鲁教版小学数学六年级上册《解一元一次方程(移项)》随堂练习

合集下载

_鲁教版六年级数学上册 第4章 一元一次方程 单元达标测试题

_鲁教版六年级数学上册   第4章  一元一次方程  单元达标测试题

2023-2024学年鲁教版六年级数学上册第4章《一元一次方程》单元达标测试题一.选择题:1.已知关于x的一元一次方程(a+3)x|a|﹣2+6=0,则a的值为()A.3B.﹣3C.±3D.±22.关于x的方程2x+5a=3的解是x=﹣1,则a的值是()A.1B.4C.D.﹣13.周末小明一家去爬山,上山时每小时走3km,下山时按原路返回,每小时走5km,结果上山时比下山多花h,设下山所用时间为xh,可得方程()A.5(x﹣)=3x B.5(x+)=3xC.5x=3(x﹣)D.5x=3(x+)4.若关于x的一元一次方程k﹣2x﹣4=0的解是x=﹣3,则k的值是()A.﹣2B.2C.6D.105.将一些课外书分给某班学生阅读,若每人分3本,则剩余20本,若每人分4本,则还差25本,设这个班共有x名学生,则可列方程()A.3x+20=4x+25B.3x+20=4x﹣25C.3x﹣20=4x+25 D.20+3x=25﹣4x6.方程|2x+1|=7的解是()A.x=3 B.x=3或x=﹣3 C.x=3或x=﹣4 D.x=﹣47.某外贸服饰店一天内销售两种服装的情况是,甲种服装共卖得200元,乙种服装共卖得100元,若按两种服装的成本分别计算,甲种服装盈利,乙种服装亏本,那么两种服装合起来算该外贸店这一天是()A.盈利B.盈利C.盈利D.盈利8.方程|2x+1|=7的解是()A.x=3B.x=3或x=﹣3C.x=3或x=﹣4D.x=﹣49.方程2x﹣1=3与方程1﹣=0的解相同,则a的值为()A.3B.2C.1D.10.学校组织植树活动,已知在甲处植树的有10人,在乙处植树的有16人,现调10人去支援,使在乙处植树的人数是在甲处植树人数的2倍,设应调往甲处x人,则可列方程为()A.10+x=2(16+10﹣x)B.2(10+x)=16+10﹣xC.10+10﹣x=2(16+x)D.2(10+10﹣x)=16+x11.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.对书中某一问题改编如下:一百馒头一百僧,大僧三个更无争;小僧三人分一个,大僧共得几馒头.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个正好分完,大和尚共分得()个馒头A.25B.72C.75D.9012.小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是()A.B.C.D.二.填空题:13.方程2+▲=3x,▲处被墨水盖住了,已知方程的解是x=2,那么▲处的数字是.14.“□”“△”“〇”各代表一种物品,其质量关系由下面两个天平给出(左右平衡状态),如果“〇”的质量是4kg,那么“□”的质量是千克.15.小马虎在解关于x的方程2a﹣5x=21时,误将“﹣5x”看成了“+5x”,得方程的解为x=3,则原方程的解为.16.若2n﹣1=6,则4×2n﹣4=.17.若ab<0,且m=+,则关于x的一元一次方程(m﹣3)x+6=4的解是.18. 如图,数轴上A、B、C三点所表示的数分别是a,6,c,已知AB=8,a+c=0,且c是关于x的方程(m−4)x+16=0的解,则m的值为______。

六年级上册数学习题课件 4.2.2用移项法解一元一次方程 鲁教版

六年级上册数学习题课件  4.2.2用移项法解一元一次方程  鲁教版

夯实基础
14.【中考·聊城】在如图所示的2016年6月份的月历表中, 任意框出表中竖列上三个相邻的数,这三个数的和不 可能是( )
A.27 B.51
C.69
D.72
夯实基础
【点拨】设框出的三个数中最上面的数为x,则中间的 数为x+7,最下面的数为x+14, 故三个数的和为x+x+7+x+14=3x+21. 当3x+21=27时,x=2;当3x+21=51时,x=10; 当3x+21=69时,x=16;当3x+21=72时,x=17,但 x=17这种情况不存在.故选D. 【答案】D
a(x+1)=12
a+x 的解,则 a 的值是 5 .
夯实基础
7.已知关于 x 的方程 3a-x=x2+3 的解为 x=2,则 式子 a2-2a+1 的值是 1 .
夯实基础
8.解方程 3x-4=3-2x 的过程的正确顺序是( C ) ①合并同类项,得 5x=7; ②移项,得 3x+2x=3+4; ③系数化为 1,得 x=75. A.①②③ B.③②① C.②①③ D.③①②
探究培优
22.【中考·安徽】《九章算术》中有一道阐述“盈不足 术”的问题,原文如下: 今有人共买物,人出八,盈三;人出七,不足四. 问人数,物价各几何? 译文为: 现有一些人共同买一个物品,每人出8元,还盈余3 元;每人出7元,则还差4元,问共有多少人?这个 物品的价格是多少?
探究培优
请解答上述问题.
夯实基础
15.解方程:x-3=-12x-4. 错解:移项,得 x-12x=-4-3.合并同类项,得12x =-7.系数化为 1,得 x=-14.
诊断:在解方程移项时,所移的项一定要变号,但 有的学生不管移的项还是没移的项一律都变号或都 不变号,这两种做法都是不正确的.

