逻辑学推理规则汇总

合集下载

判断推理逻辑推理常考知识点

判断推理逻辑推理常考知识点

判断推理逻辑推理常考知识点一、逻辑推理基本概念。

1. 命题。

- 定义:可以判断真假的陈述句。

例如“今天是晴天”就是一个命题。

- 简单命题:不能再分解为更简单命题的命题。

像“小明是学生”。

- 复合命题:由简单命题通过逻辑联结词组合而成的命题。

如“小明是学生并且小红是老师”,其中“并且”就是逻辑联结词。

2. 逻辑联结词。

- 且(∧):表示两个命题同时成立。

例如,命题p:小明是男生,命题q:小明是学生,那么p∧q表示小明是男生并且是学生。

当p和q都为真时,p∧q才为真。

- 或(∨):表示两个命题至少有一个成立。

比如命题p:今天是周一,命题q:今天是周二,p∨q表示今天是周一或者是周二。

只要p、q中有一个为真,p∨q就为真。

- 非(¬):对一个命题进行否定。

若命题p:小李是好人,那么¬p:小李不是好人。

p为真时,¬p为假;p为假时,¬p为真。

3. 充分条件与必要条件。

- 充分条件:如果有事物情况A,则必然有事物情况B;如果没有事物情况A,但未必没有事物情况B,A就是B的充分而不必要的条件,简称充分条件。

例如,如果天下雨(A),那么地面湿(B),天下雨是地面湿的充分条件。

- 必要条件:如果没有事物情况A,则必然没有事物情况B;如果有事物情况A而未必有事物情况B,A就是B的必要而不充分的条件,简称必要条件。

只有年满18周岁(A),才能有选举权(B),年满18周岁是有选举权的必要条件。

1. 三段论推理。

- 定义:由两个包含着一个共同项的性质判断作前提,得出一个新的性质判断为结论的演绎推理。

例如:所有的金属都能导电(大前提),铜是金属(小前提),所以铜能导电(结论)。

- 规则:- 在一个三段论中,有且只能有三个不同的项。

- 中项在前提中至少要周延一次。

- 在前提中不周延的项,在结论中也不得周延。

- 如果前提中有一个是否定的,那么结论也是否定的;如果结论是否定的,那么前提中必有一个是否定的。

逻辑推理理论(简明汇总)

逻辑推理理论(简明汇总)

逻辑常识(逻辑学习总体把握)一、逻辑推理是指由一个或几个已知的判断推导出另外一个新的判断的思维形式。

一切推理都必须由前提和结论两部分组成。

一般来说,作为推理依据的已知判断称为前提,所推导出的新的判断则称为结论。

推理大体分为直接推理和间接推理。

(一)直接推理只有一个前提的推理叫直接推理。

例如:有的高三学生是共产党员,所以有的共产党员是高三学生。

(二)间接推理一般有两个或两个以上前提的推理就是间接推理。

例如:贪赃枉法的人必会受到惩罚,你们一贯贪赃枉法,所以今天你们终于受到法律的制裁和人民的惩罚。

一般说,间接推理又可以分为演绎推理、归纳推理和类比推理等三种形式。

(1)演绎推理所谓演绎推理,是指从一般性的前提得出了特殊性的结论的推理。

例如:贪赃枉法的人是必定会受到惩罚的,你们一贯贪赃枉法,所以,你们今天是必定要受到法律的制裁、人民的惩罚的。

这里,“贪赃枉法的人是必定会受到惩罚的”是一般性前提,“你们一贯贪赃枉法”是特殊性前提。

根据这两个前提推出”你们今天是必定要受到法律的制裁和人民的惩罚的”这个特殊性的结论。

演绎推理可分为三段论、假言推理和选言推理。

a三段论b假言推理c选言推理(2)归纳推理归纳推理是从个别到一般,即从特殊性的前提推出普遍的一般的结论的一种推理。

一般情况下,归纳推理可分为完全归纳推理、简单枚举归纳推理。

a完全归纳推理也叫完全归纳法,是指根据某一类事物中的每一个别事物都具有某种性质,推出该类事物普遍具有这种性质的结论。

正确运用完全归纳推理,要求所列举的前提必须完全,不然推导出的结论会产生错误。

例如:在奴隶社会里文学艺术有阶级性;在封建社会里文学艺术有阶级性;在资本主义社会里文学艺术有阶级性;在社会主义社会里文学艺术有阶级性;所以,在阶级社会里,文学艺术是有阶级性的。

