动车组制动系统的组成与功能
CR400AF(BF)动车组制动系统

同时不足时,通过硬线输出信号,断开紧急制动 UB环路 制动手柄操纵、客室及乘务员室乘客紧急制动设 施触发、列车非静止条件(速度>5km/h)下停 放制动意外施加、司机警惕装置触发紧急制动请 求报警信号时触动,失电 作用模式
的3、4轴、3车和6车的每根轴上,呈对角 分布 停放制动的施加、缓解由贯穿全列车的硬 线控制
停放制动装置
停放制动 缸
空气制动 缸
保持制动
动车组停止时自动施加,起动后自动缓解。 可使定员状态的动车组在一定坡道上静止及
起动时不溜逸,相当于4 级常用制动 司机室内设置自复位形式的保持制动缓解按
故障导向安全
设有空气制动、计算机控制的电空制动和 计算机网络等多级制动控制方式 ,以便在 制动系统发生故障时能向安全方向动作
制动冲动小
制动指令传输的同步性高,各车的制动 一致性好
制动系统采用微机控制,实现制动过程 的优化,在动车组平均减速度提高的同 时,限制减速度的变化率
制动系统的性能
紧急制动距离
采用电、空联合制动模式,电制动优先, 装有防滑器
操纵控制采用电控、直通或微机控制电气 指令式等灵敏而迅速的系统
制动力计算和分配的准确性高
基于列车WTB+MVB的网络架构,实现列 车级制动力管理和分配
制动作用采用计算机控制,可为保证列车 正点运行精确提供所需制动力;制动系统 对电制动和空气制动的分配合理,使不同 的制动方式达到最佳的组合效果
撒砂装置 踏面清扫装置
-
-
1
1
1
-
-
-
1
1
1
-
4
4
动车组制动系统

制动盘材料
铁系材料
复合材料
C/C纤维复合材料( C母材+C纤维 )
轻 耐热裂 高速性能好 常用制动磨损大 摩擦系数受温度影响
铝合金基复合材料(铝合金母材+陶瓷粒子)
轻 耐磨 耐疲劳
闸片材料
合成材料 烧结材料 C/C复合材料 陶瓷材料
摩擦系数的稳定性 耐磨性 导热性能(高温强度) 对盘的作用 经济性
再生制动力 22,5-29 kV 7 辆编组
50
100
150
200
速度 [公里/小时]
速度(km/h)
电制动的控制及有效利用
定子磁场转速
N 120 f / P
f—电源频率
P—感应电机的级数
电制动力(制动转矩)
T k(U / finv)2 fs
T—制动转矩 k—电机常数 U—逆变器输出电压 finv—逆变器输出频率 fs—转差频率
动车组制动系统
第一章 动车组制动系统概述
基本概念 制动对动车组的意义 制动方式分类 制动作用的种类 动车组制动系统的组成和特
点
第一节 制动的相关概念
基本概念 制动对动车组的意义 制动方式的分类 制动作用的种类
基本概念
制动 缓解 制动装置
制动机 基础制动装置
制动性能的评价指标
制动距离 制动减速度
制动对动车组的意义
安全行车的要求 提速的需要
甲站
速度
B
A’
A
乙站
0 起动
运行
A’’
制动
距离
制动方式的分类
按动能的转移方式
盘形制动、电阻制动、再生制动、磁轨制动、 轨道涡流制动、旋转涡流制动、翼板制动…
动车组制动系统检修课件:制动系统组成认知

Mc1、 Mc2——带司机室动车 Tp1、 Tp2——带受电弓拖车
M1、 M2、 M3——动车
Tb——带酒吧区拖车
黑色轮——主动轮
白色轮——从动轮
3
电制动(再生)
CRH1型 动车组 的制动 系统
空气制动系统 防滑装置
二、制动系统组成
受电弓、牵引变压器、牵引变流 器、牵引电机。
直通式电空制动、基础制动装 置。
5
本地 列车 控制 单元 TBU1
三、制动系统部件配置
每辆动车有三 个带停放功能
制动缸
拖车无停 放功能制
动缸
本地 列车 控制 单元 TBU2