六年级数学上册4.2解一元一次方程(第1课时) 优秀课件鲁教版五四制

六年级数学上册4.2解一元一次方程(第1课时) 优秀课件鲁教版五四制

4
3
28.8 + 3.8 答:信纸的纸长为28.8 cm ,信封的口宽为11 cm. 4
【方法一点通】 解决“表示同一个量的两个不同式子相等”应用题的“四个步 骤” 1.找出能贯穿应用题始终的一个不变的量 . 2.用两个不同的式子去表示这个量.
3.由表示这个不变的量的两个式子相等列出方程 .
4.解方程并作答.
2 解一元一次方程
第1课时
ห้องสมุดไป่ตู้
1.移项的定义 符号 后从方程的一边移到另一边叫做 把方程中的某一项改变_____ 移项. 2.解形如“ax+c=bx+d(a-b≠0)”型方程的步骤 移项 (1)_____. 合并同类项 (2)___________. (3)两边同除以未知数的系数(或乘以未知数系数的倒数).
图②三等分折叠后,同样方法装入时,宽绰1.4cm.试求信纸的纸
长与信封的口宽.
【解析】设信纸的纸长为x cm,根据题意,得 x + 3.8 = x + 1.4, 移项,得 x 合并同类项,得 x x - = - 2.4, - = 1.4 - 3.8, 12 4 3 方程两边同乘 -12,得x=28.8, 所以信封的口宽为 =11(cm).
【思维诊断】 (打“√”或“×”)
1 1.由- 3 x=9得x=-3. ( × )
2.由7x=6x-1得7x-6x=-1. ( √ ) 3.由5x=10得x=2. ( √ ) 4.由3x=6-x得3x-x=6. ( × ) (√)
5.解方程2x+x=9时,合并同类项得,3x=9.
知识点一
用移项解一元一次方程
知识点二
解一元一次方程的应用题
【示范题2】朵朵幼儿园的阿姨给小朋友分苹果,如果每人3个 还差3个,如果每人2个又多2个,请问共有多少个小朋友? ( )

2021-2022学年鲁教版六年级数学上册《第4章一元一次方程》单元综合测试题(附答案)

2021-2022学年鲁教版六年级数学上册《第4章一元一次方程》单元综合测试题(附答案)