(注:奴隶社会、封建社会、资本主义社会、社会主义社会这四种社会形态构成了整个阶级社会。

)b简单枚举归纳推理是根据同一类事物中部分事物都具有某种性质,从而推出该类事物普遍具有这种性质的结论。

逻辑推理知识点归纳

逻辑推理知识点归纳

逻辑推理知识点归纳逻辑推理是一种重要的思维方式,它帮助我们更准确地理解和分析问题,从而得出合理的结论。

在日常生活和学业中,逻辑推理都扮演着重要的角色。

本文将对逻辑推理的知识点进行归纳总结,以帮助读者更好地掌握和运用逻辑推理。

一、命题逻辑命题逻辑是逻辑推理中的基础,它研究命题之间的关系和推理规则。

常见的逻辑关系有合取、析取、否定、蕴含等。

1.合取:表示多个命题同时为真,用符号“∧”表示。

例如,“A∧B”表示命题A和命题B同时成立。

2.析取:表示多个命题中至少有一个为真,用符号“∨”表示。

例如,“A∨B”表示命题A和命题B中至少有一个为真。

3.否定:表示一个命题的相反意义,用符号“¬”表示。

例如,“¬A”表示命题A的否定。

4.蕴含:表示一个命题的推理关系,用符号“→”表示。

例如,“A→B”表示如果命题A成立,则命题B也成立。

二、推理方法推理是由一个或多个前提出发,通过逻辑关系得出结论的过程。

推理方法有直接推理、间接推理、假设推理、演绎推理等。

1.直接推理:通过已知的事实或条件直接得出结论。

例如,“如果A>B,而B>C,那么可以得出A>C”。

2.间接推理:通过多个已知事实或条件的中间步骤得出结论。

例如,“已知A>B,B>C,可以通过推理得出A>C”。

3.假设推理:通过对问题进行假设,然后根据假设推理得出结论。

例如,“假设A成立,那么可以得出B成立,再根据B的成立,可以得出C成立”。

4.演绎推理:基于一般规律或普遍原理,从已知的特殊情况推导出结论。

例如,“所有的猫都会喵喵叫,Tom是一只猫,所以Tom会喵喵叫”。

三、逻辑谬误逻辑谬误是在推理过程中出现的错误,它会导致结论的不准确或无效。

常见的逻辑谬误包括偷换概念、诉诸个人攻击、无中生有等。

1.偷换概念:在推理过程中,将问题的核心概念或定义替换为其他相关概念,从而导致结论的不准确。

例如,“要热爱祖国就要支持政府的所有政策”。

逻辑推理(精华)

逻辑推理(精华)

逻辑推理规律:一、对当关系推理对当词:“所有......,有的(某个)......”所有P(A)---------------(E)所有P不- -- -- -- -有的P (I)---------------(O)有的P不规律:(1)全肯和特否,全否和特肯之间矛盾互推(2)部分不推全(3)特肯不推特否,特否不推特肯(例如:“有的人不及格”,不能推出“有的人及格”)即:(1)A-----E:不能同真,可以同假(2)I-----O:可以同真,不能同假(3)A-----O、E-----I,不能同真,不能同假(4)A-----I、E-----O,肯定前件,则肯定后件;否定后件,则否定前件;否前肯后,不能确定二、假言关系推理1、充分条件关系假言推理:如果P,则Q规律:肯前肯后,否后否前,肯后或者否前则不确定。

