语音编码的主要方法
voip编码方法

voip编码方法
VOIP编码方法是指将语音信号转换为数字数据,并使用特定算法进行压缩和编码的过程。
下面将介绍两种常见的VOIP编码方法。
1. G.711编码方法:
G.711是一种无损压缩编码方法,对语音信号进行采样和量化,然后将数据通过传输网络发送。
G.711提供两种压缩率的选项:μ-law和A-law。
这两种压缩方式主要用于不同地区的语音通信系统。
μ-law适用于北美和亚洲地区,而A-law适用于欧洲和大洋洲地区。
G.711编码方法具有较低的延迟和较高的音质,因此常用于专线电话和传统电话网络中。
2. G.729编码方法:
G.729是一种有损压缩编码方法,能够将语音信号压缩为很低的比特率。
它通过去除语音信号中的冗余信息和不可听的频段来实现高压缩率。
G.729编码方法适用于带宽受限的网络环境,如互联网电话和VoIP电话系统。
尽管G.729编码方法会引入一定的音质损失和延迟,但由于其较低的带宽要求,使其成为了广泛应用的VOIP编码方法之一。
不同的VOIP编码方法适用于不同的场景和需求。
选择合适的编码方法取决于网络带宽、音质要求和延迟限制。
通过合理的编码选择,可以实现高质量的语音通信,并提升用户体验。
语音编码的基本方法

语音编码的基本方法
语音编码是将语音信号转换成数字形式以便于存储、传输和处理的过程。
以下是一些常见的语音编码方法:
1. 脉冲编码调制(PCM):
• PCM是一种最基本的语音编码方法,它将模拟语音信号在时间上均匀采样,并将每个样本的振幅量化为数字形式。
•采样率和量化位数是PCM中的两个重要参数,它们决定了数字表示的精度和数据量大小。
2. 自适应差分脉冲编码调制(ADPCM):
• ADPCM是一种通过对语音信号进行预测和差分编码来减小数据量的方法。
它利用前一个采样的信息来预测当前采样,并只编码预测误差。
•由于只需要编码误差,ADPCM相比于PCM可以实现更高的压缩比。
3. 线性预测编码(LPC):
• LPC是一种基于声道建模的编码方法,它假设语音信号是由声道和激励信号的组合产生的。
• LPC通过对语音信号进行分析,提取声道特征,并将其参数化以减小数据量。
4. 矢量量化:
•矢量量化是一种高效的无损压缩方法,通过将一组相邻的样本映射到一个矢量码本中的一个向量,从而减小数据量。
5. 变换编码:
•将语音信号通过某种变换(如傅立叶变换)转换到频域,然后对频域信息进行编码。
其中,MP3是一种常见的基于变换编码的方法。
6. 深度学习方法:
•近年来,深度学习技术在语音编码领域取得了显著进展。
循环神经网络(RNN)和卷积神经网络(CNN)等模型被用于语音特征提取和编码。
这些方法有各自的优点和适用场景,选择合适的编码方法通常取决于应用需求、带宽要求以及对音频质量的要求。
语音的压缩编码

长途电话 (8 KHz x 8 bit x 1), 时分多路复用TDM (time-division multiplexing)
应用于全频带数字声音的表示/存储:
CD-DA(CD唱片),DAT (44.1 KHz x 16 bit x 2)
原理: 声音信号具有很强的相关性,可从已知信号来预测未知信号, 即使用前面的样本预测当前的样本,实际样本值与预测值之间的误差往往很小。 利用自适应的思想改变量化阶的大小,即使用小的量化阶(step-size)去编码小的差值,使用大的量化阶去编码大的差值, 效果:量化位数可以显著减少,从而降低了总的码率。
+
预测值
差值
重建信号
DPCM
编码输出
CCITT G.721 ADPCM编码器
A
量化阶适配器
自适应
( 4 位 )
6阶自适应线性预测, 4位的自适应量化器, 输出码率: 8k x 4 = 32 kbps
ADPCM 小结
PCM话音质量 4.5级 ADPCM话音质量 4.34级,码率降低一倍(32 kbps)。 ADPCM应用: 数字语音通信 多媒体应用中的语音(解说词)
ADPCM自适应差分脉冲编码调制 (Adaptive Differential PCM)
增量调制(DM)
差分脉冲编码调制 DPCM
实际样本值
利用样本与样本之间存在的相关性进行编码,即根据前面的样本估算当前样本的大小,然后对预测误差进行量化编码。
差值
线性预测公式: Xn = A1*Xn-1 + A2*Xn-2 + ... + Am*Xn-m
举例
根据输入样本幅度的大小来改变量化阶大小。 可以是瞬时自适应,即量化阶的大小每隔几个样本就改变,也可以是音节自适应,即量化阶的大小在较长时间周期里发生变化。
简述欧美及我国常用的语音编码技术。