2021-2022学年鲁教版六年级数学上册《第4章一元一次方程》单元综合测试题(附答案)一.选择题(共10小题,满分50分)1.在①2x+1;②1+7=15﹣8+1;③;④x+2y=3中,方程共有()A.1个B.2个C.3个D.4个2.如果关于x的方程2x+k﹣4=0的解x=﹣3,那么k的值是()A.﹣10B.10C.2D.﹣23.已知(a﹣1)x|a|+3=10是一元一次方程,则a的值为()A.1B.0C.﹣1D.±14.若关于x的方程x=﹣无解,则a的值为()A.1B.﹣1C.0D.±15.关于x的一元一次方程(k﹣1)x=4的解是整数,则符合条件的所有整数k的值的和是()A.0B.4C.6D.106.方程3x﹣2(x﹣3)=5去括号变形正确的是()A.3x﹣2x﹣3=5B.3x﹣2x﹣6=5C.3x﹣2x+3=5D.3x﹣2x+6=5 7.下列方程的变形中,正确的是()A.由2x+1=x得2x﹣x=1B.由3x=2得x=C.由得x=D.由﹣得﹣x+1=68.已知方程2﹣﹣3与方程=3k的解相同,则k的值为()A.B.C.D.9.学校组织植树活动,已知在甲处植树的有48人,在乙处植树的有42人,由于甲处植树任务较重,需调配部分乙处的人员去甲处支援,使在甲处植树的人数是乙处植树人数的2倍,设从乙处调配x人去甲处,则()A.48=2(42﹣x)B.48+x=2×42C.48﹣x=2(42+x)D.48+x=2(42﹣x)10.关于x的一元一次方程mx+3=2(m﹣x)的解满足,则m的值是()A.5B.C.5或D.2或0二.填空题(共5小题,满分25分)11.如果将方程3x﹣2y=25变形为用含x的式子表示y,那么y=.12.若关于x的方程(k﹣2)x|k﹣1|+5k+1=0是一元一次方程,则k=.13.王斌在解方程(x﹣)=1﹣时,墨水把其中一个数字污染成了“■”,他翻阅了答案知道这个方程的解为x=5,于是他推算确定污染了的数字“■”应该是.14.某下水管道工程由甲、乙两个工程队单独铺设分别需要10天,15天完成.如果甲队先单独施工5天,然后由甲、乙两队共同施工完成整个工程,则还需多少天?若设还需天数为x天,则可列方程为.15.某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,若设春游的总人数为x人,则列方程为三.解答题(共6小题,满分45分)16.解方程:(1)2(x+1)=1﹣(x+3).(2)+1=.17.解方程:(1)2[x﹣(x+2)]=5(x﹣2);(2)y﹣=2﹣.18.已知关于x的方程2(x+1)﹣m=﹣的解比方程5(x﹣1)﹣1=4(x﹣1)+1的解大2,求m的值.19.已知关于x的方程(m+3)x|m+4|+18=0是一元一次方程,试求:(1)m的值;(2)2(3m+2)﹣3(4m﹣1)的值.20.已知关于x的方程(m+3)x|m|﹣2+6n=0为一元一次方程,且该方程的解与关于x的方程﹣1=的解相同.(1)求m,n的值;(2)在(1)的条件下,若关于y的方程|a|y+a=m+1﹣2ny无解,求a的值.21.新冠病毒爆发期间,武汉某医院住院部有27个重症病房和若干个普通病房,其中一个重症病房需要1名医生,1名护士,5个普通病房需要1名医生,2名护士,某省第三批援鄂医疗队126名医护人员刚好接管该医院住院部所有病房.(1)该批援鄂医疗队中医生、护士各有多少人?(2)该医院住院部普通病房有多少个?参考答案一.选择题(共10小题,满分50分)1.解:(1)2x+1,含未知数但不是等式,所以不是方程.(2)1+7=15﹣8+1,是等式但不含未知数,所以不是方程.(3),是含有未知数的等式,所以是方程.(4)x+2y=3,是含有未知数的等式,所以是方程.故有所有式子中有2个是方程.故选:B.2.解:把x=﹣3代入方程2x+k﹣4=0,得:﹣6+k﹣4=0解得:k=10.故选:B.3.解:∵方程(a﹣1)x|a|+3=10是关于x的一元一次方程,∴|a|=1且a﹣1≠0.解得a=﹣1.故选:C.4.