2、充分条件关系假言推理:只有P,才Q规律:否前否后,肯后肯前,否后或者肯前则不确定。

3、充要条件关系假言推理:三、负推理1、简单负判断:规律:(1)否定全程得特称,否定特称得全称;(2)否定必然得可能,否定可能得必然。

即:不必然p========可能不p (并非必然P等值于:可能非P)不必然非p======可能不非p====可能p (并非必然非P等值于:可能P 不可能p========必然不p (必然非p)(并非可能P等值于:必然非P) 不可能非p======必然不非p====必然p (并非可能非P等值于:必然P)不所有p========有的p不不所有p不======有的p不不====有的p不有的p========所有p不不有的p不======所有p不不====所有p2、负复合判断:(1)负联言判断:规律:“并非(P且q)”===== “非P或者非q”(2)负选言判断:规律:a\相容选言:“并非(P或者q)”===== “非P并且非q”b\不相容选言:“并非要么p要么q” ===== “P并且q,或者非p,并且非q”(3)负假言判断:a\充分条件:并非(如果p,那么q)===== “P并且非q”b\必要条件:并非(只有P,才q)===== P且q”c\充要条件:“并非(当且仅当P,才q)”=====(P并且非q)或者(非p并且q)四、模态推理:1、模态词:必然(一定、必定)、可能(或许、也许)2、模态命题及其相互关系:3、规律:(1)“必然P”和“可能不P”矛盾互推;(2)“必然不P”和“可能P”矛盾互推;(3)“可能P”不推“必然P”;(4)“可能不P”不推“可能P”。

