
H J j D
E j B
D
式中A0代表振幅、 ( r )为与坐标有关的相位因子。
谢处方《电磁场与电磁波》(第4版)章节习题-第4章 时变电磁场【圣才出品】

(2)推导 J% j&。提示:
r A
0。
解:(1) H% J% jD% jD%,方程左边做旋度运算,有:
H% H% 2H%
由于 H%
1 j
E%,于是有
H% 0
4 / 17
圣才电子书
十万种考研考证电子书、题库视频学习平
Ñ
s
v (E
v H)
v dS
d dt
(We
Wm )
P
或
Ñ
vv v (E H ) dS
d
(1 E2 1 H 2 )d
E2d
s
dt 2
2
反映了电磁场中能量的守恒和转换关系。
4.试解释什么是 TEM 波。 答:与传播方向垂直的平面称为横向平面;若电磁场分量都在横向平面中,则称这种 波称为平面波;又称横电磁波即 TEM 波。
f ck 3108 3 4.5 108 Hz
2π 2π
π
E% jB%
2.从复数形式的麦克斯韦方程组源自 H% J% D% &
j
D%推导:
B% 0
(1)自由空间( & 0、 J% 0 )磁场复数形式波动方程 2 k 2 H% 0 。提示:
r
r
r
A A 2A ;
5.说明矢量磁位和库仑规范。
答: 由于 g( A) 0 ,而 gB 0 ,所以令 B A ,A 称为矢量磁位,它是一
个辅助性质的矢量。从确定一个矢量场来说,只知道一个方程是不够的,还需要知道 A 的
散度方程后才能唯一确定 A,在恒定磁场的情况下,一般总是规定 gA 0 ,这种规定为
库仑规范。
增加的电磁场能量与损耗的能量之和——能量守恒。
第4章 时变电磁场

(2)
对方程(2)两边取旋度有 E H t 2 2 E H E E ( E ) E
E t
2
对于各向同性的介质,得
2 E 2 E 2 0 t (5)
E 0 t
t
同理可得
2 H 2 H 2 0 t (6)
第四章 时 变 电 磁 场
从上方程可以看出:时变电磁场的电场场量和磁场场量在 空间中是以波动形式变化的,因此称时变电磁场为电磁波。 上两式为关于场量 E、H 的矢量波动方程,表示时变电磁场 以波的形式在空间存在和传播,其波速为
A E ex Am cos(t kz ) t
第四章 时 变 电 磁 场
§4.3 电磁能量守恒定律
能量守恒定律是一切物质运动过程遵守的普遍规律,作为特殊形态的物 质,电磁场及其运动过程也遵守这一规律。 下面讨论电磁场的能量和能量守恒定律,引入重要的坡印廷矢量和坡印廷 定理,分析讨论电磁场能量、电荷电流运动及电磁场做功之间的相互联系。
其中Am、k是常数,求电场强度、磁场强度。
解:
Ax B A ey ey kAm cos(t kz ) z k H ey Am cos(t kz )
A 0 t
C
如果假设过去某一时刻,场还没有建立,则C=0。
量位只决定于ρ,这对求解方程特别有利。只需解出A,无需
解出 就可得到待求的电场和磁场。 电磁位函数只是简化时变电磁场分析求解的一种辅助函数,应 用不同的规范条件,矢量位A和标量位 的解也不相同,但最终 得到的电磁场矢量是相同的。
电磁场与电磁波时变电磁场基础知识讲解

例 已知电场强度复矢量
Em (z) ex jExm cos(kz z)
其中kz和Exm为实常数。写出电场强度的瞬时矢量
解: E(z, t) Re[ex jExm cos(kz z)e jt ]
j(t π )
Re[ex Exm cos(kz z)e 2 ]
ex
Exm
cos(kz
z)
cos(t
π 2
麦克斯韦方程组微分形式
H
(r,t)
J
(r,
t)
D(r, t
t
)
E
(r,
t)
B(r , t ) t
B(r,t) 0
D(r,t) (r,t)
J (r,t) (r,t)
t
H (r) J (r) j D(r)
E(r) j B(r)
D(r) (r)
B(r) 0
面对的问题! 分析方法! 关联的一般性物理问题: 坡印廷定理 坡印廷矢量 典型问题的应用?