解:x=﹣,去分母得,2ax=3x﹣x+6,整理得,(2a﹣2)x﹣6=0,∵方程无解,∴2a﹣2=0,解得a=1.故选:A.5.解:解方程得,x=,∵关于x的一元一次方程(k﹣1)x=4的解是整数,∴k﹣1为:﹣4,﹣2,﹣1,1,2,4,∴k为﹣3,﹣1,0,2,3,5,∴符合条件的所有整数k的值的和是:(﹣3)+(﹣1)+0+2+3+5=6,故选:C.6.解:3x﹣2(x﹣3)=3x﹣2x+3×2=3x﹣2x+6=﹣x+6,故选:D.7.解:A.移项得2x﹣x=﹣1,故该选项错误,不符合题意;B.系数化为1得x=,故该选项错误,不符合题意;C.系数化为1得x=÷,即x=,故该选项正确,符合题意;D.去分母得:﹣(x+1)=6,故该选项错误,不符合题意.故选:C.8.解:解方程2﹣=﹣3,得x=25,由方程2﹣=﹣3与方程=3k的解相同,得=3k,解得k=.故选:B.9.解:设从乙处调配x人去甲处,根据题意得,48+x=2(42﹣x),故选:D.10.解:化简可得,x﹣=或x﹣=﹣,解得x=1或x=0,∵x是方程mx+3=2(m﹣x)的解,∴m+3=2(m﹣1)或3=2m,∴m=5或m=,故选:C.二.填空题(共5小题,满分25分)11.解:移项,得:﹣2y=25﹣3x,方程两边同时除以﹣2,得:y=,故答案为:.12.解:根据题意得:,解得:k=0,故答案为:0.13.解:设“■”表示的数是a,把x=5代入方程(x﹣)=1﹣得:(5﹣)=1﹣,解方程得:1=1﹣,0=﹣,5﹣a=0,a=5,即“■”表示的数是5,故答案为:5.14.解:甲队完成所有工程需要10天,所以甲队先施工5天完成了所有工程的一半,所以,所以.故答案是:.15.解:设春游的总人数是x人.根据题意所列方程为=,故答案为:=.三.解答题(共6小题,满分45分)16.解:(1)去括号得:2x+2=1﹣x﹣3,移项合并得:3x=﹣4,解得:x=﹣;(2)去分母得:10x﹣14+12=9x﹣3,移项合并得:x=﹣1.17.解:(1)2[x﹣(x+2)]=5(x﹣2),去括号得:2x﹣x﹣2=5x﹣10,移项,得:2x﹣x﹣5x=﹣10+2,合并同类项,得:﹣4x=﹣8,化系数为1,得:x=2.(2)y﹣=2﹣,去分母,得:10y﹣5(y﹣1)=20﹣2(y+2),去括号,得:10y﹣5y+5=20﹣2y﹣4,移项,得:10y﹣5y+2y=20﹣4﹣5,合并同类项,得:7y=11,化系数为1,得:y=.18.解:(1)首先去括号,移项、合并同类项可得x的值:5(x﹣1)﹣1=4(x﹣1)+1,5x﹣5﹣1=4x﹣4+1,5x﹣4x=﹣4+1+1+5,x=3;(2)根据(1)中x的值可得方程:2(x+1)﹣m=﹣的解为x=3+2=5,把x=5代入方程2(x+1)﹣m=﹣得:2(5+1)﹣m=﹣,12﹣m=﹣,m=22.19.解:(1)由题意,得|m+4|=1且m+3≠0,解得m=﹣5.(2)当m=﹣5时,2(3m+2)﹣3(4m﹣1)=2×(﹣15+2)﹣3(﹣20﹣1)=﹣26+63=37.20.解:(1)∵关于x的方程(m+3)x|m|﹣2+6n=0是一元一次方程,∴|m|﹣2=1,m+3≠0,解得:m=3,当m=3时,方程为:6x+6n=0,解得:x=﹣n,﹣1=,2(2x+1)﹣10=5(x+n),4x+2﹣10=5x+5n,4x﹣5x=5n+8,﹣x=5n+8,解得:x=﹣5n﹣8,∴﹣5n﹣8=﹣n,∴n=﹣2;(2)把m=3,n=﹣2代入|a|y+a=m+1﹣2ny,得:|a|y+a=4+4y,∴y=,∵y的方程|a|y+a=4+4y无解,∴,∴a=﹣4.21.解:(1)设该批援鄂医疗队中医生有x人,则护士有(126﹣x)人,根据题意得:2(x﹣27)=126﹣x﹣27,解得x=51,则126﹣x=126﹣51=75.答:该批援鄂医疗队中医生有51人,护士有75人;(2)∵负责普通病房的医生有51﹣27=24人,而5个普通病房需要1名医生,∴普通病房有24×5=120(个),答:该医院住院部普通病房有120个.。

