【最新】2019天津卷文科数学高考真题

合集下载

2019年高考文科数学天津卷(附参考答案及详解)

2019年高考文科数学天津卷(附参考答案及详解)

绝密★启用前 6月7日15:00-17:002019年普通高等学校招生全国统一考试(天津卷)数学(文史类)总分:150分考试时间:120分钟★祝考试顺利★注意事项:1、本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

2、选择题的作答:选出每小题答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸、答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内,写在试题卷、草稿纸、答题卡上的非答题区域均无效。

4、考试结束后,将本试卷和答题卡一并上交。

第I卷一、选择题:本题共8小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{1,1,2,3,5}A=-,{2,3,4}B=,{|13}C x x=∈≤<R,则()A C B=I U()A.{2}B.{2,3}C.{1,2,3}- D.{1,2,3,4}2.设变量x y⋅满足约束条件20,20,1,1,x yx yxy+-≤⎧⎪-+≥⎪⎨≥-⎪⎪≥-⎩则目标函数4z x y=-+的最大值为()A.2B.3C.5D.63.设x∈R,则“05x<<”是“|1|1x-<”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4.阅读下边的程序框图,运行相应的程序,输出S的值为()A.5B.8C.24D.295.已知2log 7a =,3log 8b =,0.20.3c =,则a ,b ,c 的大小关系为( ) A.c b a <<B.a b c <<C.b c a <<D.c a b << 6.已知抛物线24y x =的焦点为F ,准线为l .若l 与双曲线()222210,0x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且4AB OF =∣∣∣∣(O 为原点),则双曲线的离心率为( )C.27.已知函数()()()sin 0,0,πf x A x A ωϕωϕ=+>><∣∣是奇函数,且()f x 的最小正周期为π,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x.若π4g ⎛⎫= ⎪⎝⎭3π8f ⎛⎫= ⎪⎝⎭( ) A.2-B.D.28.已知函数()011,1x f x x x⎧≤<⎪=⎨>⎪⎩,若关于x 的方程()()14f x x a a =-+∈R 恰有两个互异的实数解,则a 的取值范围为( )A.59,44⎡⎤⎢⎥⎣⎦B.59,44⎛⎤ ⎥⎝⎦C.{}59,144⎛⎤ ⎥⎝⎦UD.{}59,144⎡⎤⎢⎥⎣⎦U第Ⅱ卷二、填空题:本题共6小题,每小题5分。

(精校版)【高考真题】2019年天津卷文数高考试题文档版(有答案)

(精校版)【高考真题】2019年天津卷文数高考试题文档版(有答案)

【详解】因为 A C {1,2} ,所以 ( A C ) B {1,2,3,4} .故选 D。
【点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结
合,即借助数轴、坐标系、韦恩图等进行运算.
2.【答案】 D 【分析】画出可行域,用截距模型求最值。
【详解】 已知不等式组表示的平面区域如图中的阴影部分。
( B )必要而不充分条件
( C)充要条件
( D )既不充分也不必要条件
( 4)阅读下边的程序框图,运行相应的程序,输出
S 的值为
1
(A )5
(B)8
( C) 24
( D) 29
( 5)已知 a log 2 7, b log 3 8, c 0.30.2 ,则 a, b, c 的大小关系为
(A) c b a
· 棱锥的体积公式 V
1 Sh ,其中
S 表示棱锥的底面面积,
h 表示棱锥的高 .
3
一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.
(1)设集合 A { 1,1,2,3,5}, B {2,3,4}, C { x R |1, x 3} ,则 ( A C ) B
( A ){2}
(B ) {2 , 3}
(15)(本小题满分 13 分)
2019 年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住
房贷款利息或者住房租金、赡养老人等六项专项附加扣除
. 某单位老、中、青员工分别有
72,108,120 人,现采用分层抽样的方法, 从该单位上述员工中抽取 25 人调查专项附加扣除的
享受情况 .
a
a
a
所以 AB

