大块非晶合金的几种常用的制备方法

合集下载

非晶合金制备方法

非晶合金制备方法

非晶合金制备方法非晶合金,也被称为非晶态金属或非晶态合金,是一种具有非晶态结构的合金材料。

与晶态材料相比,非晶合金具有更高的强度、硬度和耐腐蚀性,因此在许多领域有着广泛的应用。

有几种常见的非晶合金制备方法,包括快速凝固法、溅射法和机械合金化法等。

快速凝固法是最常用的一种制备非晶合金的方法。

该方法通过将合金液体迅速冷却至高速凝固状态,使其结晶过程无法发生,从而形成非晶态结构。

快速凝固法主要有液体金属冷却法、蒸发冷凝法和高速冷却法等。

液体金属冷却法是将合金液体倒入一个冷却介质中,使其迅速冷却并形成非晶态结构。

蒸发冷凝法则是通过蒸发冷却的方式制备非晶合金。

高速冷却法则是利用高速冷却流体对合金液体进行快速冷却。

溅射法是另一种常用的非晶合金制备方法。

该方法通过将原料金属放置在真空室中,然后利用离子束轰击或电弧放电等方式将金属原子溅射到基底上,形成非晶合金薄膜。

溅射法可以制备出具有高质量、高纯度的非晶合金薄膜,广泛应用于电子器件和光学材料等领域。

机械合金化法是一种将粉末混合物通过机械力作用下制备非晶合金的方法。

该方法通常使用球磨机或高能球磨机等设备,将金属粉末和非金属元素混合在一起,通过机械力的作用使其形成非晶态结构。

机械合金化法可以制备出大块的非晶合金材料,广泛应用于航空航天、汽车制造和能源领域。

除了以上几种方法,还有一些其他的非晶合金制备方法,如熔体淬火法、气相沉积法和快速固化法等。

这些方法各有特点,适用于不同类型和形状的非晶合金材料制备。

非晶合金是一种具有特殊结构和性能的材料,在现代科学技术中有着广泛的应用。

通过快速凝固法、溅射法和机械合金化法等多种制备方法,可以制备出高质量的非晶合金材料,为各个领域的发展提供了重要的支持。

随着科技的不断进步,相信非晶合金的制备方法将会更加多样化和高效化。

非晶合金的制备和特性研究

非晶合金的制备和特性研究

非晶合金的制备和特性研究随着现代工业的不断发展,材料科学也在逐步引领着时代的步伐。

而在材料科学领域中,非晶合金凭借其优异的物理性能和具有应用前景的特性,成为了学术研究和工业制造的热门领域。

本文将介绍非晶合金的制备方法、特性研究和未来的应用前景。

一、非晶合金的制备方法1. 高速凝固法高速凝固法是制备非晶合金的一种有效手段。

通过将熔融金属快速冷却,从而防止金属结晶,形成无定形的非晶态。

高速凝固法具有工艺简单、效率高等优势。

其中,管式和轮子式高速凝固技术是目前应用较为广泛的两种方法。

管式高速凝固法可制备厚度较小的非晶薄片,而轮子式高速凝固法能够制备较厚的非晶合金条。

2. 熔融淬火法熔融淬火法是非晶合金制备中的常用方法。

将金属预先熔化,然后快速冷却至室温,形成非晶态。

与高速凝固法相比,熔融淬火法的工艺更为简单,并能够得到较大的非晶样品。

3. 溅射法溅射法是利用离子束轰击金属靶材表面将材料溅射到基体表面的技术。

通过这种方法,可以制备出质量较高、纯度较高的非晶合金膜。

此外,溅射法还适用于制备非晶纳米粒子和非晶微粒,有望应用于新型储能材料和磁性材料的研究。

二、非晶合金的特性研究1. 物理性能非晶合金因其无定形的结构特征,具有独特的物理性能,如高硬度、高强度、良好的耐腐蚀性和磁性能等,被广泛应用于制造电子元器件、汽车零配件、航空装备等。

2. 热力学性质非晶合金的热力学特性是其性能研究的重点之一。

在非晶合金的制备过程中,熔点较高、过冷度较大的元素分别对非晶态形成和稳定性能有着重要影响。

因此,热力学特性的探究,有助于设计出优良的非晶合金体系。

3. 电子结构电子结构是非晶合金特性的基础,深入研究非晶合金的电子结构,有助于揭示非晶态形成机制和物理性能的源头。

当前,X射线吸收谱和X射线荧光光谱是非晶合金电子结构研究的主要手段。

三、非晶合金的未来应用前景不仅具有上述优越的特性和表现,非晶合金还具备良好的生物相容性和形状记忆效应等,这使其在日益发展的生物医学领域、能源存储领域和机器人领域等具有广阔的应用前景。

