第4章时变电磁场

合集下载

时谐电磁场

时谐电磁场

磁铁 S
运动
N 静 止 线圈
+ -
i
图4 - 1 由磁通量增加产生的感应电动势与电流

K
U -
+ -
线圈2
线圈1
图4 - 2 接通线圈1的开关K时,在线圈2中的与穿过曲 面S和回路C交链的磁通Ψ的正向成右手 螺旋关系。 时变磁通可通过在线圈附近
移动磁铁来产生, 如图4-1所示, 或者 由打开或接通另一个线圈的电路来建立,
如图4-2所示。

2章知道, 在导体内维持电
流 以必用须导在体导内体 的 内 感 存 应C 在 电Ei非 场n 保 (dl 守非场库,仑电我场们)可
来定义感应电动势

如果空间中同时存在由静止电荷
产生的保守电场Ec, 则总电场E=Ein+Ec, 因此电场沿闭合路径的积分为
C E dl C (Ein Ec ) dl C Ein dl
第4章 时谐电磁场与电磁波
❖ 4.1 法拉第电磁感应定律 ❖ 4.2 位移电流 ❖ 4.3 麦克斯韦方程及边界条件 ❖ 4.4 坡印廷定理与坡印廷矢量 ❖ 4.5 时谐电磁场 ❖ 4.6 平面电磁波 ❖ 4.7 电磁波的极化 ❖ 4.8 电磁波的色散与群速 ❖ 4.9 均匀平面电磁波对平面边
界的垂直入射
利用式
1 R
aR R2
,式
B(r) 0 4 V
J (r) aR R2
dV
又可以写为
B(r) 0
4
V
J
(r)
1 R
dV
应用恒等式
▽ ×(ψA)=▽ ψ×A+ψ▽ ×A
同时注意到▽ 是对场点作用的算子, 故 ▽ ×J(r′)=0, 磁通密度可以表达如下

电磁场与电磁波课件第4章要点

电磁场与电磁波课件第4章要点


Exme j x E xm
Eyme j y

E ym

Ezme j z E zm
称为时谐电场的复振幅

E(x,
y,
z,t)

E
x
ex

E
y
ey

E
z
ez
E(x,
y,
z,t)


Re[E
xm
e
jt
ex


E
ym
e
jt
ey


E
zm
e
jt
ez
]
)ez
E0 00sin( 00 z t)ey
H

ey
1
0

E0
00 sin(
00 z t)dt

ey
E0
0 cos( 0
00 z t)

ey
0 E 0
S EH

ez
E02
0 cos2 ( 0
z)e
j (t 2
)
]

ex
Exm
c
os
(k
z
z
)
c
os(t


2
)
4.5.2 复矢量的麦克斯韦方程
· 时谐场对时间的导数
E t

t
Re
Egm
e
jt


Re

t

g
Em
e
jt


Re

j

电磁场与电磁波第四章时变电磁场

电磁场与电磁波第四章时变电磁场
电磁场与电磁波
第 4 章 时变电磁场
电磁场与电磁波第四章时变电磁 场..
电磁场与电磁波
第 4 章 时变电磁场
2
4.1 电磁场波动方程
麦克斯韦方程 —— 一阶矢量微分方程组,描述电场与磁场 间的相互作用关系。
波动方程 —— 二阶矢量微分方程,揭示电磁场的波动性。
麦克斯韦方程组
波动方程。
无源区域中电磁场波动方程
时变电磁场唯一性定理
在以闭曲面S为边界的有界区域V 中,
V
如果给定t=0 时刻的电场强度和磁场强度 S
的初始值,并且当t 0 时,给定边界面S
上的电场强度或者磁场强度的切向分量已知,那么,在 t > 0 的
任何时刻,区域V 中的电磁场都由麦克斯韦方程组唯一确定。
唯一性定理指出了获得唯一解所必须给定的边界条件。
第 4 章 时变电磁场
17
4.5.1 简谐电磁场的复数表示
简谐场量的复数表示形式
设 A(r,t)是一个以角频率 随时间t 作余弦变化的场量,它
可以是电场或磁场的任意一个分量,也可以是电荷或电流等变量,
它与时间的变化关系可以表示为:
A ( r ,t) A 0 c o s [t ( r ) ]
实数表示法 或称瞬时表示法
只要把微分算子 用 j 代替,就可把麦克斯韦方程转换为
t
简谐电磁场复矢量之间的关系,而得到简谐场的麦克斯韦方程。
H
J D t
E
B t
B 0
D
Hm
Jm
j D m
Em
j B m
Bm 0
D m m
H J j D
E j B
D
式中A0代表振幅、 ( r )为与坐标有关的相位因子。