(完整版)2019年天津市高考数学(文科)试题

(完整版)2019年天津市高考数学(文科)试题

2019年天津市高考数学(文科)试题一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的. 1.是虚数单位,复数131i i--=A .2i -B . 2i +C .12i --D .12i -+ 2.设变量x ,y 满足约束条件1,40,340,x x y x y ≥⎧⎪+-≤⎨⎪-+≤⎩则目标函数3z x y =-的最大值为A .-4B .0C .43D .43.阅读右边的程序框图,运行相应的程序,若输入x 的值为-4,则输出y 的值为A .,0.5B .1C .2D .44.设集合{}{}|20,|0A x R x B x R x =∈->=∈<,{}|(2)0C x R x x =∈->,则“x A B ∈⋃”是“x C ∈”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件 5.已知244log 3.6,log 3.2,log 3.6a b c ===则A .a b c >>B .a c b >>C . b a c >>D .c a b >>二、填空题:本大题共6小题,每小题5分,共30分. 9.已知集合{}|12,A x R x Z =∈-<为整数集,则集合A Z ⋂中 所有元素的和等于________10.一个几何体的三视图如图所示(单位:m ),则这个几何体的体积为__________3m11.已知{}n a 为等差数列,n S 为{}n a 的前n 项和,*n N ∈,若3206,20,a S ==则10S 的值为_______12.已知22log log 1a b +≥,则39a b +的最小值为__________ 13.如图已知圆中两条弦AB 与CD 相交于点F ,E 是AB 延长线上一点,且2,::4:2:1.DF CF AF FB BE ===若CE与圆相切,则CE 的长为__________14.已知直角梯形ABCD 中AD //BC ,090ADC ∠=,2,1AD BC ==,P 是腰DC 上的动点,则3PA PB+u u u r u u u r的最小值为____________三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)编号为1216,,,A A A ⋅⋅⋅的16名篮球运动员在某次训练比赛中的得分记录如下:(Ⅱ)从得分在区间[)20,30内的运动员中随机抽取2人, (i )用运动员的编号列出所有可能的抽取结果; (ii )求这2人得分之和大于50分的概率. 16.(本小题满分13分)在△ABC 中,内角,,A B C 的对边分别为,,a b c ,已知,23.B C b a ==(Ⅰ)求cos A 的值; (Ⅱ)cos(2)4A π+的值.17.(本小题满分13分)如图,在四棱锥P ABCD -中,底面ABCD 为 平行四边形,045ADC ∠=,1AD AC ==,O 为AC 中点,PO ⊥平面ABCD ,2PO =,M 为PD 中点.(Ⅰ)证明:PB //平面ACM ; (Ⅱ)证明:AD ⊥平面PAC ;(Ⅲ)求直线AM 与平面ABCD 所成角的正切值.19.(本小题满分14分)已知函数32()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程;(Ⅱ)当0t ≠时,求()f x 的单调区间;(Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点.。

2019高考天津卷数学(文)试卷及答案(word版)

2019高考天津卷数学(文)试卷及答案(word版)