六年级数学上册4.2解一元一次方程(第2课时) 精品优选PPT课件鲁教版五四制

六年级数学上册4.2解一元一次方程(第2课时) 精品优选PPT课件鲁教版五四制

2.解方程 1 x-1= 2 x去分母时,两边同乘6最合适.
3.方程
2
3
=3x,去分母得2x+1=3x.
(×)xΒιβλιοθήκη 14.方程 2去分母得3x+2x=1. ( × )
x + x = 1, 23
(√)
知识点一 解含括号的一元一次方程 【示范题1】解方程:(1)4x+2(x-2)=14-(x+4). (2)2(x-1)-(x+2)=3(4-x). 【思路点拨】去括号→移项→合并同类项→方程两边同除以未 知数的系数.
【自主解答】(1)去括号,得4x+2x-4=14-x-4, 移项,得4x+2x+x=14-4+4, 合并同类项,得7x=14, 方程两边同除以7,得x=2. (2)去括号,得2x-2-x-2=12-3x, 移项,得2x-x+3x=12+2+2, 合并同类项,得4x=16,方程两边同除以4,得x=4.
5.方程两边同除以未知数的系数得:__x_=__-_52__.
解一元一次方程的一般步骤
去分母、_去__括__号__、移项、_合__并__同__类__项__、未知数的系数化为1, 即最终将方程转化为“_x_=_a_”的形式.
【思维诊断】 (打“√”或“×”)
1.由2(x-2)-3(x+3)=1去括号得2x-4-3x+9=1. ( × )
【方法一点通】 解一元一次方程的步骤 1.去分母. 2.去括号. 3.移项. 4.合并同类项.
5.未知数的系数化为1. 但并不是解每一个方程都需要这五个步骤,这五个步骤的
先后顺序并非固定不变,要根据方程的特点,确定恰当的步骤, 灵活解方程.

鲁教版五四小学六年级上册数学第4章4.2.3用去分母法解一元一次方程习题课件.pptx

鲁教版五四小学六年级上册数学第4章4.2.3用去分母法解一元一次方程习题课件.pptx

探究培优拓展练
19 有些含绝对值的方程,可以通过讨论去掉绝对值,转 化成一元一次方程求解. 例如:解方程x+2|x|=3, 解:当x≥0时,方程可化为x+2x=3, 解得x=1; 当x<0时,方程可化为x-2x=3,解得x=-方程:x+3|x-1|=7.
整合方法提升练
17 已知方程 6-3(x+1)=0 的解与关于 x 的方程k+2 x-3k -2=2x 的解互为相反数,求 k 的值.
解:由 6-3(x+1)=0,得 x=1.因为方程 6-3(x+1)
=0 的解与关于 x 的方程k+2 x-3k-2=2x 的解互为相 反数,所以 x=-1 是关于 x 的方程k+2 x-3k-2=2x 的解.所以k-2 1-3k-2=-2.所以 k=-15.
夯实基础逐点练
(3)5-87y=7-75y; 解:去分母,得 35-49y=56-40y, 移项、合并同类项,得 9y=-21,解得 y=-73.
(4)x+4 3-2-83x=12-x. 去分母,得2x+6-2+3x=4-8x, 移项、合并同类项,得13x=0,解得x=0.
夯实基础逐点练
10 【中考·贺州】解方程:x6-30-4 x=5. 解:去分母,得2x-3(30-x)=60. 去括号,得2x-90+3x=60. 移项、合并同类项,得5x=150. 系数化为1,得x=30.
【点拨】 去分母时不要漏乘,易忽略等号右边的项而致错.
夯实基础逐点练
11 解方程:2x-3 5-3x-4 17=-1-25x. 错解:去分母,得8x-5-9x-17=-6-5x.移项、 合并同类项,得4x=16.系数化为1,得x=4. 诊断:分数线除了代替“÷”外,还具有括号的作用, 本题的错解正是忽视了这一点.
整合方法提升练