面对的问题! 分析方法! 关联的一般性物理问题! 典型问题的应用: 时谐电磁场问题
4. 5 时谐电磁场
时谐电磁场的复数表示 复矢量的麦克斯韦方程 复电容率和复磁导率 亥姆霍兹方程 时谐场的位函数 平均能流密度矢量
推导
t
不利点: 磁矢位与电位函数不能分离!
洛仑兹规范条件
必须引入规范条件的原因:未规定 A的散度。
库仑规范: A 0(静态场)
对时变场问题:
A
t
洛伦兹规范条件
引入洛伦兹规范条件,电位方程为达朗贝尔方程
2
2
2t
2 A
2 A t 2
J
磁矢位与电位函数分离 磁矢位只依赖于电流 电位函数只依赖于电荷
电磁场与电磁波及其应用 第四章

将以上两式相减, 得到
在线性、 各向同性媒质中, 当参数不随时间变化时,
于是得到 再利用矢量恒等式
可得到 (4.3.4)
在体积V上, 对式(4.3.4)两端积分, 并应用散度定理即 可得到
(4.3.5)
由于E和H也是相互垂直的, 因此S、 E、 H三者是相互 垂直的, 且构成右旋关系, 如图4.3-1 所示。
第四章 时变电磁场
4.1 波动方程 4.2 时变场的位函数 4.3 时变电磁场的能量与能流 4.4 时谐电磁场 4.5 左手媒质 4.6 时变电磁场的应用
4.1 波 动 方 程
在无源空间中, 电流密度和电荷密度处处为零, 即 ρ=0、 J=0。 在线性、 各向同性的均匀媒质中, E和H满足 麦克斯韦方程
图4.3-1 能流密度矢量与电场及磁场的方向关系
例4.3.1 同轴线的内导体半径为a、 外导体半径为b, 其 间均匀充填理想介质。 设内外导体间电压为U, 导体中流过 的电流为 I。 (1) 在导体为理想导体的情况下, 计算同轴线 中传输的功率; (2) 当导体的电导率σ为有限值时, 计算通 过内导体表面进入每单位长度内导体的功率。
磁场仍为 内导体表面外侧的坡印廷矢量为
由此可见内导体表面外侧的坡印廷矢量既有轴向分量, 也 有径向分量, 如图4.3-3所示。
图4.3-3 同轴线中电场、 磁场和坡印廷矢量 (非理想导体情况)
进入每单位长度内导体的功率为
式中
是单位长度内导体的电阻。 由此可见,
进入内导体中的功率等于这段导体的焦耳损耗功率。
利用复数取实部表示方法, 可将式(4.5.1)写成
式中
(4.4.2)
称为复振幅, 或称为u(r, t)的复数形式。 为了区别复数形 式与实数形式, 这里用打“•”的符号表示复数形式。
在线性、 各向同性媒质中, 当参数不随时间变化时,
于是得到 再利用矢量恒等式
可得到 (4.3.4)
在体积V上, 对式(4.3.4)两端积分, 并应用散度定理即 可得到
(4.3.5)
由于E和H也是相互垂直的, 因此S、 E、 H三者是相互 垂直的, 且构成右旋关系, 如图4.3-1 所示。
第四章 时变电磁场
4.1 波动方程 4.2 时变场的位函数 4.3 时变电磁场的能量与能流 4.4 时谐电磁场 4.5 左手媒质 4.6 时变电磁场的应用
4.1 波 动 方 程
在无源空间中, 电流密度和电荷密度处处为零, 即 ρ=0、 J=0。 在线性、 各向同性的均匀媒质中, E和H满足 麦克斯韦方程
图4.3-1 能流密度矢量与电场及磁场的方向关系
例4.3.1 同轴线的内导体半径为a、 外导体半径为b, 其 间均匀充填理想介质。 设内外导体间电压为U, 导体中流过 的电流为 I。 (1) 在导体为理想导体的情况下, 计算同轴线 中传输的功率; (2) 当导体的电导率σ为有限值时, 计算通 过内导体表面进入每单位长度内导体的功率。
磁场仍为 内导体表面外侧的坡印廷矢量为
由此可见内导体表面外侧的坡印廷矢量既有轴向分量, 也 有径向分量, 如图4.3-3所示。
图4.3-3 同轴线中电场、 磁场和坡印廷矢量 (非理想导体情况)