CCU—中央控制单元 TP—回送控制板 MVB—多车总线
BM—制动模块 BCU—制动控制单元 PBP—停放制动控制板
BP—制动控制板 GW—网关
WTB—列车总线
6
转向架制动设备的位置
13
三、制动系统部件配置
57
2
4
68
PB—带停放制动功能制动缸,位于转向架的5、6、7位,3个。
SB—制动缸,每辆动车5个、每辆拖车12个
WSP—速度传感器,防滑装置。
ቤተ መጻሕፍቲ ባይዱ
M—牵引电机
7
三、制动系统部件配置
PB—带停放制动功能制动缸,位于转向架的5、6、7位,3个。 8
制动指令
再生制动防滑、空气制动防滑。
制动控制系统
制动信号发生、传输,微机制动 控制单元, 空气制动控制单元。
4
CRH1型动车组的制动系统特点
二、制动系统组成
微机控制; 电气指令式制动; 复合制动模式; 电制动优先,电制动不足时,由空气制动来补充; 低速时(2km/h),加入空气制动; 紧急制动时主要采用空气制动;
动车组制动系统的组成与功能

动车组制动系统的组成和功能高速列车的制动能量和速度的平方成正比,传统的纯空气制动已不能满足需要,因其制动能力由于以下因素而受到影响:●制动热容量和机械制动部件磨耗寿命的限制●摩擦材料的性能对粘着利用的局限性,以及对旅客乘坐舒适性的不利影响●纯空气制动作用情况下,紧急制动距离不可避免的延长因此,高速列车必须采用能提供强大制动力并能更好利用粘着的复合制动系统;制动时电制动和空气制动联合作用,且以电制动为主。
复合制动系统通常由电制动系统、空气制动系统、防滑装置、制动控制系统等组成,下面就这几部分分别加以介绍:电制动空气制动防滑装置制动控制系统电制动电制动是将列车的动能转变为电能后,再变成热能消耗掉或反馈回电网的制动方式,使用在200公里动车组上的主要有电阻制动和再生制动两种。
电阻制动和再生制动都是让列车的动轮带动动力传动装置(牵引电动机),让其产生逆作用,消耗或回收列车动能,习惯上也称为动力制动。
下面分别就这两种制动方式加以介绍:一、电阻制动(一)系统构成(二)工作原理司机室或ATC装置发出制动指令后,制动控制装置首先对列车运行速度进行判断。
当速度大于25km/h时,制动主回路构成(PB转换器转为制动位置),然后制动接触器动作(B11闭合、P11打开、P13打开),随后依次是励磁削弱接触器打开、预励磁接触器投入,最后,断路器投入(L1闭合)。
此时,由电枢绕组、励磁绕组和主电阻器构成电阻制动主回路,并使电流向增加原牵引时剩磁的方向流动,再由主电阻器最终将电枢转动发出的电能变为热能消散掉。
二、再生制动(一)系统构成(二)工作原理和电阻制动相比,再生制动的主回路中没有了主电阻器。
制动时回路中各部件的动作和电阻制动时一样,只是电枢转动产生的电能要回馈到电网。
电制动具有摩擦部件少(仅有轴承)、维修工作量少、可以反复使用等优点,担负着动车组制动减速时的大部分能量。
但由于增加了控制装置和制动电阻等设备,使重量增加;而且,如果条件不具备就不能产生制动作用(即电制动失效)。
动车组制动系统

再生制动技术: 将制动过程中的 动能转化为电能 并反馈给电网, 减少能源浪费。
轻量化制动技术: 采用新型材料和 设计,降低动车 组重量,提高制 动性能和运行效 率。
节能环保材料应 用:使用环保、 低能耗的材料, 降低动车组运行 过程中的能源消 耗和排放。
智能化制动系统: 通过先进的控制 算法和传感器技 术,实现精确制 动,减少不必要 的能源消耗。
记录与报告:对 检查结果进行详 细记录,并对发 现的问题及时处 理和报告
定期检查:确保 制动系统各部件 正常工作