冶金工业中的非晶态合金制备方法教程

冶金工业中的非晶态合金制备方法教程

冶金工业中的非晶态合金制备方法教程非晶态合金是一种特殊的材料,具有优异的力学性能、热稳定性和耐腐蚀性能,因此在冶金工业中得到广泛应用。

本文将介绍冶金工业中非晶态合金的制备方法,以供参考。

1. 快冷淬火法快冷淬火是制备非晶态合金的一种常见方法。

该方法通过迅速冷却合金溶液,使其快速锁定在非晶态结构中,防止晶体的形成。

快冷淬火法可以通过多种方式实现,包括快速凝固、快速减温和快速冷却等。

在实际操作中,可以使用气冷或液冷装置,将合金淬火至液氮温度以下。

此外,还可以使用电磁感应加热或激光加热等技术,以提高合金的冷却速率和延缓合金结晶的发生。

此种方法适用于制备各种金属合金,如铁基合金、镍基合金等。

2. 离子束淬火法离子束淬火法是一种较新的非晶态合金制备方法。

该方法通过将金属合金暴露在高能离子束中,使其表面受到强烈的离子轰击。

离子轰击产生的热量和压力可以快速冷却金属合金,形成非晶态结构。

离子束淬火法具有一些独特的优势,如能够制备薄膜和纳米尺度的非晶态合金,以及在低温下制备非晶态合金。

然而,这种方法需要昂贵的离子束设备,并且对合金薄片的质量和纯度要求较高。

3. 机械合金化法机械合金化法是一种通过高能机械力作用下的冶金方法制备非晶态合金的方法。

该方法通过高速旋转的球磨机或振动研磨机等设备,将含有不同金属的粉末混合均匀,并产生相互碰撞和变形,形成非晶态合金。

机械合金化法具有简单易行、原理清晰等优点,适用于制备大量的非晶态合金。

此外,该方法还可以实现多元非晶态合金的制备,通过控制合金中不同金属的比例和添加不同元素,可以调节合金的结构和性能。

4. 溅射法溅射法是一种常用的制备非晶态合金的物理气相沉积方法。

该方法通过将原材料靶材置于真空室中,使用离子束轰击或激光加热等方式使靶材表面蒸发,然后沉积于基板上形成非晶态合金薄膜。

溅射法具有高纯度、成膜速度快、制备薄膜便利等优势,是制备非晶态合金薄膜的一种常用手段。

此外,溅射法还可以对合金进行复合与掺杂,以提高合金的性能和附着力。

非晶合金材料的制备及性能表征研究

非晶合金材料的制备及性能表征研究

非晶合金材料的制备及性能表征研究非晶合金材料,也称为玻璃态合金,是由其特殊的化学成分和金属结构特征所决定的独特物理性质。

相较于晶体材料,非晶合金材料具有更高的强度、硬度和韧性等性能。

因此,非晶合金材料在战舰制造、航空航天和电子信息等领域得到广泛应用。

本文将就非晶合金材料的制备及性能表征进行探讨。

制备方法:制备非晶合金材料的方法主要有以下几种:1. 快速冷却法(或称为淬火法)快速冷却法是制备非晶合金材料最为常用的方法。

将合金液体急速冷却(也称淬火),可使合金元素的结构和原子排列保持无序状态,从而形成非晶态结构。

这种方法的关键是通过快速冷却,使得体系内的熵值处于非均衡状态,使得非晶态从液态相中得以形成。

快速冷却的方式有(i)水淬或(ii)熔体淬冷,(i)水淬适用于低熔点合金,(ii)熔体淬冷适用于高熔点合金。

2. 机械合金化法机械合金化法亦称为机械合成法、球磨法等。

是通过机械能把块材粉末进行冶金反应和热力学变化,从而形成非晶态材料。

机械合成主要包括(i)球磨法、(ii)高能球磨法和(iii)电弧合成等。

性能表征:1. 结构分析X射线衍射法(XRD)和透射电子显微镜(TEM)是非晶合金材料结构分析的常见手段。

XRD可以得到非晶合金材料的晶态体验,并定量地刻画非晶合金材料中产生的晶相数量和大小,但是不能确定非晶合金材料的晶结构。

而TEM则是可视化地展示非晶合金材料的原子结构,可以获得在几个纳米至一百多纳米的尺度上的细节信息。

2. 热稳定性、力学性能由于非晶合金材料的不稳定性,一些杂质、氧化物等通常会诱导非晶合金材料向晶态材料或再结晶材料转化,因此,热稳定性是评价非晶合金材料好坏的重要指标之一。