进入每单位长度内导体的功率为
式中
是单位长度内导体的电阻。 由此可见,
进入内导体中的功率等于这段导体的焦耳损耗功率。
利用复数取实部表示方法, 可将式(4.5.1)写成
式中
(4.4.2)
称为复振幅, 或称为u(r, t)的复数形式。 为了区别复数形 式与实数形式, 这里用打“•”的符号表示复数形式。
时变电磁场

y, y,
z, z,
t) t)
Exm E ym
(x, (x,
y, y,
z) z)
cos[t cos[t
x (x, y (x,
y, y,
z)] z)]
Ez
(x,
y,
z,
t)
Ezm
(x,
y,
z)
cos[t
z
(
x,
y,
z)]
式中:Exm , Eym , Ezm 为电场在x,y,z方向分量的幅度
x, y,z 为电场x,y,z分量的初始相位
电磁场与电磁波
第4章 时变电磁场
第四章 时变电磁场
时变情况下,电场和磁场相互关联,构成统一的电磁场 时变电场和磁场能量在空间中不断相互转换,并以电磁波动的 形式从一个地方传递到另外一个地方
本章主要内容: ➢ 时变电场和磁场满足的方程——波动方程 ➢ 时变电磁场的辅助函数——标量电位和矢量磁位 ➢ 时变电磁场的能量守恒定律 ➢ 正弦规律变化的时变场——时谐电磁场
对于时变场来说,动态位函数常用的规范条件为洛伦兹规范条件
A
t
洛伦兹规范条件
思考:库仑规范条件和洛伦兹规范条件有何联系?
15:54
电磁场与电磁波
第4章 时变电磁场
4.2.2 达朗贝尔方程
E (
H H
J
1
E
t A
A) 2
t
t
1 A J E
t
(
A)
Σ
J EdV
V
15:54
E, H
V
电磁场与电磁波
第4章 时变电磁场
坡印廷定理物理意义:单位时间内流入体积V内的电磁能量等于 体积V内增加的电磁能量与体积V内损耗的电磁能量之和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
J
t 2
2
积分形式:
(E H ) dS
d
(1
E
D
1
H
B)
dV
E J dV
S
dt V 2
2
V
其中:d
(
1
E
D
1
H
B)
dV
——
单位时间内体积V
中所增加
dt V 2
2
的电磁能量。
E J dV —— 单位时间内电场对体积V中的电流所做的功;
V
在导电媒质中,即为体积V内总的损耗功率。
(E H ) dS —— 通过曲面S 进入体积V 的电磁功率。 S
电磁场与电磁波
第 4 章 时变电磁场
14
推证 由
H Ε
J
D
t
B
t
Ε H
H
Ε
ΕJ
H
Ε
B
t
D t
将以上两式相减,得到
ΕH H
Ε
Ε
J
Ε
D
H
B
t
t
在线性和各向同性的媒质中,当参数都不随时间变化时,则有
位函数的定义
B 0
Ε
B
t
B A
(Ε
A
)
0
t
E
A
t
电磁场与电磁波
第 4 章 时变电磁场
6
位函数的不确定性
满足下列变换关系的两组位函数(A、)和(A、 )能描述同
一个电磁场问题。
A
A
t
为任意可微函数
A ( A ) A
即
A t
(
t
)
t
(
A
)
A t
也就是说,对一给定的电磁场可用不同的位函数来描述。
t
A
0
t
2
2
t 2
电磁场与电磁波
第 4 章 时变电磁场
10
说明
2A
2A t 2
Байду номын сангаас
J
2
2
t 2
应用洛仑兹条件的特点:① 位函数满足的方程在形式上是对称 的,且比较简单,易求解;② 解的物理意义非常清楚,明确地 反映出电磁场具有有限的传递速度;③ 矢量位只决定于J,标
量位只决定于ρ,这对求解方程特别有利。只需解出A,无需
H
(
E )
t
( H )
2H
2H t 2
2H
2H t 2
0
若为导电媒质,结果如何?