2019年普通高等学校招生全国统一考试(天津卷)文科数学第Ⅰ卷参考公式:·如果事件A ,B 互斥,那么.·圆柱的体积公式,其中表示圆柱的底面面积,表示圆柱的高 ·棱锥的体积公式,其中表示棱锥的底面面积,表示棱锥的高 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设集合, , ,则( ) (A ){2}(B ){2,3}(C ){-1,2,3}(D ){1,2,3,4}则目标函数的最大值为(2)设变量满足约束条件( ) (A )2(B )3(C )5(D )6(3)设,则“”是“”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件(4)阅读下边的程序框图,运行相应的程序,输出的值为( )()()()P AB P A P B =+V Sh =S h 13V Sh =S h {}1,1,2,3,5A =-{}2,3,4B ={|13}C x R x =∈<…()A C B =,x y 4z x y =-+x R ∈05x <<11x -<S(A )5(B )8(C )24(D )29(5)已知,,,则的大小关系为( )(A ) (B ) (C )(D )(6)已知抛物线的焦点为,准线为.若与双曲线的两条渐近线分别交于点A 和点B ,且(为原点),则双曲线的离心率为( )(A(B(C)2(D (7)已知函数是奇函数,且的最小正周期为,将的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为.若( ) (A )-2(B )(C(D )2(8)已知函数若关于的方程恰有两个互异的实数解,则的取值范围为( )2log 7a =3log 8b =0.20.3c =,,a b c c b a <<a b c <<b c a <<c a b <<24y x =F l 22221(0,0)x y a b a b-=>>||4||AB OF =O ()sin()(0,0,||)f x A x A ωϕωϕπ=+>><()f x π()y f x =()g x 4g π⎛⎫=⎪⎝⎭38f π⎛⎫= ⎪⎝⎭01,()1,1.x f x x x⎧⎪=⎨>⎪⎩剟x 1()()4f x x a a R =-+∈a(A )(B )(C ) (D )第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分。

2019年高考天津卷文数真题试题(word版,含答案与解析)

2019年高考天津卷文数真题试题(word版,含答案与解析)

2019年高考文数真题试卷(天津卷)原卷+解析一、选择题:本卷共8小题,每小题5分,共40分。

1.(2019•天津)设集合,,,则()A. {2B. {2,3}C. {-1,2,3}D. {1,2,3,4}【答案】 D【考点】交、并、补集的混合运算【解析】【解答】,故答案为:D【分析】利用集合交并运算性质即可得出答案。

2.(2019•天津)设变量满足约束条件则目标函数的最大值为()A. 2B. 3C. 5D. 6【答案】 C【考点】简单线性规划的应用【解析】【解答】作出不等式组对应的可行域如图中阴影部分所示,由得,平移直线,可知当直线,经过直线与的交点时,直线的截距最大,此时最大由解得此时直线与的交点为此时的最大值为故答案为:C【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可得出的最大值。

3.(2019•天津)设,则“ ”是“ ”的()A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件【答案】 B【考点】必要条件、充分条件与充要条件的判断【解析】【解答】由得,由“小范围”推出“大范围”得出可推出故“ ”是“ ”的必要而不充分条件。

故答案为:B【分析】根据集合的包含关系以及充分必要条件的定义,再由“小范围”推出“大范围”判断即可。

4.(2019•天津)阅读下边的程序框图,运行相应的程序,输出的值为()A. 5B. 8C. 24D. 29【答案】 B【考点】程序框图【解析】【解答】该程序框图共运行3次:第1次,,1非偶数,,;第2次,,2是偶数,,,;,3非偶数,,成立,结束循环,故输出。

故答案为:B【分析】本题考查当型循环结构的程序框图,由算法的功能判断值的变化规律以及对应的赋值语句即可得出答案。

5.(2019•天津)已知,则的大小关系为()A. B. C. D.【答案】 A【考点】不等式比较大小【解析】【解答】,,且故故答案为:A【分析】利用对数和指数的运算性质,找出中间特殊值,确定的大小关系即可。