同时,非晶合金材料的硬度、弹性模量、屈服强度、刚性等力学性质对其应用性能也有着至关重要的影响。

这些性质的测试方法有:(1)压痕硬度(2)扫描电镜(SEM)和原子力显微镜(AFM)(3)动态力学分析法(DMA)结论:非晶合金材料在制备和性能表征等方面有着常规合金所不具备的特殊性质。

非晶态材料的制备及性质研究

非晶态材料的制备及性质研究

非晶态材料的制备及性质研究一、引言非晶态材料是一类在凝固时没有形成规则结晶结构的物质。

它们具有许多特殊的物理和化学特性,例如高密度、超强硬度和高力学阻尼性能。

这些特性使得非晶态材料被广泛应用于制造高性能材料和微电子器件等领域。

本文将介绍非晶态材料的制备方法,探讨其性质研究现状及未来发展方向。

二、四种制备非晶态材料的方法1. 熔融淬火法熔融淬火法是较为常用的制备非晶态材料的方法。

它的基本原理是将金属或合金加热至高于其熔点,然后迅速冷却到室温以下。

在快速冷却的过程中,金属或合金没有足够的时间来形成晶体结构,从而形成非晶态结构。

熔融淬火法的优点在于可以在室温下制备大面积的非晶态薄膜和多组分玻璃材料。

然而,这种方法对于高熔点的合金和易氧化金属的制备较为困难。

2. 溅射法溅射法是另一种常见的非晶态材料制备方法,它的基本原理是将金属或合金靶材置于真空室内,然后利用离子轰击或电子轰击等手段将靶材表面原子溅射出来。

这些原子以极高速度沉积到衬底上,形成非晶态薄膜。

溅射法可以制备多种材料的非晶态薄膜,具有优良的化学均匀性和结晶性能。

但是,由于需要真空设备和高昂的成本,溅射法一般只用于小面积的薄膜制备。

3. 机械合金化法机械合金化法是一种将原材料粉末混合并经高强度机械碾压形成非晶态钎料的方法。

这种方法的基本原理是通过机械碾压将原材料粉末混合均匀,然后控制碾压时间和碾压力度以制造非晶态钎料。

机械合金化法可以制备许多非晶态合金,具有良好的热稳定性和化学稳定性。

然而,由于合金中添加的原材料粉末数量有限,因此机械合金化法仅适用于小规模的制备。

4. 其他方法除了以上三种制备非晶态材料的方法外,还有一些较为新颖的制备方法,例如分子束外延法、热化学气相沉积法和激光凝固法等。

这些方法具有不同的优势和限制,可以根据不同的需求和材料特性进行选择。

三、非晶态材料的性质研究1. 机械性能非晶态材料的机械性能是其最显著的特点之一。

由于其无晶体结构,非晶态材料通常具有非常高的硬度和强度,同时具有良好的弹性模量和塑性形变能力。

非晶相合金的制备及其性能研究

非晶相合金的制备及其性能研究

非晶相合金的制备及其性能研究一、引言非晶态材料是指没有长程有序结构的材料,其原子在空间中具有随机分布。

非晶态材料以其独特的物理化学性质,被广泛应用于电子、机械、核、航天等领域。

其中,非晶相合金是非晶态材料中一种成分复杂、力学性能优异的重要类别。

二、制备方法非晶相合金的制备方法较为复杂,主要有:1.快速凝固法:通过快速凝固技术控制合金的冷却速度,从而制备出非晶合金。

常用的快速凝固技术有淬火法、射流冷却法、蒸发法等。

2.气相沉积法:使用化学气相沉积技术,在基底上形成非晶薄膜。

包括磁控溅射、电子束蒸发等。

3.熔体淬火法:将高温的液态金属迅速冷却,使其不能充分结晶,从而获得非晶态合金材料。

三、性能研究非晶相合金的性能研究主要集中在以下几个方面:1.力学性能:非晶相合金具有很高的强度、韧性和延展性。

这与非晶结构的高密度、无序性以及断裂韧性提高有关。

例如,非晶相合金Zr-Cu-Al-Ni具有比钢铁还坚硬的特点。

2.腐蚀性能:非晶相合金具有良好的腐蚀抗性,可用于生物医学领域。

例如,Ni-Cr-Mo合金用于耳环和牙科。

3.磁性:非晶相合金中含有磁性元素,如铁、钴、镍等,因此具有较好的磁性能。

例如,Fe-Ni-Si-B合金被广泛用作变压器芯材,以提高能源利用率。

4.导电性:非晶相合金的电阻率很低,可用于制造传感器以及电子元件等。

例如,Gd-Co合金可用于生产高灵敏度的压敏电阻元件。

四、应用展望非晶相合金具有优异的物理化学性质,可以广泛应用于以下领域:1.航空航天:非晶相合金由于其强度高、抗腐蚀能力强等特点,可以用于航空航天领域的结构材料和表面材料。

2.医疗器械:非晶相合金可用于制造人工关节、牙科、神经修复以及生物传感器等医疗器械。

3.自动化制造:非晶相合金可以用于制造自动化精密零件,如汽车发动机缸体和凸轮轴等。

5.电子领域:非晶相合金可用于制造传感器、电子元件、磁记录介质以及特殊磁场材料等。

五、结论非晶相合金在材料科学领域中越来越受到关注。

非晶合金材料的制备及性能研究

非晶合金材料的制备及性能研究

非晶合金材料的制备及性能研究非晶合金材料是一种由金属元素组成,具有非晶态结构的材料。

其优异的性能使得它在现代工业和科技领域中得到了广泛应用,例如电子、光电、磁学、力学等领域。

本文将对非晶合金材料的制备及性能研究进行探讨。

一、非晶合金材料的制备方法1. 快速凝固法制备法快速凝固法是现代合金材料制备技术中最为重要的一种,这种方法能够制备出纯度高、化学均匀、晶粒尺寸小、结构疏松等特点的非晶合金。