电磁场与电磁波
第 4 章 时变电磁场
4
4.2 电磁场的位函数
讨论内容
位函数的定义 位函数的性质 位函数的规范条件 位函数的微分方程
电磁场与电磁波
第 4 章 时变电磁场
5
引入位函数的意义 引入位函数来描述时变电磁场,使一些问题的分析得到简化。
电磁能量及守恒关系 坡印廷定理 坡印廷矢量
电磁场与电磁波
第 4 章 时变电磁场
12
电磁能量及守恒关系
电场能量密度: we
1 2
E
D
磁场能量密度:
wm
1 2
H
B
dW
dt V
S
电磁能量密度:
w
we
wm
1 2
E
D
1 2
H
B
空间区域V中的电磁能量:W wdV ( 1 E D 1 H B)dV
V
V2
2
特点:当场随时间变化时,空间各点的电磁场能量密度也要随
时间改变,从而引起电磁能量流动。
电磁能量守恒关系:
进入体积V的能量=体积V内增加的能量+体积V内损耗的能量
电磁场与电磁波
第 4 章 时变电磁场
13
坡印廷定理
表征电磁能量守恒关系的定理
微分形式:
(E H)
(
1
E
D
1
H
B)
E
解出 就可得到待求的电场和磁场。
电磁位函数只是简化时变电磁场分析求解的一种辅助函数,应
用不同的规范条件,矢量位A和标量位 的解也不相同,但最终
得到的电磁场矢量是相同的。
问题 若应用库仑条件,位函数满足什么样的方程? 具有什么特点?
电磁场与电磁波
第 4 章 时变电磁场
11
4.3 电磁能量守恒定律 讨论内容
电磁场与电磁波
第 4 章 时变电磁场
1
本章内容
4.1 波动方程 4.2 电磁场的位函数 4.3 电磁能量守恒定律 4.4 惟一性定理 4.5 时谐电磁场
电磁场与电磁波
第 4 章 时变电磁场
2
4.1 波动方程
问题的提出 麦克斯韦方程 —— 一阶矢量微分方程组,描述电场与磁场 间的相互作用关系。 波动方程 —— 二阶矢量微分方程,揭示电磁场的波动性。
A 0
电磁场与电磁波
位函数的微分方程
第 4 D章 时E变电H磁场B
8
H
J
D
B
J
E
B A
E
t A
t
t
A
J
(
A
)
t t
A
(
A) 2 A
2 A
2A
J
(
A
)
A
0
t
t 2
t
2
A
2
A
J
t 2
电磁场与电磁波
第 4 章 时变电磁场
9
同样
D
D
E、E
A
t
( A )
麦克斯韦方程组
波动方程。
无源区的波动方程
在无源空间中,设媒质是线性、各向同性且无损耗的均匀媒
质,则有
2E
2E t 2
0
2H
2H t 2
0
电磁波动方程
电磁场与电磁波
第 4 章 时变电磁场
3
推证
H
Ε
Ε
t
H
t
H
0
Ε 0
同理可得
2E
2E t 2
0
问题
若为有源空间,结果如何?
第 4 章 时变电磁场
17
例4.3.1 同轴线的内导体半径为a 、外导体的内半径为b,其 间填充均匀的理想介质。设内外导体间的电压为U ,导体中流过 的电流为I 。(1)在导体为理想导体的情况下,计算同轴线中传
不同位函数之间的上述变换称为规范变换。 原因:未规定 A 的散度。
电磁场与电磁波
第 4 章 时变电磁场
7
位函数的规范条件
造成位函数的不确定性的原因 就是没有规定 A的散度。利用位 函数的不确定性,可通过规定 的A散度使位函数满足的方程得以简 化。
在电磁理论中,通常采用洛仑兹条件,即
A
0
t
除了利用洛仑兹条件外,另一种常用的是库仑条件,即
B
)
Ε
J
t 2
2
在任意闭曲面S 所包围的体积V上,对上式两端积分,并应用散度 定理,即可得到坡印廷定理的积分形式
S
(E
H ) dS
d dt
V
(1 2
E
D
1 2
H
B) dV
V
E
J
dV
物理意义:单位时间内,通过曲面S 进入体积V的电磁能量等于 体积V 中所增加的电磁场能量与损耗的能量之和。
Ε
D
Ε
Ε
1
(Ε Ε)
(1
Ε
D)
t
t 2 t
t 2
H
B
H
H
1
(H
H)
(1
H
B)
t
t 2
t
t 2
电磁场与电磁波
第 4 章 时变电磁场
15
再利用矢量恒等式: Ε H H Ε (Ε H )
即可得到坡印廷定理的微分形式
(Ε H)
(1
ΕD
1
H
电磁场与电磁波
第 4 章 时变电磁场
16
坡印廷矢量(电磁能流密度矢量)
描述时变电磁场中电磁能量传输的一个重要物理量
定义:S Ε H ( W/m2 )
E
物理意义:
O
S
S 的方向 —— 电磁能量传输的方向
H
S 的大小 —— 通过垂直于能量传输方
能流密度矢量
向的单位面积的电磁功率
电磁场与电磁波