清洁保养:保持 制动系统清洁, 防止污垢、杂物 影响制动效果
更换磨损件:及 时更换制动系统 中磨损严重的部 件,保证制动性 能
应急处理:在制 动系统出现故障 时,采取应急措 施,确保列车安 全
汇报人:XX
制动系统关键部件采用冗余设计,确保单一故障不会导致系统失效。 制动控制单元采用高可靠性软件和硬件,具备自诊断和远程监控功能。
制动系统经过严格的环境适应性测试,确保在不同气候和地理条件下稳定运行。
制动系统具备多重安全保障措施,如防滑控制、制动控制和空压机控制等。
制动系统是动车组安全运行的关键 制动系统具有高可靠性和稳定性 制动系统采用先进的控制技术 制动系统经过严格的安全认证和测试
制动系统故障的分 类与原因分析
制动系统故障的诊 断方法与流程
制动系统故障的预 防措施与保养建议
制动系统故障应急 处理措施与注意事 项
制动系统智能化控制是未来发 展的趋势
智能化控制可以提高制动系统 的安全性和可靠性
智能化控制可以实现制动系统 的远程监控和维护
智能化控制可以降低制动系统 的能耗和减少对环境的影响
定义:制动缸是动车组制动系统的重要组成部分,用于将制动指令转化为制动动作。 工作原理:制动缸通过液压原理,将制动指令传递到各个车轮,实现制动减速。 组成:制动缸由缸体、活塞、弹簧等部件组成,具有较高的可靠性和耐久性。 特点:制动缸具有体积小、重量轻、响应速度快等特点,能够满足动车组高速行驶的要求。
动车组制动系统的组成与功能

动车组制动系统的组成与功能一、刹车盘和刹车鞋:刹车盘是动车组制动系统的核心部件之一,位于车轮内侧的轮盖上。
在制动时,通过刹车盘与车轮的摩擦产生制动力,减小车轮转动的力矩,从而实现制动效果。
刹车盘一般采用合金刚铁制成,具有较高的热传导性能和耐磨性。
刹车鞋则是刹车盘提供制动力的关键部件,由摩擦片和压紧机构组成。
摩擦片与刹车盘接触,通过摩擦产生制动力。
二、气压控制装置:气压控制装置是动车组制动系统中的重要组成部分,负责控制刹车盘和刹车鞋的运行。
气压控制装置包括压缩空气供应系统、主气管、分枝管、缸组和排气装置等。
压缩空气供应系统通过空气压缩机将外界空气压缩后供应给系统中的气动元件,主气管将压缩空气传送到各个刹车缸组,分枝管将主气管分支到各个车厢。
缸组是气压控制装置中最主要的部件,由缸体、柱塞和弹簧等组成,通过气压的控制使刹车盘和刹车鞋实现制动和松开。
三、防滞制动系统:防滞制动系统是保证列车在紧急制动时不发生轮轨阻滞的重要系统。
它可以通过调整刹车盘与车轮的接触力,使列车在刹车时保持最大的牵引力。
防滞制动系统中的主要部件包括AAR控制器、电动刹车阀和轮轨力传感器。
AAR控制器根据轮轨的实时情况对电动刹车阀的开启程度进行调整,使刹车力得到最佳的控制。
轮轨力传感器通过检测轮轨之间的相对滑动速度来反馈给AAR控制器。
四、辅助刹车系统:辅助刹车系统包括电气制动和机械制动两部分。
电气制动是通过电子系统对电动机进行控制,将电能转化为制动力的过程。
机械制动是指通过手动操作机械装置,使刹车盘与车轮摩擦产生制动力。
辅助刹车系统主要用于降低列车速度和协助主制动系统制动。
1.制动功能:动车组制动系统可以根据列车运行状态和运营需求实现不同级别的制动。
通过控制刹车盘和刹车鞋,有效减速列车,并实现平稳停车。
2.安全保护功能:制动系统可以保护列车免受超速、滑轮轨、限流等异常情况的影响,保障列车和乘客的安全。
3.能量回收功能:动车组制动系统利用列车制动过程中释放出来的能量,通过电能回收装置将其转化为电能,再次供应给列车,以提高能源利用率。
动车车辆制动系统原理及性能分析

动车车辆制动系统原理及性能分析动车车辆制动系统是保证列车行车安全的关键部件之一。