快速凝固法通常有以下几种类型:单液滴冷却法、铸造法、直流电弧法、气体冷却法、电子束加热法等。

其中单液滴冷却法是一种较新的技术,可以实现在室温下制备非晶合金,成本低、生产效率高、无需使用昂贵的装备等优点。

但其最大的问题是单液滴的生产困难,且工艺难度大。

铸造法是最为常见的快速凝固法之一,通过冷却速度极快的方式使得合金液体迅速凝固,从而形成非晶态材料。

这种方法具有工艺简单、设备易得、生产成本较低等优点。

但是其理论基础不够充分,缺乏定量描述的方法,存在一定的局限性。

2. 压轧法制备法压轧法是通过高压下将晶态合金材料压制成非晶态材料的制备方法。

由于高压下材料晶粒会受到破坏,从而形成非晶态材料。

这种方法具有操作简单、无需使用昂贵仪器等特点。

但其无法提高样品量产率,且仅适用于某些特定合金。

3. 溅射法制备法溅射法是通过在靶材表面轰击富含活性物质的粒子或离子束来使之析出,从而制备出非晶合金材料。

这种方法成本较高,生产时间漫长,但其制备的非晶材料净度高,密实度也高。

二、非晶合金材料的性能研究1. 力学性能研究非晶合金材料具有较高的强度、硬度和韧性等优异性能,这些优异性能使得其在机械工程领域有着广泛的应用。

许多研究表明,其力学性能与非晶合金的化学成分、析出时间、冷却速度、晶粒尺寸等相关因素密切相关。

2. 磁学性能研究非晶合金材料具有良好的磁性能,广泛应用于电力和电子工程等领域。

这种优异性能是由于非晶态本身的杂乱馆复杂的磁畴结构所导致的。

非晶态合金的一种制备方法

非晶态合金的一种制备方法

非晶态合金的一种制备方法非晶态合金是指具有非晶态结构的金属合金。

与晶体结构的金属合金相比,非晶态合金具有具有更高的硬度、强度和韧性,以及优异的阻尼特性和导电性。

非晶态合金制备方法主要有快速凝固法、化学合成法、机械合金化法以及溶液淬火法等。

以下将详细介绍这些制备方法。

1. 快速凝固法:快速凝固法是制备非晶态合金最常用的方法之一。

该方法在金属熔体状态下,通过快速冷却将熔体迅速凝固成非晶态结构的固体。

常用的快速凝固方法包括水淬法、微滴法以及薄带法等。

其中,水淬法是最常用的方法之一,其原理是将熔融金属注入到冷却剂中,迅速冷却凝固成非晶态合金。

这种方法可以制备出具有高度非晶态结构的合金,但是需要对冷却速度进行精确控制。

2. 化学合成法:化学合成法是通过化学反应来制备非晶态合金。

这种方法通常使用金属有机前体与其他化合物反应生成非晶态合金。

例如,通过气相沉积法,可以将金属有机前体在高温条件下分解成金属原子,然后与其他气体反应生成非晶态合金。

这种方法可以控制合金的化学组成和结构,可以制备出多种不同的非晶态合金。

3. 机械合金化法:机械合金化法是通过机械力的作用来制备非晶态合金。

这种方法通常使用高能球磨、挤压、冲击等机械力对金属粉末进行处理。

机械合金化的原理是通过机械力使金属粉末发生变形、断裂和重新结合,形成非晶态和纳米晶态结构的合金。

机械合金化法制备非晶态合金具有简单、可扩展性好的特点。