谢处方《电磁场与电磁波》(第4版)章节习题-第4章 时变电磁场【圣才出品】

谢处方《电磁场与电磁波》(第4版)章节习题-第4章 时变电磁场【圣才出品】

(2)推导 J% j&。提示:
r A
0。
解:(1) H% J% jD% jD%,方程左边做旋度运算,有:
H% H% 2H%
由于 H%
1 j
E%,于是有
H% 0
4 / 17
圣才电子书
十万种考研考证电子书、题库视频学习平
Ñ
s
v (E
v H)
v dS
d dt
(We
Wm )
P

Ñ
vv v (E H ) dS
d
(1 E2 1 H 2 )d
E2d
s
dt 2
2
反映了电磁场中能量的守恒和转换关系。
4.试解释什么是 TEM 波。 答:与传播方向垂直的平面称为横向平面;若电磁场分量都在横向平面中,则称这种 波称为平面波;又称横电磁波即 TEM 波。
f ck 3108 3 4.5 108 Hz
2π 2π
π
E% jB%
2.从复数形式的麦克斯韦方程组源自 H% J% D% &
j
D%推导:
B% 0
(1)自由空间( & 0、 J% 0 )磁场复数形式波动方程 2 k 2 H% 0 。提示:
r
r
r
A A 2A ;
5.说明矢量磁位和库仑规范。
答: 由于 g( A) 0 ,而 gB 0 ,所以令 B A ,A 称为矢量磁位,它是一
个辅助性质的矢量。从确定一个矢量场来说,只知道一个方程是不够的,还需要知道 A 的
散度方程后才能唯一确定 A,在恒定磁场的情况下,一般总是规定 gA 0 ,这种规定为
库仑规范。
增加的电磁场能量与损耗的能量之和——能量守恒。

第4章 时变电磁场

第4章 时变电磁场

(2)
对方程(2)两边取旋度有 E H t 2 2 E H E E ( E ) E
E t
2
对于各向同性的介质,得
2 E 2 E 2 0 t (5)
E 0 t
t
同理可得
2 H 2 H 2 0 t (6)
第四章 时 变 电 磁 场
从上方程可以看出:时变电磁场的电场场量和磁场场量在 空间中是以波动形式变化的,因此称时变电磁场为电磁波。 上两式为关于场量 E、H 的矢量波动方程,表示时变电磁场 以波的形式在空间存在和传播,其波速为
A E ex Am cos(t kz ) t
第四章 时 变 电 磁 场
§4.3 电磁能量守恒定律
能量守恒定律是一切物质运动过程遵守的普遍规律,作为特殊形态的物 质,电磁场及其运动过程也遵守这一规律。 下面讨论电磁场的能量和能量守恒定律,引入重要的坡印廷矢量和坡印廷 定理,分析讨论电磁场能量、电荷电流运动及电磁场做功之间的相互联系。
其中Am、k是常数,求电场强度、磁场强度。
解:
Ax B A ey ey kAm cos(t kz ) z k H ey Am cos(t kz )
A 0 t

C
如果假设过去某一时刻,场还没有建立,则C=0。
量位只决定于ρ,这对求解方程特别有利。只需解出A,无需
解出 就可得到待求的电场和磁场。 电磁位函数只是简化时变电磁场分析求解的一种辅助函数,应 用不同的规范条件,矢量位A和标量位 的解也不相同,但最终 得到的电磁场矢量是相同的。