它通过控制车辆的制动力和制动距离,确保列车能够在规定的时间内停下来或减速到安全的行驶速度。
本文将详细介绍动车车辆制动系统的原理及性能分析。
一、动车车辆制动系统的原理动车车辆制动系统主要由制动装置、制动控制设备和制动传动装置组成。
制动装置包括制动盘、制动鼓、滑轮等,制动控制设备包括制动阀、主管压力保持阀等,制动传动装置包括制动管路、制动杠杆等。
1. 制动装置制动装置是实现制动力的传递和作用的部件,主要包括制动盘、制动鼓和滑轮。
当列车需要制动时,通过控制制动杆杆的位置,使制动齿轮靠近制动盘或制动鼓,利用摩擦力的作用产生制动力。
2. 制动控制设备制动控制设备主要由制动阀和主管压力保持阀组成。
制动阀的作用是调节制动力的大小和作用时间,控制列车的制动或减速。
主管压力保持阀的作用是保持制动气压的稳定,确保制动力的均匀输出。
3. 制动传动装置制动传动装置将制动力从制动装置传递到车轮上,主要包括制动管路和制动杠杆。
制动管路将制动力传递到制动装置上,制动杠杆通过连接制动装置和车轮实现制动力的传递。
二、动车车辆制动系统的性能分析动车车辆制动系统的性能直接影响列车的制动效果和运行安全性。
以下将从制动力、制动距离和制动稳定性三个方面对动车车辆制动系统的性能进行分析。
1. 制动力制动力是制动系统产生的力,直接影响列车的制动效果。
制动力的大小取决于制动装置的设计和使用条件。
制动力需要能够快速调整和准确控制,以适应不同的行车情况和制动需求。
2. 制动距离制动距离是列车从施加制动开始到完全停下所需的距离。
制动距离的大小受到列车速度、制动力和制动装置的效果等因素的影响。
合理控制制动距离,可以确保列车在规定的时间内停下来,避免碰撞事故的发生。
3. 制动稳定性制动稳定性是指列车在制动过程中的稳定性能。
制动系统需要能够在不同的行车速度和路况下提供稳定的制动力,避免制动过程中的冲击和抖动。
6 第六章CRH5动车组制动系统

CRH5动车组的制动系统由电制动系统、空气制动系统、 防滑装置和制动控制系统组成。 CRH5动车组中,共有10根动轴和22根拖轴。动轴上有电 制动装置和盘形制动装置,每根轴上由2个轴制动盘,拖 轴上只有3个盘形制动装置。
一、系统简介
(1) 电制动系统
CRH5动车组使用的电制动为再生制动。由受电弓、牵引变压 器、牵引变流器及牵引电机组成。 电制动在列车常用制动和列车定速运行时使用。使用电制动时, 空气制动仅供拖轴使用,对于动轴,空气制动仅可用于无法使 用电制动的速度范围内,如某动轴的电制动失效。 电制动可单独使用,或者与空气制动一起使用;与空气制动同 时使用时优先使用电制动,以减轻拖轴的空气制动负荷,从而 减少零部件的磨耗。 CRH5动车组的再生制动在29kV以下的网压下使用,并可在 10~200km/h的速度范围内工作。
3.4 基础制动装置
CRH5动车组的基础制动装置采用钳盘式结构,内置闸片间隙调整 器。所有车轴均配直径640mm,厚度80mm的钢制制动盘,制动盘 上具有用于通风的散热筋结构。 拖轴上有3个制动盘,动轴上有2个制动盘。闸片为烧结粉末冶金材 料,最大允许温度600℃,最大磨耗量30mm。
第四节 防滑装置
第三节 空气制动系统
压力空气供给系统 直通空气制动系统 自动空气制动系统 基础制动装置
3.1 压缩空气供给系统