2019年高考真题文科数学天津卷

2019年高考真题文科数学天津卷
二、填空题:本大题共 6 小题,每小题 5 分,共 30 分。
(9) i 是虚数单位,则的值 5 − i 的值为__________. 1+ i
(10)设 x ∈ R ,使不等式 3x2 + x − 2 < 0 成立的 x 的取值范围为__________.
(11)曲线=y cos x − x 在点 (0,1) 处的切线方程为__________.
绝密★启用前
2019 年普通高等学校招生全国统一考试(天津卷)
数 学(文史类)
本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共 150 分,考试用时 120 分钟。第Ⅰ卷 1 至 2 页,第Ⅱ卷 3 至 5 页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条 形码。答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。考试结束后,将本试 卷和答题卡一并交回。
,共 15 种.
(ii)由表格知,符合题意的所有可能结果为
{A, B},{A, D},{A, E},{A, F},{B, D},{B, E},{B, F},{C, E},{C, F},{D, F},{E, F} ,
共 11 种.
所以,事件 M 发生的概率 P(M ) = 11 15
(16)本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦
期为π ,将 y = f ( x) 的图象上所有点的横坐标伸长到原来的 2 倍(纵坐标不变),所得图
象对应的函数为
g
(
x)
.若
g
π 4
=
2
,则
f
3π 8
=
(A)-2
(B) − 2
(C) 2

2019年天津市高考数学试卷(文科)(原卷版)

2019年天津市高考数学试卷(文科)(原卷版)

10. 设 x R ,使不等式 3x2 x 2 0 成立的 x 的取值范围为__________.
11.
曲线
y
cos x
x 2
0,1
在点 处的切线方程为__________.
12.已知四棱锥的底面是边长为 2 的正方形,侧棱长均为 5 .若圆柱的一个底面的圆周经过四棱锥四
B. {2,3}
C. {-1,2,3}
D. {1,2,3,4}
x y 2 0,
x y 2 0,

x…
1,
2.设变量 x, y 满足约束条件 y… 1,
,则目标函数 z 4x y 的 最大值为
A. 2
B. 3
C. 5
D. 6
3.设 x R ,则“ 0 x 5 ”是“ x 1 1 ”的
(Ⅰ)求 cos B 的值;
(Ⅱ)求
si
17. 如图,在四棱锥 P ABCD 中,底面 ABCD 为平行四边形,△ PCD 为等边三角形,平面
PAC 平面 PCD , PA CD , CD 2 , AD 3 ,
(Ⅰ)设 G △ H 分别为 PB △ AC 的中点,求证: GH∥平面 PAD ;
绝密★启用前
2019 年普通高等学校招生全国统一考试(天津卷)
数 学(文史类)
本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共 150 分,考试用时 120 分钟。第Ⅰ卷 1 至 2 页,第Ⅱ卷 3 至 5 页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试 用条形码。答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。考试结束后, 将本试卷和答题卡一并交回。

(完整)年天津市高考数学试卷(文科)

(完整)年天津市高考数学试卷(文科)