六年级数学上册4.2.1用移项解一元一次方程题组训练鲁教版五四制

六年级数学上册4.2.1用移项解一元一次方程题组训练鲁教版五四制

用移项解一元一次方程1.以下方程的变形中,是移项的是( )A.由3= x,得x=3B.由6x=3+5x,得6x=5x+3C.由2x=-1,得x=-D.由2x-3=x+5,得2x-x=5+32 .解方程6x+1=-4,移项正确的选项是()A.6x=4-1B.-6x=-4-1C.6x=1-4D.6x=-4-13.方程2x-4=0的解是.4.4x k+2y3与-7y3x8k-33为同类项,则k=.5.已知当x=2,y=1时,代数式kx-y的值是3,那么k的值是.6.解方程:4x+5-3x=3-2x.解一元一次方程的应用题1.黄豆抽芽后,其自己的质量能够增添7倍,那么要获得黄豆芽560kg,需要黄豆()A.80kgB.70kgC.75kgD.90kg2.服饰店销售某款服饰,一件服饰的标价为300元,若按标价的八折销售,仍可赢利60元,则这款服饰每件的标价比进价多()A.60元B.80元C.120元D.180元3.三个连续整数的和为54,则这三个数分别为.4 .甲厂库存木材100t,每个月用去15t,乙厂库存木材82t,每个月用去9t,经过m个月,两厂节余木材相等,则m的值为.5.在一张日历上圈出一竖列上相邻的三个数,它们的和为24,你能求出这三个数吗?【互动研究】将上题中的24改为15,你能求出这三个数吗?为何?6.二班组织全班同学去郊游,但需要必定花费,假如每名同学付5元,那么还差5.6元,假如每名同学付5.5元,就多出10.4元,那么这个班有多少名同学,总开销多少元?-1-【错在哪?】作业错例讲堂实拍解方程:20x-8=32-28x.找错:从第_______步开始出现错误.纠错:_________________________________________________________.提技术·题组训练用移项解一元一次方程1.以下方程的变形中,是移项的是()A.由3= x,得x=3B.由6x=3+5x,得6x=5x+3C.由2x=-1,得x=-D.由2x-3=x+5,得2x-x=5+3【分析】选D.选项A中等号左右两边互换,可是没有变号,不是移项;选项B中等号右侧的5x与3互换地点不是移项;选项C中是等号两边同时除以,不是移项;-2-选项D中等号右侧的x变成-x移到等号左侧,等号左侧的-3变成3移到等号右侧,是移项.【易错提示】移项是指把等式一边的某项变号后移到另一边,而在等号的同一侧改动某项的地点不是移项,也不需要改变符号.2.解方程6x+1=-4,移项正确的选项是()A.6x=4-1B.-6x=-4-1C.6x=1-4D.6x=-4-1【分析】选D.选项A,B的错误是没挪动的项符号发生了改变;选项C中的1从左移到右,但符号没改变.3.方程2x-4=0的解是.【分析】移项,得2x=4,方程两边同时除以2,得x=2.答案:x=24.4x k+2y3与-7y3x8k-33为同类项,则k=.【解题指南】→【分析】依据题意得k+2=8k-33,移项,得8k-k=2+33,归并同类项得7k=35,方程两边同除以7得,k=5.答案:55.已知当x=2,y=1时,代数式kx-y的值是3,那么k的值是.【分析】由题意,得2k-1=3,移项,得2k=3+1,归并同类项,得2k=4,方程两边同时除以2,得k=2.答案:26.解方程:4x+5-3x=3-2x.【分析】移项,得4x-3x+2x=3-5.归并同类项,得3x=-2.方程两边同时除以3,得x=-.解一元一次方程的应用题1.黄豆抽芽后,其自己的质量能够增添7倍,那么要获得黄豆芽560kg,需要黄豆()A.80kgB.70kgC.75kgD.90kg【分析】选B.设需要黄豆xkg,则x+7x=560,解得x=70.【易错提示】注意质量增添7倍与质量可变成本来的7倍的不一样,易误列方程7x=560.2.服饰店销售某款服饰,一件服饰的标价为300元,若按标价的八折销售,仍可赢利60元,则这款服饰每件的标价比进价多()A.60元B.80元C.120元D.180元【分析】选C.设每件服饰进价为x元,可列方程300×0.8-x=60,解得x=180,300-180=120(元).-3-3.三个连续整数的和为54,则这三个数分别为.【分析】设最小的整数为x,则其他两个整数分别为x+1,x+2,依据题意列方程为x+x+1+x+2=54,解得x=17,因此x+1=18,x+2=19,因此这三个数分别为17,18,19.答案:17,18,19【一题多解】设中间一个整数为x,则较小的一个整数为x-1,较大的一个整数为x+1,依据题意列方程为x-1+x+x+1=54,解得x=18,因此x-1=17,x+1=19,因此这三个数分别为17,18,19.答案:17,18,194.甲厂库存木材100t,每个月用去15t,乙厂库存木材82t,每个月用去9t,经过m个月,两厂节余木材相等,则m 的值为.【分析】依据相等关系“经过m个月,两厂节余木材相等”列方程为100-15m=82-9m,解得m=3.答案:35.在一张日历上圈出一竖列上相邻的三个数,它们的和为24,你能求出这三个数吗?【分析】设这三个数中中间一个为x,则上边的数为x-7,下边的数为x+7,列方程为x-7+x+x+7=24,解得x=8,x-7=1,x+7=15,即这三个数分别为1,8,15.【互动研究】将上题中的24改为15,你能求出这三个数吗?为何?【分析】设这三个数中中间一个为x,则上边的数为x-7,下边的数为x+7,列方程为x-7+x+x+7=15,解得x=5,x-7=-2,x+7=12,因为日历中没有负数,因此不存在三个数的和为15.6.二班组织全班同学去郊游,但需要必定花费,假如每名同学付5元,那么还差5.6元,假如每名同学付 5.5元,就多出10.4元,那么这个班有多少名同学,总开销多少元?【分析】设有x名同学,则5x+5.6=5.5x-10.4,因此x=32,因此5x+5.6=5×32+5.6=165.6.答:这个班共有32名同学,总开销165.6元.【错在哪?】作业错例讲堂实拍解方程:20x-8=32-28x.-4-找错:从第_______步开始出现错误.纠错:_________________________________________________________.答案:(1)①5(2)移项,得20x+28x=32+8,归并同类项,得48x=40,方程两边同除以48,得x=6勤劳能产生奇观,皮尔·卡丹的奋斗史就说了然这个道理。