主压缩空气供给系统配备2套压缩空气供给装置,分 别装在TPB和TP车上,每套设备主要包括以下组件: 电动空气压缩机单元SL22、空气干燥装置LTZ015以 及微孔滤油器OEF1-4。 同时还配备两台辅助空气压缩机为受电弓的升弓供 风,辅助空气压缩机也装在TPB和TP车上。 有两根风管贯通全列车:一根是制动管,用于空气 制动的控制,压力保持在600kPa;另一根是总风管, 用于向所有连接到空气系统的设备供风,压力保持 在800~1000kPa。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高速列车的制动能量和速度的平方成正比,传统的纯空气制动已不能满足需要,因其制动能力由于以下因素而受到影响:制动热容量和机械制动部件磨耗寿命的限制摩擦材料的性能对粘着利用的局限性,以及对旅客乘坐舒适性的不利影响纯空气制动作用情况下,紧急制动距离不可避免的延长因此,高速列车必须采用能提供强大制动力并能更好利用粘着的复合制动系统;制动时电制动与空气制动联合作用,且以电制动为主。
复合制动系统通常由电制动系统、空气制动系统、防滑装置、制动控制系统等组成,下面就这几部分分别加以介绍:电制动空气制动防滑装置制动控制系统电制动电制动是将列车的动能转变为电能后,再变成热能消耗掉或反馈回电网的制动方式,应用在200公里动车组上的主要有电阻制动和再生制动两种。
电阻制动和再生制动都是让列车的动轮带动动力传动装置(牵引电动机),让其产生逆作用,消耗或回收列车动能,习惯上也称为动力制动。
下面分别就这两种制动方式加以介绍:一、电阻制动(一)系统构成(二)工作原理司机室或ATC装置发出制动指令后,制动控制装置首先对列车运行速度进行判断。
当速度大于25km/h时,制动主回路构成(PB转换器转为制动位置),然后制动接触器动作(B11闭合、P11打开、P13打开),随后依次是励磁削弱接触器打开、预励磁接触器投入,最后,断路器投入(L1闭合)。
此时,由电枢绕组、励磁绕组和主电阻器构成电阻制动主回路,并使电流向增加原牵引时剩磁的方向流动,再由主电阻器最终将电枢转动发出的电能变为热能消散掉。
二、再生制动(一)系统构成(二)工作原理与电阻制动相比,再生制动的主回路中没有了主电阻器。
制动时回路中各部件的动作与电阻制动时一样,只是电枢转动产生的电能要回馈到电网。
电制动具有摩擦部件少(仅有轴承)、维修工作量少、可以反复使用等优点,担负着动车组制动减速时的大部分能量。
但由于增加了控制装置和制动电阻等设备,使重量增加;而且,如果条件不具备就不能产生制动作用(即电制动失效)。
因此,为提高可靠性,高速动车组的制动控制系统具有在电制动系统不能正常工作时,自动切换到摩擦制动系统的功能。
三、电制动的控制列车的电制动线是在制动控制器置于非常制动位或在ATC制动指令时得电。
但在低速时电制动力下降,如列车中各车的电制动转换不一致,列车有可能因各车辆制动力不同而造成纵向冲动;所以,在列车速度降低到一定值时,要将电制动同时转为空气制动。
空气制动系统虽然电制动可以提供强大的制动力,但目前空气制动对于高速动车组来说仍然不可或缺。
这是因为:直流电机的制动力随着列车速度的降低而减少,如不采取其他制动方式,列车就不可能完全停下来。
而交流电机虽然可通过改变转差来控制制动力的大小,理论上可使制动力不受列车速度的限制,但从高速到停止均能有效作用的、可靠的电制动装置尚处于研究阶段。
如前所述,动车组空气制动系统一般采用电气指令的直通式电空制动装置。
在本书中,我们将该装置分为压力空气供给系统、空气制动控制部分和基础制动装置三部分加以讲述。
一、压力空气供给系统(一)空气压缩机空气压缩机按其压缩方法可分为往复式和旋转式两种。
往复式空气压缩机由电动机通过联结器直接驱动,电动机轴直接带动曲轴使活塞动作,反复交替地进行吸气行程和压缩行程。
在吸气行程时吸气阀打开吸入空气。
在压缩行程时压缩空气克服排气阀弹簧的反力后排出。