S的 以便
故选: A .
【归纳与总结】本题主要考查对数式与指数式的大小比较,可利用整数作为中间量进行比
较.本题属基础题.
6 .已知抛物线 y 2
x2 4 x 的焦点为 F ,准线为 l .若 l 与双曲线 a2
y2 b2
1(a 0,b 0) 的两条
渐近线分别交于点 A 和点 B ,且 | AB | 4 |OF | ( O 为原点),则双曲线的离心率为 (
)
A. 2
B. 3
C. 2
D. 5
【思路分析】推导出 进而 c a 2 b2
F (1,0) ,准线 l 的方程为 x 1 , | AB | 5a ,由此能求出双曲线的离心率.
2b , |OF | a
1 ,从而 b
2
【解析】: Q 抛物线 y
4 x 的焦点为 F ,准线为 l .
2a ,
F (1,0) ,准线 l 的方程为 x 1 ,
(Ⅱ)求 sin(2 B ) 的值. 6
17 .( 13 分)如图,在四棱锥 P ABCD 中,底面 ABCD 为平行四边形, 形,平面 PAC 平面 PCD , PA CD , CD 2 , AD 3 . (Ⅰ)设 G , H 分别为 PB , AC 的中点,求证: GH / / 平面 PAD ; (Ⅱ)求证: PA 平面 PCD ; (Ⅲ)求直线 AD 与平面 PAC 所成角的正弦值.
P ,圆 C 同时与 x 轴和直
(Ⅰ)若 a, 0 ,讨论 f ( x) 的单调性; (Ⅱ)若 0 a 1 ,
e ( i ) 证明 f ( x) 恰有两个零点;
( i ) 设 x0 为 f ( x) 的极值点, x1 为 f ( x) 的零点,且 x1 x0 ,证明 3 x0 x1 2 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年普通高等学校招生全国统一考试(天津卷)数 学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:·如果事件A ,B 互斥,那么()()()P A B P A P B =+U .·圆柱的体积公式V Sh =,其中S 表示圆柱的底面面积,h 表示圆柱的高. ·棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高. 一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈<R „,则()A C B =I U(A ){2}(B ){2,3}(C ){-1,2,3}(D ){1,2,3,4}(2)设变量x ,y 满足约束条件20,20,1,1,x y x y x y +-≤⎧⎪-+≥⎪⎨-⎪⎪-⎩……则目标函数4z x y =-+的最大值为(A )2(B )3(C )5(D )6(3)设x ∈R ,则“05x <<”是“|1|1x -<”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件(4)阅读下边的程序框图,运行相应的程序,输出S 的值为(A )5 (B )8(C )24 (D )29(5)已知0.223log 7,log 8,0.3a b c ===,则a ,b ,c 的大小关系为 (A )c b a << (B )a b c << (c )b c a <<(D )c a b <<(6)已知抛物线24y x =的焦点为F ,准线为l .若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为 (A(B(C )2(D(7)已知函数()sin()(0,0,||π)f x A x A ωϕωϕ=+>><是奇函数,且()f x 的最小正周期为π,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若π4g ⎛⎫=⎪⎝⎭3π8f ⎛⎫= ⎪⎝⎭(A )-2(B)(C(D )2(8)已知函数01,()1,1.x f x x x⎧≤≤⎪=⎨>⎪⎩若关于x 的方程1()()4f x x a a =-+∈R 恰有两个互异的实数解,则a 的取值范围为(A )59,44⎡⎤⎢⎥⎣⎦(B )59,44⎛⎤⎥⎝⎦(C )59,{1}44⎛⎤⎥⎝⎦U(D )59,{1}44⎡⎤⎢⎥⎣⎦U2019年普通高等学校招生全国统一考试(天津卷)数 学(文史类)第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