推理必背知识点总结

推理必背知识点总结

推理必背知识点总结一、命题推理1. 命题和命题演算命题是陈述语言的有真假性的陈述。

命题演算是对命题进行逻辑演算的方法。

常见的命题演算方法有合取、析取、条件命题和双条件命题。

2. 命题的连接词命题的连接词是逻辑运算符号,包括合取命题的∧、析取命题的∨、条件命题的→和双条件命题的↔。

3. 命题的混合连接当多个命题混合连接在一起时,需要注意连接词的优先级和括号的使用。

例如:(p∧q)∨r,先计算括号内的命题,再计算整个命题的值。

4. 命题的真值表真值表是对于给定的若干命题,列出所有可能情况下的真值的表格。

通过真值表可以判断复合命题在各种情况下的真假性。

5. 命题的推理基于命题演算的推理方法包括:简单推理、析取范式、合取范式、命题条件和德摩根定律等。

通过这些方法,可以得出结论,解决问题。

二、谬误推理1. 谬误的概念谬误是指在推理过程中出现的错误。

谬误分为形式谬误和实质谬误。

2. 形式谬误形式谬误是推理的结构不当或不完整,从而导致结论无法成立的错误。

如:偷换概念、假设不当、悖论等。

3. 实质谬误实质谬误是推断的前提不实或逻辑错误,导致结论不成立的错误。

如:抽象谬误、依据谬误、偷换概念等。

4. 谬误的检验和纠正检验谬误要对推理过程进行批判性思考,检查前提是否成立,结论是否合理。

纠正谬误需要重新分析问题,发现并修正推理过程中的逻辑错误。

三、数理逻辑1. 命题逻辑和谓词逻辑命题逻辑是处理命题间关系的逻辑。

谓词逻辑是对命题中的元素进行描述和关系的逻辑。

2. 命题逻辑的基本命题形式基本命题形式包括命题的合取、析取、条件命题和双条件命题。

3. 范式和析取范式范式是用合取命题和析取命题来表示一个复合的命题。

析取范式是用析取式来表示一个命题。

4. 命题逻辑的推理通过范式和析取范式,可以进行复杂命题的推理和逻辑演算。

5. 谓词逻辑的概念谓词逻辑是一种用来描述元素和关系的逻辑,主要包括:函项、量词、命题变元、量化和谓词符号等。

判断推理逻辑判断推理口诀

判断推理逻辑判断推理口诀

判断推理逻辑判断推理口诀
一、判断推理逻辑判断推理口诀
嘿,宝子们!今天咱们来唠唠判断推理逻辑判断推理口诀呀。

1. 肯前必肯后,否后必否前
这就像是一个规则,要是前面的条件成立,那后面的结果肯定就会出现。

反过来呢,如果后面的结果不成立,那前面的条件肯定也不成立啦。

比如说,如果是下雨(前)就会地湿(后),要是地没湿,那就肯定没下雨。

2. 否前肯后推可能
要是前面的条件不成立,或者后面的结果成立了,那这个时候呀,只能说有这种可能性,不能确定一定是怎么回事。

就好比说,不下雨的时候,地有可能湿(因为可能有人泼水之类的),地湿的时候,也不一定就是下雨导致的。

3. 两个所有至少一假
如果有两个都是说“所有”的情况,那这里面至少有一个是假的哦。

比如说,所有的苹果都是红的,所有的苹果都是绿的,这俩肯定有一个是错的呀。

4. 两个有的至少一真
要是出现两个都是“有的”的说法,那这里面至少有一个是真
的呢。

像有的花是红色的,有的花是白色的,这两个说法里至少有一个是真的。

5. 所有可以推有的
要是所有的东西都有某个特征,那肯定有的东西就有这个特征啦。

就像所有的鸟都会飞,那当然有的鸟会飞咯。

6. 必然推可能
如果一件事是必然会发生的,那它肯定是有可能发生的啦。

比如说,太阳必然从东方升起,那太阳肯定是有可能从东方升起的呀。

宝子们,把这些口诀记住,做判断推理的时候就会轻松不少呢!。

逻辑推理公式整理

逻辑推理公式整理逻辑推理是一种基于事实和前提的推导过程,通过推理规则和逻辑公式来得出新的结论。

在逻辑推理中,公式扮演着重要的角色,可以帮助我们理解和描述逻辑关系。

以下是一些常见的逻辑推理公式。

1.求取命题的否定:公式:¬P说明:这个公式表示命题P的否定,即P不成立。

2.条件推理:公式:P→Q说明:这个公式表示如果P成立,则Q也成立。

这是一种常见的逻辑推理形式。

3.充分必要条件:公式:P↔Q说明:这个公式表示P与Q是充分必要条件,即当P成立时Q成立,且当Q成立时P也成立。

4.假言推理:公式:P,Q/P→Q说明:这个公式表示如果同时有P和Q成立,则可以得出P推出Q。

5.排中律:公式:P∨¬P说明:这个公式表示一个命题P或它的否定¬P一定成立。

这是一种基本的逻辑定律。

6.矛盾律:公式:P∧¬P说明:这个公式表示一个命题P与它的否定¬P是矛盾的,不可能同时成立。

7.分配律:公式:P∧(Q∨R)≡(P∧Q)∨(P∧R)说明:这个公式表示逻辑中的分配律,可以帮助我们简化复杂命题的形式。

8.合取范式:公式:(P∨Q)∧(¬P∨Q)∨(P∨¬Q)∧(¬P∨¬Q)说明:这个公式表示合取范式,可以将命题写成一组合取式的多个命题的析取。