一般经2级压缩可得到所需的900kPa的压缩空气。
旋转式空气压缩机采用电动机与压缩机直联的方式,旋转式空气压缩机又分为涡旋式和螺杆式两种。
涡旋式空气压缩机是由固定涡旋盘和运动涡旋盘组成。
当运动涡旋盘摆动时,固定涡旋盘和运动涡旋盘之间被分成月牙形空间,因为越向中心空间越小,所以从外部吸入的空气随着转动被压缩,然后克服安装在中心部排气阀弹簧的反力排出。
因为旋转式压缩机能连续排出压缩空气,所以空压机的振动、噪声和输出压缩空气的脉动都较小。
此外,由于固定涡旋盘和运动涡旋盘是非接触的,所以维修量也较少。
(二)安全阀安全阀安装在空气压缩机输出之后的总风缸上,在空气压力超过规定值时排出过剩的压缩空气,以防损坏空气设备。
(三)干燥装置干燥装置是为了防止管路、三室风缸及增压缸等气动部件腐蚀以及因冬季排水阀冻结而发生的设备故障,设置在空气压缩机输出管路上的装置。
以前除湿使用的是吸附材料(铝硅酸盐),现在开始使用体积小、质量轻,且不需电源的高效高分子空丝膜式除湿装置。
(四)三室风缸为贮存压缩空气,在动车组上设置了不同用途的风缸。
在目前使用的车辆中,是将一个圆柱形风缸分割为总风缸、制动风缸和控制风缸3个空气室,以减轻质量。
控制风缸是为空气弹簧等制动以外的系统供应压缩空气的风缸,制动风缸是制动专用的存储压缩空气的风缸。
在压缩空气供给系统中,由空气压缩机输出800-900kPa的压力空气,经该车的总风缸和总风管送到全列其它各车的总风缸。
在装有空气压缩机的车辆的总风缸处,设有为排出设定压力值以上压缩空气的安全阀(设定值为950kPa)。
在列车中设有多个空气压缩机时,由同步指令线来控制其同步工作,以使负荷平均化。
二、空气制动控制部分(一)空气制动控制装置在较早的动车组中,各种空气制动控制装置是分别用管路连接起来的;而目前运用的各种动车组,其各种阀、塞门多采用单元化方式集中安装在铝合金安装板的前面,以减轻质量和减少维护、检修工作量。
另外,为了检查的方便,在空气制动控制装置上还设置了测试口。
(二)电空转换阀(EP阀)电空转换阀安装在空气控制装置内,它由电磁线圈和给排阀等零部件构成。
当制动电子控制装置输出的空气制动指令量(电空转换阀电流)通过电磁线圈时就会产生与电流成比例的吸力,控制给排阀的开闭。
通过电空转换阀的控制,可将最大900kPa的输入空气压力(SR压力)变成与电空转换阀电流成比例的输出压力空气(AC压力)。
为防止在缓解时AC压力随电空转换阀温度的变化而变化,需要加偏流进行缓解补偿。
另外,为补偿AC压力上升和下降时所产生的压力差(约30kPa),即使是对于相同的制动级别,也要供给不同的电空转换阀电流以保证输出正确的AC压力。
(三)中继阀中继阀设在制动控制装置内,由给排阀杆、给排阀、复位弹簧等构成。
它将电空转换阀输出的AC压力和紧急电磁阀输出的紧急制动压力作为控制压力,向增压缸提供与此控制压力相应的增压缸空气压力。
在常用及非常制动指令时,从电空转换阀送来的AC压力进入AC室,在紧急制动时,从紧急电磁阀送来的紧急制动压力空气进入UB室。
这些压力空气输入后,使给排阀杆上移,顶开给排阀,由于给排阀的开启使SR压力空气通过给排阀口变为增压缸空气压力(制动作用)。
另外,增压缸压力空气还流入FB室产生反馈作用,当增压缸空气压力上升到与AC压力或紧急制动压力相同时,给排阀下移关闭阀口,SR压力空气停止向增压缸的流动(保压状态)。
这时的增压缸空气不论AC压力或紧急制动压力多大均与之相同。
反之,制动缓解时,AC压力或紧急制动压力降低导致给排阀杆下移,离开给排阀,增压缸压力空气从给排阀杆内部通路排入大气,呈缓解状态。