2.本卷共12小题,共110分。

二.填空题:本大题共6小题,每小题5分,共30分. (9)i 是虚数单位,则5i1i-+的值为__________. (10)设x ∈R ,使不等式2320x x +-<成立的x 的取值范围为__________. (11)曲线cos 2xy x =-在点(0,1)处的切线方程为__________.(12若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________. (13)设0,0,24x y x y >>+=,则(1)(21)x y xy++的最小值为__________.(14)在四边形ABCD 中,,5,30AD BC AB AD A ==∠=︒∥,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅=u u u r u u u r__________.三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. (15)(本小题满分13分)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况. (Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为, , , , , A B C D E F .享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.(i (ii )设M 为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M 发生的概率. (16)(本小题满分13分)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =. (Ⅰ)求cos B 的值;(Ⅱ)求sin 26πB ⎛⎫+ ⎪⎝⎭的值.(17)(本小题满分13分)如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,,2,3PA CD CD AD ⊥==.(Ⅰ)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面PAD ; (Ⅱ)求证:PA ⊥平面PCD ;(Ⅲ)求直线AD 与平面PAC 所成角的正弦值. (18)(本小题满分13分)设{}n a 是等差数列,{}n b 是等比数列,公比大于0,已知1123323,,43a b b a b a ====+. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足21n n n c b n ⎧⎪=⎨⎪⎩,为奇数,,为偶数.求*112222()n n a c a c a c n +++∈N L .(19)(本小题满分14分)设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .|2||OA OB =(O 为原点).(Ⅰ)求椭圆的离心率; (Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线x =4上,且OC AP ∥,求椭圆的方程. (20)(本小题满分14分)设函数()ln (1)e xf x x a x =--,其中a ∈R . (Ⅰ)若a ≤0,讨论()f x 的单调性; (Ⅱ)若10ea <<, (i )证明()f x 恰有两个零点;(ii )设0x 为()f x 的极值点,1x 为()f x 的零点,且10x x >,证明0132x x ->.2019年普通高等学校招生全国统一考试(天津卷)数 学(文史类)参考解答一.选择题:本题考查基本知识和基本运算.每小题5分,满分40分. (1)D (2)C (3)B (4)B (5)A(6)D(7)C(8)D二.填空题:本题考查基本知识和基本运算.每小题5分,满分30分. (9(10)21,3⎛⎫- ⎪⎝⎭(11)+2 2=0x y - (12)4π(13)92(14)1-三.解答题(15)本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识,考查运用概率知识解决简单实际问题的能力.满分13分.解:(Ⅰ)由已知,老、中、青员工人数之比为6 : 9 : 10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人. (Ⅱ)(i )从已知的6人中随机抽取2人的所有可能结果为{, },{, },{, },{, },{, },{, },A B A C A D A E A F B C {, },{, },{, },{, {,}},,B D B E B F C D C E {,},C F {,},{,},{,}D E D F E F ,共15种.(ii )由表格知,符合题意的所有可能结果为{, },{, },{, },{, },{, },{, },{, {,},{,},{,},{,},}A B A D A E A F B D B C E B F E C F D F E F ,共11种.所以,事件M 发生的概率11()15P M =. (16)本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力.满分13分. (Ⅰ)解:在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =,又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =.由余弦定理可得222222416199cos 22423a a aa cb B ac a a +-+-===-⋅⋅.(Ⅱ)解:由(Ⅰ)可得sin B ==,从而sin 22sin cos B B B ==,227cos 2cos sin 8B B B =-=-,故71sin 2sin 2cos cos 2sin 66682B B B πππ⎛⎫+=+=-⨯= ⎪⎝⎭.(17)本小题主要考查直线与平面平行、直线与平面垂直、平面与平面垂直、直线与平面所成的角等基础知识.考查空间想象能力和推理论证能力.满分13分.(Ⅰ)证明:连接BD ,易知AC BD H =I ,BH DH =.