9.析取范式:公式:(P∧Q)∨(¬P∧Q)∨(P∧¬Q)∨(¬P∧¬Q)说明:这个公式表示析取范式,可以将命题写成一组析取式的多个命题的合取。

10.假言三段论:公式:P→Q,Q→R/P→R说明:这个公式表示如果P推出Q,且Q推出R,则可以得出P推出R。

这些是一些常见的逻辑推理公式,可以应用于不同的逻辑推理问题中。

逻辑公式的运用能够帮助我们进行准确有效的推理和论证,提高逻辑思维能力。

在实际应用中,还有更多的逻辑推理公式可以用于解决复杂的问题。

命题逻辑的推理规则和证明方法

命题逻辑的推理规则和证明方法命题逻辑是一种对简单命题和命题之间关系的形式化推理系统,广泛应用于数学、计算机科学和哲学等领域。

在命题逻辑中,推理规则和证明方法被用来推导出真实或假设的命题之间的关系。

本文将介绍命题逻辑的一些常见推理规则和证明方法。

1. 推理规则命题逻辑的推理规则是用来推导命题之间关系的规则。

以下是一些常见的推理规则:(1)析取引入规则(Disjunction Introduction Rule):如果命题P 成立,则P或Q成立。

表示为P -> (P ∨ Q)。

(2)析取消去规则(Disjunction Elimination Rule):如果P或Q 成立,且根据P和Q均能推导出命题R,则R成立。

表示为((P ∨ Q), (P -> R), (Q -> R)) -> R。

(3)合取引入规则(Conjunction Introduction Rule):如果P和Q 成立,则P且Q成立。

表示为(P, Q) -> (P ∧ Q)。

(4)合取消去规则(Conjunction Elimination Rule):如果P且Q 成立,则P和Q均成立。

表示为(P ∧ Q) -> (P, Q)。

(5)蕴含引入规则(Implication Introduction Rule):如果根据P 能推导出Q,则P蕴含Q成立。

表示为((P -> Q) -> Q) -> (P -> Q)。

(6)蕴含消去规则(Implication Elimination Rule):如果P和P蕴含Q成立,则Q成立。

表示为((P, (P -> Q)) -> Q)。

2. 证明方法证明是在命题逻辑中用于证明命题之间关系的方法。

以下是一些常见的证明方法:(1)直接证明法:假设前提命题成立,通过适当的推理规则证明出结论命题成立。

这种方法常用于证明蕴含关系。

(2)间接证明法(反证法):假设结论命题不成立,通过适当的推理规则推导出与已知事实相矛盾的命题,从而得出结论命题成立的结论。

逻辑基本规则

逻辑基本规则一、同一律同一律是指在同一思维过程中,所使用的概念必须有确定的内容,即同一思维过程中使用的概念的含义必须始终保持一致。

同一律要求人们在同一思维过程中,必须保持概念的一致性和确定性,不能随意改变概念的含义。

二、矛盾律矛盾律是指在同一思维过程中,两个相互矛盾的命题不能同时为真。

也就是说,在同一思维过程中,不能同时存在两个相互矛盾的命题,否则会导致逻辑上的矛盾。

矛盾律要求人们在同一思维过程中,必须保持逻辑的一致性,不能自相矛盾。

三、排中律排中律是指在同一思维过程中,两个相互矛盾的命题必然有一个是真的,一个是假的。

也就是说,对于任何命题,如果它与另一命题互为矛盾,那么它要么是真的,要么是假的,没有第三种可能性。

排中律要求人们在同一思维过程中,必须明确表达命题的真假关系,不能含糊其辞。

四、推理规则推理规则是指在推理过程中所必须遵循的逻辑规则。

推理规则包括演绎推理、归纳推理、类比推理等。

演绎推理是从一般到特殊的推理过程,归纳推理是从特殊到一般的推理过程,类比推理则是根据两个或多个事物的相似性进行推理的过程。

推理规则要求人们在推理过程中必须保持逻辑的严密性和准确性。

五、集合论规则集合论规则是集合论中的基本规则,包括集合的表示、集合的运算、集合的性质等。

集合论规则在数学、逻辑等领域中有着广泛的应用,是研究集合、关系、函数等概念的重要工具。

六、概念规则概念规则是指在使用概念时所必须遵循的逻辑规则。

概念规则包括概念的明确性、概念的限制和概括等。

概念的明确性是指在使用概念时必须明确其含义;概念的限制和概括是指在使用概念时必须遵循其定义和使用范围。

概念规则要求人们在运用概念时必须保持逻辑的严密性和准确性。

七、归纳逻辑规则归纳逻辑规则是指在归纳推理中所必须遵循的逻辑规则。

归纳逻辑规则包括简单枚举归纳、完全归纳、科学归纳等。

简单枚举归纳是根据一些具体事例直接得出的结论;完全归纳是根据某一类事物的全部成员的性质得出结论的推理;科学归纳则是根据某一类事物中部分成员与另一类事物的某种属性有必然联系而推出该类事物所有成员都具有某种属性的推理。