电磁场与电磁波时变电磁场基础知识讲解

电磁场与电磁波时变电磁场基础知识讲解

例 已知电场强度复矢量
Em (z) ex jExm cos(kz z)
其中kz和Exm为实常数。写出电场强度的瞬时矢量
解: E(z, t) Re[ex jExm cos(kz z)e jt ]
j(t π )
Re[ex Exm cos(kz z)e 2 ]
ex
Exm
cos(kz
z)
cos(t
π 2
麦克斯韦方程组微分形式
H
(r,t)
J
(r,
t)
D(r, t
t
)
E
(r,
t)
B(r , t ) t
B(r,t) 0
D(r,t) (r,t)
J (r,t) (r,t)
t
H (r) J (r) j D(r)
E(r) j B(r)
D(r) (r)
B(r) 0
面对的问题! 分析方法! 关联的一般性物理问题: 坡印廷定理 坡印廷矢量 典型问题的应用?
面对的问题! 分析方法! 关联的一般性物理问题! 典型问题的应用: 时谐电磁场问题
4. 5 时谐电磁场
时谐电磁场的复数表示 复矢量的麦克斯韦方程 复电容率和复磁导率 亥姆霍兹方程 时谐场的位函数 平均能流密度矢量
推导
t
不利点: 磁矢位与电位函数不能分离!
洛仑兹规范条件
必须引入规范条件的原因:未规定 A的散度。
库仑规范: A 0(静态场)
对时变场问题:
A
t
洛伦兹规范条件
引入洛伦兹规范条件,电位方程为达朗贝尔方程
2
2
2t
2 A
2 A t 2
J
磁矢位与电位函数分离 磁矢位只依赖于电流 电位函数只依赖于电荷

电磁场与电磁波及其应用 第四章

电磁场与电磁波及其应用 第四章
将以上两式相减, 得到
在线性、 各向同性媒质中, 当参数不随时间变化时,
于是得到 再利用矢量恒等式
可得到 (4.3.4)
在体积V上, 对式(4.3.4)两端积分, 并应用散度定理即 可得到
(4.3.5)
由于E和H也是相互垂直的, 因此S、 E、 H三者是相互 垂直的, 且构成右旋关系, 如图4.3-1 所示。
第四章 时变电磁场
4.1 波动方程 4.2 时变场的位函数 4.3 时变电磁场的能量与能流 4.4 时谐电磁场 4.5 左手媒质 4.6 时变电磁场的应用
4.1 波 动 方 程
在无源空间中, 电流密度和电荷密度处处为零, 即 ρ=0、 J=0。 在线性、 各向同性的均匀媒质中, E和H满足 麦克斯韦方程
图4.3-1 能流密度矢量与电场及磁场的方向关系
例4.3.1 同轴线的内导体半径为a、 外导体半径为b, 其 间均匀充填理想介质。 设内外导体间电压为U, 导体中流过 的电流为 I。 (1) 在导体为理想导体的情况下, 计算同轴线 中传输的功率; (2) 当导体的电导率σ为有限值时, 计算通 过内导体表面进入每单位长度内导体的功率。
磁场仍为 内导体表面外侧的坡印廷矢量为
由此可见内导体表面外侧的坡印廷矢量既有轴向分量, 也 有径向分量, 如图4.3-3所示。
图4.3-3 同轴线中电场、 磁场和坡印廷矢量 (非理想导体情况)
进入每单位长度内导体的功率为
式中
是单位长度内导体的电阻。 由此可见,
进入内导体中的功率等于这段导体的焦耳损耗功率。
利用复数取实部表示方法, 可将式(4.5.1)写成
式中
(4.4.2)
称为复振幅, 或称为u(r, t)的复数形式。 为了区别复数形 式与实数形式, 这里用打“•”的符号表示复数形式。