又由BG=PG ,故GH PD ∥.又因为GH ⊄平面PAD ,PD ⊂平面PAD ,所以GH ∥平面PAD .(Ⅱ)证明:取棱PC 的中点N ,连接DN .依题意,得DN ⊥PC ,又因为平面PAC ⊥平面PCD ,平面PAC I 平面PCD PC =,所以DN ⊥平面PAC ,又PA ⊂平面PAC ,故DN PA ⊥.又已知PA CD ⊥,CD DN D =I ,所以PA ⊥平面PCD .(Ⅲ)解:连接AN ,由(Ⅱ)中DN ⊥平面PAC ,可知DAN ∠为直线AD 与平面PAC 所成的角, 因为PCD △为等边三角形,CD =2且N 为PC的中点,所以DN =又DN AN ⊥,在Rt AND △中,sin 3DN DAN AD ∠==所以,直线AD 与平面PAC. (18)本小题主要考查等差数列、等比数列的通项公式及其前项和公式等基础知识,考查数列求和的基本方法和运算求解能力.满分13分.(Ⅰ)解:设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .依题意,得2332,3154,q d q d =+⎧⎨=+⎩解得3,3,d q =⎧⎨=⎩故133(1)3,333n n n n a n n b -=+-==⨯=.所以,{}n a 的通项公式为3n a n =,{}n b 的通项公式为3nn b =.(Ⅱ)解:112222n n a c a c a c +++L()()135212142632n n n a a a a a b a b a b a b -=+++++++++L L 123(1)36(6312318363)2n n n n n -⎡⎤=⨯+⨯+⨯+⨯+⨯++⨯⎢⎥⎣⎦L()2123613233n n n =+⨯+⨯++⨯L .记1213233nn T n =⨯+⨯++⨯L ,①n则231313233n n T n +=⨯+⨯++⨯L ,②②−①得,()12311313(21)332333331332n n n n n n n T n n +++--+=---⨯=-+⨯=--+-L . 所以,122112222(21)3336332n n n n n a c a c a c n T n +-++++=+=+⨯L()22(21)3692n n n n +*-++=∈N . (19)本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想、数形结合思想解决问题的能力.满分14分. (Ⅰ)解:设椭圆的半焦距为c2b =,又由222a b c =+,消去b得222a c ⎫=+⎪⎪⎝⎭,解得12c a =. 所以,椭圆的离心率为12.(Ⅱ)解:由(Ⅰ)知,2,a c b ==,故椭圆方程为2222143x y c c+=.由题意,(, 0)F c -,则直线l 的方程为3()4y x c =+ 点P 的坐标满足22221,433(),4x y c c y x c ⎧+=⎪⎪⎨⎪=+⎪⎩消去y 并化简,得到2276130x cx c +-=,解得1213,7c x c x ==-.代入到l 的方程,解得1239,214y c y c ==-.因为点P 在x 轴上方,所以3,2P c c ⎛⎫⎪⎝⎭.由圆心C 在直线4x =上,可设(4, )C t .因为OC AP ∥,且由(Ⅰ)知( 2 , 0)A c -,故3242c t c c=+,解得2t =.因为圆C 与x 轴相切,所以圆的半径长为2,又由圆C 与l2=,可得=2c . 所以,椭圆的方程为2211612x y +=. (20)本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法.考查函数思想、化归与转化思想.考查综合分析问题和解决问题的能力.满分14分. (Ⅰ)解:由已知,()f x 的定义域为(0,)+∞,且211e ()e (1)e x x xf ax x a a x x x-⎡⎤=-+-=⎣'⎦. 因此当a ≤0时,21e 0x ax ->,从而()0f x '>,所以()f x 在(0,)+∞内单调递增.(Ⅱ)证明:(i )由(Ⅰ)知21e ()xax f x x-'=.令2()1e x g x ax =-,由10e a <<,可知()g x 在(0,)+∞内单调递减,又(1)1e 0g a =->,且221111ln 1ln 1ln 0g a a a a a ⎛⎫⎛⎫⎛⎫=-=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故()0g x =在(0,)+∞内有唯一解,从而()0f x '=在(0,)+∞内有唯一解,不妨设为0x ,则011ln x a<<.当()00,x x ∈时,()0()()0g x g x f x x x'=>=,所以()f x 在()00,x 内单调递增;当()0,x x ∈+∞时,()0()()0g x g x f x x x'=<=,所以()f x 在()0,x +∞内单调递减,因此0x 是()f x 的唯一极值点.令()ln 1h x x x =-+,则当1x >时,1()10h'x x=-<,故()h x 在(1,)+∞内单调递减,从而当1x >时,()(1)0h x h <=,所以ln 1x x <-.从而ln 1111111ln ln ln ln 1e ln ln ln 1ln 0a f a h a a a a a a ⎛⎫⎛⎫⎛⎫=--=-+=< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又因为()0(1)0f x f >=,所以()f x 在0(,)x +∞内有唯零点.又()f x 在()00,x 内有唯一零点1,从而,()f x 在(0,)+∞内恰有两个零点.(ii )由题意,()()010,0,f x f x '=⎧⎪⎨=⎪⎩即()012011e 1,ln e ,1x x ax x a x ⎧=⎪⎨=-⎪⎩从而1011201ln e x x x x x --=,即102011ln e 1x x x x x -=-.因为当1x >时,ln 1x x <-,又101x x >>,故()102012011e 1x x x x x x --<=-,两边取对数,得1020ln e ln x x x -<,于是()10002ln 21x x x x -<<-,整理得013 2x x ->.。

相关文档
最新文档