形式逻辑推理规则

形式逻辑推理规则
以下是 7 条形式逻辑推理规则:
1. 同一律呀,简单来说就是在同一个推理过程中,每个概念和判断都要保持自身的同一性。

比如说“小猫咪就是小猫咪,不能一会儿说小猫咪是小狗呀!”
2. 矛盾律呢,就是两个互相矛盾的判断不能同时为真。

就好像说“今天不能既是晴天又是雨天呀,这多矛盾!”
3. 排中律哦,两个互相矛盾的判断必定有一个是真的。

好比“这个人要么是好人,要么不是好人,没有中间情况呀!”
4. 充足理由律呀,任何判断都要有充足的理由来支持。

像“他说他病了,那得有真的不舒服的表现或者医生的诊断才可信呀!”
5. 三段论,“所有的猫都爱睡觉,这只动物是猫,所以这只动物也爱睡觉。

是不是很清楚呀!”
6. 演绎推理,从一般到特殊呀,比如“大家都知道人要吃饭,那具体的张三当然也要吃饭啦!”
7. 归纳推理,可以从个别事例中归纳出一般结论呢。

就像“这只鸟会飞,那只鸟会飞,好多鸟都会飞,那可以归纳出鸟一般都会飞呀!”
总之呢,形式逻辑推理规则就像是我们思考的指南针,帮助我们更准确、更有条理地理解和判断事物哟!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

形式化方法:形式化方法是指用一套特制的符号,去表示词项、命题、推理,从而对词项、命题、推理的形式的研究,转化为对形式符号表达式系统的研究的方法。

形式化方法的作用:主要是能克服自然语言的歧义性。

形式化方法的内容:
1、把自然语言符号化,抽象和概括为形式语言。

形式语言由两部分组成:初始符号和形成规则。

2、对直观意义的推理关系进行语形和语义的双重刻画。

3、证明对推理关系的双重刻画的重合性。

由∧的真值表,可得出∧运算的规律:
(1)∧的交换律:p∧q⇔q∧p
(2)∧的结合律:p∧(q∧r)⇔(p∧q)∧r
(3)∧的重言(幂等)律:p∧p⇔p
合取引入规则(∧+):从A和B可推出A∧B。

图示如下:
A
B
——
A∧B
合取消去规则(∧-):从A∧B可推出A,从A∧B可推出B。

图示如下:
A∧B A∧B
————
B A
∨的运算规律
(1)∨的交换律:p∨q⇔ q∨p,
(2)∨的结合律:p∨(q∨r) ⇔ (p∨q)∨r,
(3)∨的重言律:p∨p⇔ p。

∧和∨的混合运算规律
(1) ∧对∨的分配律:
p∧(q∨r) ⇔ (p∧q)∨(p∧r)。

(2) ∨对∧的分配律:
p∨(q∧r) ⇔ (p∨q)∧(p∨r)。

(3)吸收律:
p∧(p∨q) ⇔ p;
p∨(p∧q) ⇔ p。

(4)德·摩根律:
¬(p∧q) ⇔ ¬p∨¬q;
¬(p∨q) ⇔ ¬p∧¬q。

析取消去规则(∨-)
从A∨B和¬A可推出B;从A∨B和¬B可推出A。

A∨B A∨B
¬B ¬A
————
A B
析取引入规则(记为∨+):
析取引入规则(记为∨+):从A可推出A∨B;从B可推出A∨B。

A B
————
A∨B A∨B
(1)蕴涵消去规则,也称分离规则(略缩为M.P.)或肯定前件式(记为→_ ) A→B
A
——
B
(2)否定后件式(略缩为M.T.)
A→B
⌝ B
——
⌝ A
(1)否定前件规则:从A←B和⌝A可推出⌝B
A ←B
⌝A
——
⌝B
(2)肯定后件规则:从A←B和B可推出A
图示:
A ←B
B
——
A
(1)等值引入规则(记为↔+):从A→B和B→A可推出A↔B。

图示:
A→B
B→A
——
A↔B
2)等值消去规则(记为↔-):从A↔B可推出A→B;
从A↔B可推出B→A。

图示:
A↔B
——
A→B
图示
A↔B
——
B→A。

相关文档
最新文档