解一元一次方程练习题2021-2022学年鲁教版(五四制)六年级数学上册

解一元一次方程练习题2021-2022学年鲁教版(五四制)六年级数学上册

2021-2022学年鲁教版六年级数学上册《4.2解一元一次方程》同步练习题(附答案)1.方程5y﹣7=2y﹣中被阴影盖住的是一个常数,此方程的解是y=﹣1.这个常数应是()A.10B.4C.﹣4D.﹣102.如果关于x的方程2(x+a)﹣4=0的解是x=﹣1,那么a的值是()A.3B.﹣3C.﹣1D.13.将方程去分母得到3y+2+4y﹣1=12,错在()A.分母的最小公倍数找错B.去分母时,漏乘了分母为1的项C.去分母时,分子部分没有加括号D.去分母时,各项所乘的数不同4.定义“*”运算为a*b=ab+2a,若(3*x)+(x*3)=14,则x=()A.﹣1B.1C.﹣2D.25.解方程时,小刚在去分母的过程中,右边的“﹣1”漏乘了公分母6,因而求得方程的解为x=2,则方程正确的解是()A.x=﹣3B.x=﹣2C.D.6.解方程时,去分母、去括号后,正确结果是()A.4x+1﹣10x+1=1B.4x+2﹣10x﹣1=1C.4x+2﹣10x﹣1=6D.4x+2﹣10x+1=67.王涵同学在解关于x的方程7a+x=18时,误将+x看作﹣x,得方程的解为x=﹣4,那么原方程的解为()A.x=4B.x=2C.x=0D.x=﹣28.若x=1是方程(1)2﹣的解,则关于y的方程(2)m(y﹣3)﹣2=m(2y ﹣5)的解是()A.﹣10B.0C.D.49.已知a是任意有理数,在下面各题中结论正确的个数是()①方程ax=0的解是x=1;②方程ax=a的解是x=1;③方程ax=1的解是x=;④方程|a|x=a的解是x=±1.A.0B.1C.2D.310.对于实数a,b,c,d规定一种运算:,如﹣0×2=﹣2,那么时,x=()A.B.C.D.11.把方程﹣1=的分母化为整数可得方程()A.﹣10=B.﹣1=C.﹣10=D.﹣1=12.方程|x+5|﹣|3x﹣7|=1的解有()A.1个B.2个C.3个D.无数个13.关于x的方程3x+5=0与3x=1﹣3m的解相同,则m等于()A.﹣2B.2C.D.14.若关于x的方程||x﹣2|﹣1|=a有三个整数解,则a的值是()A.0B.1C.2D.315.下列说法:①符号相反的数互为相反数;②有理数a、b、c满足|a+b+c|=a﹣b+c,且b≠0,则化简|a﹣1+c|+|b﹣3|﹣|b﹣1|的值为5;③若(m﹣2)+x+2=m是关于x的一元一次方程,则这个方程的解是x=;④若(3a+4b)x2+ax+b=0是关于x的一元一次方程,则x=其中正确的有()A.4 个B.3 个C.2 个D.1 个16.已知关于x的一元一次方程的解为x=8,则关于y的一元一次方程:的解为y=.17.定义运算:a⊕b=5a+4b,那么当x⊕9=61时,⊕x=.18.已知(a﹣2)x|a|﹣1+3=0是关于x的一元一次方程,则方程的解x=.19.若含x的式子与x﹣3互为相反数,则x=.20.我们知道,,…因此关于x的方程=120的解是;当于x的方程=2021的解是(用含n的式子表示).21.解方程:(1)2[x﹣(x+2)]=5(x﹣2);(2)y﹣=2﹣.22.解下列方程:(1)4﹣(x+3)=2(x﹣1);(2).23.解方程:﹣3=.24.解方程:x﹣(3﹣2x)=1.25.解方程(1)x﹣2=5x+6(2)2x﹣=3﹣.26.已知关于x的方程与方程的解互为倒数,求m2﹣2m﹣3的值.27.用“⊗”规定一种新运算:对于任意有理数a和b,规定a⊗b=ab2+2ab+a.如1⊗3=1×32+2×1×3+1=16.(1)求2⊗(﹣1)的值;(2)若(a﹣1)⊗3=32,求a的值;(3)若m=2⊗x,n=(x)⊗3(其中x为有理数),试比较m、n的大小.28.已知关于x的方程2(x+1)﹣m=﹣的解比方程5(x﹣1)﹣1=4(x﹣1)+1的解大2.(1)求第二个方程的解;(2)求m的值.参考答案1.解:将y=﹣1代入方程5y﹣7=2y﹣中,5×(﹣1)﹣7=2×(﹣1)﹣,解得=10,故选:A.2.解:把x=﹣1代入方程2(x+a)﹣4=0得:2(﹣1+a)﹣4=0,解得:a=3,故选:A.3.解:方程去分母,得,3(y+2)+2(2y﹣1)=12,去括号得,3y+6+4y﹣2=12,∴错在分子部分没有加括号,故选:C.4.解:根据题意(3*x)+(x*3)=14,可化为:(3x+6)+(3x+2x)=14,解得x=1.故选:B.5.解:由题意得,x=2是方程2(2x﹣1)=3(x+a)﹣1的解,所以a=,则正确解为:去分母得,2(2x﹣1)=3(x+)﹣6,去括号得,4x﹣2=3x+1﹣6,移项合并同类项得,x=﹣3,故选:A.6.解:方程去分母得:2(2x+1)﹣(10x+1)=6,去括号得:4x+2﹣10x﹣1=6,故选:C.7.解:把x=﹣4代入方程7a﹣x=18得:7a+4=18,解得:a=2,即原方程为14+x=18,解得:x=4.故选:A.8.解:先把x=1代入方程(1)得:2﹣(m﹣1)=2×1,解得:m=1,把m=1代入方程(2)得:1×(y﹣3)﹣2=1×(2y﹣5),解得:y=0.故选:B.9.解:①当a≠0时,x=0,错误;②当a≠0时,两边同时除以a,得:x=1,错误;③ax=1,当a≠0时,两边同时除以a,得:x=,错误;④当a=0时,x取全体实数,当a>0时,x=1,当a<0时,x=﹣1,错误.故选:A.10.解:由:,可知时,2×5﹣【﹣4×(3﹣x)】=25,去括号得:22﹣25=4x,系数化为1得,x=﹣.故选:D.11.解:方程整理得:﹣1=.故选:B.12.解:从三种情况考虑:第一种:当x≥时,原方程就可化简为:x+5﹣3x+7=1,解得:x=符合题意;第二种:当﹣5<x<时,原方程就可化简为:x+5+3x﹣7=1,解得:x=符合题意;第三种:当x≤﹣5时,原方程就可化简为:﹣x﹣5+3x﹣7=1,解得:x=不符合题意;所以x的值为:或.故选:B.13.