时变电磁场

时变电磁场

y, y,
z, z,
t) t)
Exm E ym
(x, (x,
y, y,
z) z)
cos[t cos[t
x (x, y (x,
y, y,
z)] z)]
Ez
(x,
y,
z,
t)
Ezm
(x,
y,
z)
cos[t
z
(
x,
y,
z)]
式中:Exm , Eym , Ezm 为电场在x,y,z方向分量的幅度
x, y,z 为电场x,y,z分量的初始相位
电磁场与电磁波
第4章 时变电磁场
第四章 时变电磁场
时变情况下,电场和磁场相互关联,构成统一的电磁场 时变电场和磁场能量在空间中不断相互转换,并以电磁波动的 形式从一个地方传递到另外一个地方
本章主要内容: ➢ 时变电场和磁场满足的方程——波动方程 ➢ 时变电磁场的辅助函数——标量电位和矢量磁位 ➢ 时变电磁场的能量守恒定律 ➢ 正弦规律变化的时变场——时谐电磁场
对于时变场来说,动态位函数常用的规范条件为洛伦兹规范条件
A
t
洛伦兹规范条件
思考:库仑规范条件和洛伦兹规范条件有何联系?
15:54
电磁场与电磁波
第4章 时变电磁场
4.2.2 达朗贝尔方程
E (
H H
J
1
E
t A
A) 2
t
t
1 A J E
t
(
A)
Σ
J EdV
V
15:54
E, H
V
电磁场与电磁波
第4章 时变电磁场
坡印廷定理物理意义:单位时间内流入体积V内的电磁能量等于 体积V内增加的电磁能量与体积V内损耗的电磁能量之和。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

J
t 2
2
积分形式:
(E H ) dS
d
(1
E
D
1
H
B)
dV
E J dV
S
dt V 2
2
V
其中:d
(
1
E
D
1
H
B)
dV
——
单位时间内体积V
中所增加
dt V 2
2
的电磁能量。
E J dV —— 单位时间内电场对体积V中的电流所做的功;
V
在导电媒质中,即为体积V内总的损耗功率。
(E H ) dS —— 通过曲面S 进入体积V 的电磁功率。 S
电磁场与电磁波
第 4 章 时变电磁场
14
推证 由
H Ε
J
D
t
B
t
Ε H
H
Ε
ΕJ
H
Ε
B
t
D t
将以上两式相减,得到
ΕH H
Ε
Ε
J
Ε
D
H
B
t
t
在线性和各向同性的媒质中,当参数都不随时间变化时,则有
位函数的定义
B 0
Ε
B
t
B A

A
)
0
t
E
A
t
电磁场与电磁波
第 4 章 时变电磁场
6
位函数的不确定性
满足下列变换关系的两组位函数(A、)和(A、 )能描述同
一个电磁场问题。
A
A
t
为任意可微函数
A ( A ) A