(四)压力调整阀压力调整阀输入总风缸的压力空气,输出紧急制动用的压力空气(根据车辆的不同设置一种或两种压力值)或踏面清扫装置用的压力空气。
它利用弹簧力和空气压力的差使膜板动作,进行空气压力调整。
弹簧力大小可通过安装在调整阀下部的调整螺钉来调整。
(五)电磁阀电磁阀由给排阀部和电磁阀部组成。
它通过电磁阀部线圈的励磁、消磁(得电或失电)使可动铁心动作来开闭给排阀。
电磁阀有ON型和OFF型两种。
电磁阀的形式用奇数和偶数表示。
ON型电磁阀(代号为奇数)在电磁阀励磁时输入口和输出口之间连通,同时排气口关闭;在消磁时输入孔关闭,同时输出口与排气口相通。
OFF型电磁阀(代号为偶数)与ON型电磁阀各通路的通断情况完全相反。
例如:在日本新干线动车组上,励磁后向踏面清扫装置输送压力空气,使增粘研磨快产生作用的“踏面清扫装置用电磁阀”是ON型(如VM13型)。
而紧急回路用的电磁阀励磁时关闭输入口,消磁时使制动缸得到紧急制动压力作用的是OFF型电磁阀(如VM32型)。
(六)截断塞门截断塞门是为了在需要时将压力空气截断或排出而串在连接三室风缸、空气制动控制装置及增压缸等装置的管路前、后的部件。
(七)增压缸增压缸由空气缸、液压缸和防滑电磁阀等构成。
用于将空气压力转换为一定倍率的较高的液压,从而得到所需的闸片压力。
另外,增压缸上还装有访滑阀以及为解决由于访滑阀连续动作而产生不能制动问题的给排截断阀。
(八)制动缸动车组上的制动缸多为液压制动缸,按基础制动装置的动作方式大致可分为杠杆式和夹钳式,而后者又可分为浮动型和对置型两种。
液压制动缸的缸径和数量根据其结构和需要的制动力而定。
(九)管路管路的作用是将空气压缩机输出的压缩空气送给三室风缸及制动装置等各种用风设备;各设备根据空气流量的大小,分别采用3/4英寸或3/8英寸的管路来输送压力空气。
制动用压缩空气的流向为:空气压缩机→总风缸管→制动风缸→中继阀→增压缸。
三、基础制动装置(一)夹钳装置现在的动车组一般不再使用传统的杠杆式传动装置,而是普遍使用夹钳式装置。
该装置制动夹钳、支架和剪刀形的夹紧制动盘的本体组成,支架和本体之间用销轴联结。
本体上设有稳定制动力和防止振动的防振橡胶,本体在销轴上可以滑动以满足轮对左、右运动的要求。
另外,本体上还有间隙调整器。
(二)制动盘制动盘结构形式见图2-3。
按摩擦面的配置,制动盘可分为单摩擦面和双摩擦面两种。
按盘本身的结构,可分为整体式和由两个“半圆盘”用螺栓组装而成的“对半式”,这种对半分开式便于制动盘磨耗到限时更换,不需退轮。
按盘安装的位置可分为轴盘式和轮盘式,前者装在轴上,后者装在轮的两侧;动车组中的拖车一般采用轴盘式盘型制动装置,而动车采用轮盘式制动装置,因动车的车轴上要安装驱动装置,没有安装置动盘的位置。
由于制动盘是一个既受力又受热的零部件,不宜用过盈配合直接装在轴上,所以轴盘式通常要采用锻钢盘毂作为车轴与制动盘之间的过渡零件,而且在摩擦盘螺栓连接处要加装弹性套。
制动盘和盘毂之间采用多个径向弹性圆销实现浮动连接,受热时摩擦盘可以沿着径向弹性圆销完全自由地伸缩,以消除内应力。
考虑到制动盘要有良好的散热性,在制动盘的中间部分设计许多散热筋片。
这样,当车辆运行时,空气对流即达到散热作用。
(三)制动闸片闸片的形状均呈月牙形或扇形(图2-4),也有对称分成两半的,其好处是容易拆卸,特别适用于闸片与轨面空间很小的条件。
闸片上的散热槽有各种不同的形式,有横向槽、竖向槽和斜槽等,其作用都是增加摩擦面的贴合性,便于排除磨屑和散热。
动车组中的空气制动系统是这样协同工作的:压缩空气由电动空气压缩机产生,经由贯通全列车的总风管送到各车的总风缸,再经两个单向阀分别送到控制风缸和制动风缸。