解:解方程3x+5=0得:3x=﹣5,∵关于x的方程3x+5=0与3x=1﹣3m的解相同,∴1﹣3m=﹣5,解得:m=2,故选:B.14.解:①若|x﹣2|﹣1=a,当x≥2时,x﹣2﹣1=a,解得:x=a+3,a≥﹣1;当x<2时,2﹣x﹣1=a,解得:x=1﹣a;a>﹣1;②若|x﹣2|﹣1=﹣a,当x≥2时,x﹣2﹣1=﹣a,解得:x=﹣a+3,a≤1;当x<2时,2﹣x﹣1=﹣a,解得:x=a+1,a<1;又∵方程有三个整数解,∴可得:a=﹣1或1,根据绝对值的非负性可得:a≥0.即a只能取1.故选:B.15.解:①符号相反,绝对值相等的数互为相反数,故错误;②∵|a+b+c|=a﹣b+c,∴a﹣b+c≥0,a+c=0,b<0,则|a﹣1+c|+|b﹣3|﹣|b﹣1|=1+3﹣b﹣1+b=3,故错误;③∵(m﹣2)+x+2=m是关于x的一元一次方程,∴当m2﹣3=1且m﹣2≠0,解得:m=﹣2,则方程为﹣4x+x+2=﹣2,解得:x=,当m﹣2=0时,即m=2时(m﹣2)x m2﹣3+x+2=m是关于x的一元一次方程,则方程为x+2=2解得:x=0,当m2﹣3=0,即m=,(m﹣2)x m2﹣3+x+2=m是关于x的一元一次方程,则方程为m﹣2+x+2=m,解得:x=0,故错误;④由题意得,3a+4b=0,a≠0,则a=﹣b,原方程为:ax+b=0,解得,x=﹣=.故正确;故选:D.16.解:∵,,∴y﹣1=x,∵x=8,∴y﹣1=8,解得y=9.故答案为:9.17.解:∵x⊕9=61,∴5x+36=61.∴x=5.∴⊕x=⊕5=5×+4×5=.故答案为:.18.解:由题意得:a﹣2≠0,|a|﹣1=1.∴a=﹣2.∴﹣4x+3=0.∴x=.故答案为:.19.解:∵含x的式子与x﹣3互为相反数,∴+x﹣3=0,∴x=2,故答案为:2.20.解:∵=120,∴(1﹣)x+.∴=120.∴.∴x=160.∵=2021,∴.∴.∴.∴x=.故答案为:x=160,x=.21.解:(1)2[x﹣(x+2)]=5(x﹣2),去括号得:2x﹣x﹣2=5x﹣10,移项,得:2x﹣x﹣5x=﹣10+2,合并同类项,得:﹣4x=﹣8,化系数为1,得:x=2.(2)y﹣=2﹣,去分母,得:10y﹣5(y﹣1)=20﹣2(y+2),去括号,得:10y﹣5y+5=20﹣2y﹣4,移项,得:10y﹣5y+2y=20﹣4﹣5,合并同类项,得:7y=11,化系数为1,得:y=.22.解:(1)4﹣(x+3)=2(x﹣1),去括号得:4﹣x﹣3=2x﹣2,移项得:﹣x﹣2x=﹣2﹣4+3,合并同类项:﹣3x=﹣3,把系数化为1:x=1.(2)去分母得:3(2x﹣1)+12=2(x+3),去括号得:6x﹣3+12=2x+6,移项得:6x﹣2x=6﹣12+3,合并同类项得:4x=﹣3,把系数化为1:x=﹣.23.解:去分母得:2x+2﹣12=2﹣x,移项合并得:3x=12,解得:x=4.24.解:去分母得:2x﹣5(3﹣2x)=10,去括号得:2x﹣15+10x=10,移项合并得:12x=25,解得:x=.25.解:(1)移项合并得:﹣4x=8,解得:x=﹣2;(2)去分母得:20x﹣2(x﹣1)=30﹣5(x+2),去括号得:20x﹣2x+2=30﹣5x﹣10,移项合并得:23x=18,解得:x=.26.解:,解得:x=,∴方程的解为x=,代入可得:﹣=,解得:m=﹣1,∴m2﹣2m﹣3=1+2﹣3=0.27.解:(1)2⊗(﹣1)=2×(﹣1)2+2×2×(﹣1)+2=2﹣4+2=0;答:2⊗(﹣1)的值为0;(2)(a﹣1)⊗3=32(a﹣1)×32+2(a﹣1)×3+(a﹣1)=32 9a﹣9+6a﹣6+a﹣1=3216a=48解得a=3答:a的值为3;(3)∵m=2⊗x,n=(x)⊗3∴m﹣n=(2x2+4x+2)﹣(x+x+x)=2x2+2≥2>0,∴m>n.28.解:(1)5(x﹣1)﹣1=4(x﹣1)+1,5x﹣5﹣1=4x﹣4+1,5x﹣4x=﹣4+1+1+5,x=3;(2)由题意得:方程2(x+1)﹣m=﹣的解为x=3+2=5,把x=5代入方程2(x+1)﹣m=﹣得:2(5+1)﹣m=﹣,12﹣m=﹣,m=22.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.2解一元一次方程(1)
一、选择题
1.解416=+x 方程,移项正确的是( )
A .146-=x B.146-=-x C.416+=x D. 146--=x
2.解方程8342+=-x x 移项后正确的是( )
A .4832+=+x x
B .4832+-=-x x
C .4832+=-x x
D .4832-=-x x
3.下列说法正确的有( )个
①由 93
1=-x 得3-=x ;②由167-=x x 得;167-=-x x ③由105=x 得2=x ; ④由x x -=63得 63=-x x ;⑤由92=+x x 合并同类项得93=x
A .1
B .2
C .3
D .4
4.方程x x 212221-=- 的解是( ) A .1=x B .1-=x C .4=x D .0=x
二、填空题
1.方程713=+x 的解是________.
2. 如果方程1223=+a x 和方程243=-x 的解相同,那么=a ______.
三、解答题
1.解方程:(1)8725+=-x x (2)2
1131=
+x
2.先看例子,再解类似的题目,例:解方程31=+x .
法一:当0≥x 时,原方程化为31=+x ,解方程,得2=x ;当x<0时,原方程化为31=+-x ,解方程,得2-=x ,所以方程31=+x 的解是2=x 或2-=x . 法二:移项,得13-=x ,合并同类项,得2=x ,由绝对值的意义知2±=x ,所以原方程的解为2=x 或2-=x .
问题:用你发现的规律解方程:532=-x .(任选一种方法解)
参考答案
一、选择题
1.A
2.C
3.C
4.C
二、填空题 1. 2=x 2. 3
三、解答题 1. ()51-=x ()232-=x
2. 4±=x。

相关文档
最新文档