A t
(
t
)
t
(
A
)
A t
也就是说,对一给定的电磁场可用不同的位函数来描述。
t
A
0
t
2
2
t 2
电磁场与电磁波
第 4 章 时变电磁场
10
说明
2A
2A t 2
Байду номын сангаас
J
2
2
t 2
应用洛仑兹条件的特点:① 位函数满足的方程在形式上是对称 的,且比较简单,易求解;② 解的物理意义非常清楚,明确地 反映出电磁场具有有限的传递速度;③ 矢量位只决定于J,标
量位只决定于ρ,这对求解方程特别有利。只需解出A,无需
H
(
E )
t
( H )
2H
2H t 2
2H
2H t 2
0
若为导电媒质,结果如何?
电磁场与电磁波
第 4 章 时变电磁场
4
4.2 电磁场的位函数
讨论内容
位函数的定义 位函数的性质 位函数的规范条件 位函数的微分方程
电磁场与电磁波
第 4 章 时变电磁场
5
引入位函数的意义 引入位函数来描述时变电磁场,使一些问题的分析得到简化。
电磁能量及守恒关系 坡印廷定理 坡印廷矢量
电磁场与电磁波
第 4 章 时变电磁场
12
电磁能量及守恒关系
电场能量密度: we
1 2
E
D
磁场能量密度:
wm
1 2
H
B
dW
dt V
S
电磁能量密度:
w
we
wm
1 2
E
D
1 2
H
B
空间区域V中的电磁能量:W wdV ( 1 E D 1 H B)dV
V
V2
2
特点:当场随时间变化时,空间各点的电磁场能量密度也要随
时间改变,从而引起电磁能量流动。
电磁能量守恒关系:
进入体积V的能量=体积V内增加的能量+体积V内损耗的能量
电磁场与电磁波
第 4 章 时变电磁场
13
坡印廷定理
表征电磁能量守恒关系的定理
微分形式:
(E H)
(
1
E
D
1
H
B)
E
解出 就可得到待求的电场和磁场。
电磁位函数只是简化时变电磁场分析求解的一种辅助函数,应
用不同的规范条件,矢量位A和标量位 的解也不相同,但最终
得到的电磁场矢量是相同的。
问题 若应用库仑条件,位函数满足什么样的方程? 具有什么特点?
电磁场与电磁波
第 4 章 时变电磁场
11
4.3 电磁能量守恒定律 讨论内容
电磁场与电磁波
第 4 章 时变电磁场
1
本章内容
4.1 波动方程 4.2 电磁场的位函数 4.3 电磁能量守恒定律 4.4 惟一性定理 4.5 时谐电磁场
电磁场与电磁波
第 4 章 时变电磁场
2
4.1 波动方程
问题的提出 麦克斯韦方程 —— 一阶矢量微分方程组,描述电场与磁场 间的相互作用关系。 波动方程 —— 二阶矢量微分方程,揭示电磁场的波动性。
A 0
电磁场与电磁波
位函数的微分方程
第 4 D章 时E变电H磁场B
8
H
J
D
B
J
E
B A
E
t A
t
t
A
J
(
A
)
t t
A
(
A) 2 A
2 A
2A
J
(
A
)
A
0
t
t 2
t
2
A
2
A
J
t 2
电磁场与电磁波
第 4 章 时变电磁场
9
同样
D
D
E、E
A
t
( A )
麦克斯韦方程组
波动方程。
无源区的波动方程
在无源空间中,设媒质是线性、各向同性且无损耗的均匀媒
质,则有
2E
2E t 2
0
2H
2H t 2
0
电磁波动方程
电磁场与电磁波
第 4 章 时变电磁场
3
推证
H
Ε
Ε
t
H
t
H
0
Ε 0
同理可得
2E
2E t 2
0
问题
若为有源空间,结果如何?
第 4 章 时变电磁场
17
例4.3.1 同轴线的内导体半径为a 、外导体的内半径为b,其 间填充均匀的理想介质。设内外导体间的电压为U ,导体中流过 的电流为I 。(1)在导体为理想导体的情况下,计算同轴线中传
不同位函数之间的上述变换称为规范变换。 原因:未规定 A 的散度。
电磁场与电磁波
第 4 章 时变电磁场
7
位函数的规范条件
造成位函数的不确定性的原因 就是没有规定 A的散度。利用位 函数的不确定性,可通过规定 的A散度使位函数满足的方程得以简 化。
在电磁理论中,通常采用洛仑兹条件,即
A
0
t
除了利用洛仑兹条件外,另一种常用的是库仑条件,即
B
)
Ε
J
t 2
2
在任意闭曲面S 所包围的体积V上,对上式两端积分,并应用散度 定理,即可得到坡印廷定理的积分形式
S
(E
H ) dS
d dt
V
(1 2
E
D
1 2
H
B) dV
V
E
J
dV
物理意义:单位时间内,通过曲面S 进入体积V的电磁能量等于 体积V 中所增加的电磁场能量与损耗的能量之和。
Ε
D
Ε
Ε
1
(Ε Ε)
(1
Ε
D)
t
t 2 t
t 2
H
B
H
H
1
(H
H)
(1
H
B)
t
t 2
t
t 2
电磁场与电磁波
第 4 章 时变电磁场
15
再利用矢量恒等式: Ε H H Ε (Ε H )
即可得到坡印廷定理的微分形式
(Ε H)
(1
ΕD
1
H
电磁场与电磁波
第 4 章 时变电磁场
16
坡印廷矢量(电磁能流密度矢量)
描述时变电磁场中电磁能量传输的一个重要物理量
定义:S Ε H ( W/m2 )
E
物理意义:
O
S
S 的方向 —— 电磁能量传输的方向
H
S 的大小 —— 通过垂直于能量传输方
能流密度矢量
向的单位面积的电磁功率
电磁场与电磁波
相关文档
最新文档