4. 溶液淬火法:溶液淬火法是将金属合金在高温状态下快速冷却至低温,制备非晶态合金。

在溶液淬火法中,液体金属合金先加热至高温状态,然后迅速浸入低温淬冷液体中,使其迅速冷却凝固为非晶态合金。

该方法需要对淬冷温度和淬冷液体进行精确控制,可以制备出高度非晶态结构的合金。

总的来说,制备非晶态合金的方法有快速凝固法、化学合成法、机械合金化法以及溶液淬火法等。

这些方法各有优缺点,选择合适的制备方法要根据具体的要求和实际情况来确定。

非晶态合金的制备方法的研究和应用将为制备高性能材料和开发新颖器件提供重要的技术支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大块非晶合金的几种常用的制备方法
由于受非晶形成能力的限制,长期以来非晶合金主要以粉末,细丝,薄带等低维材料的形式使用。

大块非晶合金材料的出现是非晶合金材料制备技术的巨大进步,大块非晶合金材料常用的具体的制备方法有以下几种:
1.氩弧炉熔炼法
将各组分混合后利用氩弧炉直接炼制非晶制品。

此法只能炼制尺寸较小的非晶样品,且非晶样品的形状一般为纽扣状,不易加工成型。

另外此法对合金体系的非晶形成能力要求高,否则样品或样品的心部不能形成非晶,样品和坩埚直接接触的底部有时未完全熔化,可成为结晶相与成的核心,也易出现结晶相。

氩弧炉的熔炼温度很高,经常用于炼制前的混料过程,即首先用氩弧炉炼制出易形成非晶的合金,然后用其他快冷方法得到大块非晶合金。

2.石英管水淬法
将大块非晶合金的配料密封在抽成真空的石英管中,加热后水淬冷却,获得大块非晶合金。

如果合金中有高熔点组成,可先在氩弧炉中混料制成合金后再封装到石英管中。

此法的优点是设备投资小,封装石英管的部门很容易找到,且易得到尺寸较大的圆柱形大块非晶棒。

缺点是每制备一次非晶样品均须封一次石英管,且淬火时石英管要被破坏。

石英管水淬法在非晶合金的科学研究中常用。

为提高淬火时的冷却能力,也可将试样封在不锈钢管中水淬,用这种方法也可制备出异型样品。

3.铜模铸造法
此法是在加热装置的下方设置一水冷铜模,非晶合金组分熔化后靠吸铸或其他方法进入水冷铜模冷却形成非晶。

此法虽然要求有专门的设备,但由于冷速较高能制备较大尺寸的非晶样品,而且可用不同的模具制备出不同形状的非晶样品,也可制备形状复杂的非晶样品。

铜模铸造法,尤其是带有吸铸装置的,由于有这些优点而被广泛应用。

4.定向区域熔炼法
定向区域熔炼法的冷却速度可由固液界面的移动速度和炉内的温度梯度的乘积来确定,这种方法要求用于制备非晶合金的原始材料在成分上是均匀的,且非晶形成能力较强。

能够用这种方法制备大块非晶合金意味着可以用连续的方法制备出大尺寸异形的非晶样品。

此外,高压技术也可应用于大块非晶合金的制备。

压力是影响合金状态的一个重要的热力学参数,高压下有些合金的凝固点降低,可通过快速卸载的方法使合金获得大的过冷度而产生非晶。

中国机床工具工业协会磨料磨具分会主办——中国磨料磨具网()。

相关文档
最新文档