欧美及我国常用的语音编码技术1. 介绍在当今数字化时代,语音编码技术在通信、音频处理、语音识别等领域起着至关重要的作用。
欧美及我国都有各自常用的语音编码技术,本文将就这一主题进行深入探讨。
2. PCM编码PCM(Pulse Code Modulation)是一种最早期的语音编码技术,它将模拟信号转换为数字信号。
PCM编码的优点是精确度高,保真度好,但缺点是需要较大的数据传输速率。
在欧美,PCM编码仍然广泛应用于一些专业音频设备和通信系统中。
3. ADPCM编码ADPCM(Adaptive Differential Pulse Code Modulation)是一种自适应差分脉冲编码调制技术,它在PCM编码的基础上进一步压缩了数据量。
相较于PCM编码,ADPCM编码具有更高的压缩比,适用于一些需要节省带宽的场景。
在欧美,ADPCM编码被广泛应用于语音通信、无线通信等领域。
4. G.711编码G.711是国际电信联盟(ITU-T)制定的一种音频编码标准,它包括了μ-law和A-law两种编码方式。
G.711编码通过对声音进行采样和量化,实现了对语音的高效压缩和传输。
在我国,G.711编码是常用的语音编码技术之一,被广泛应用于各类通信系统和音频处理设备中。
5. G.729编码G.729是一种高压缩比的语音编码标准,它采用了先进的语音处理算法,实现了对语音信号的高效压缩和传输。
在欧美,G.729编码被广泛应用于语音通信和网络通信方式等领域。
6. Opus编码Opus是一种开放式、免专利的音频编码格式,它具有低延迟、高音质和高压缩比的特点。
Opus编码在欧美得到了广泛的应用,尤其是在互联网音频传输、实时语音通信等领域。
7. 总结欧美及我国常用的语音编码技术包括了PCM编码、ADPCM编码、G.711编码、G.729编码和Opus编码等多种标准和格式。
这些编码技术各具特点,适用于不同的场景和需求。
随着科技的不断进步和创新,相信未来还会有更多更先进的语音编码技术出现,为语音通信和音频处理领域带来更多的可能性。
语音编码技术的分类

语音编码技术的分类语音编码技术是将语音信号经过压缩、编码处理后转化为数字数据的技术,广泛应用于语音通信、语音识别、语音合成等领域。
根据不同的实现方式和压缩算法,可以将语音编码技术分为以下几个分类。
首先是有损压缩编码技术,这种技术通过牺牲一定的语音质量来达到较高的压缩比。
最典型的有损压缩算法是线性预测编码(LPC)和线性预测编码(LPC)特征序列编码。
LPC通过分析语音信号的谐波结构和共振峰来捕捉语音的重要信息,然后利用这些信息对语音进行重建。
而LPC通过分析语音信号的自相关性和频谱平滑性来获得语音的预测系数,从而实现对语音信号的压缩。
其次是无损压缩编码技术,这种技术通过保留原始语音信号的全部信息来实现压缩。
无损压缩编码技术对于一些对音质有较高要求的应用场景非常重要,比如语音识别和语音合成。
最常见的无损编码算法是自适应差分编码(ADPCM)和矢量量化编码(VQ)。
ADPCM通过预测当前语音样本和前一样本之间的差值,并将该差值保存为编码结果,以实现高压缩比。
第三是混合压缩编码技术,也称为变速压缩编码技术。
这种技术通过对不同部分使用不同的压缩算法来实现。
最常见的变速编码算法是多速率编码(MRC)和多步骤编码(MSC)。
MRC通过对语音信号的不同频段采用不同的压缩算法,对于高频部分使用有损压缩算法进行压缩,对于低频部分使用无损压缩算法进行压缩,从而实现更高的压缩比。
MSC对语音信号进行多次压缩,每次压缩只保留重要的信息,通过多次压缩后,达到较高的压缩比。
总的来说,语音编码技术的分类包括有损压缩编码技术、无损压缩编码技术和混合压缩编码技术。
不同的技术分类适用于不同的应用场景,在实际应用中需要根据具体需求权衡语音质量和压缩比,选择合适的编码技术。
对于语音通信等实时场景,需要保证较高的语音质量,可以选择无损压缩编码技术;而对于语音识别和语音合成等需要高压缩比的应用场景,可以选择有损压缩编码技术。
混合压缩编码技术则提供了在不同部分使用不同压缩算法的灵活性,适用于更细粒度的应用需求。
数字通信中的语音编码技术

数字通信中的语音编码技术数字通信中的语音编码技术是指将人类语音信号压缩为低比特率数字信息以便于数字通信传输的技术。
语音信号是一种具有高峰值和高频带宽的信号,因而传输语音信号需要占用大量的带宽,现代数字通信使用语音编码技术,可以将语音信号编码后压缩为低比特率数字信号,降低了数据传输量,提高了通信效率。
语音编码的基本原理是有损压缩技术。
它将语音信号的特征参数提取出来,使用一系列数学模型和算法将特征参数编码为数字信号。
在接收端,接收到数字信号后,进行解码和还原过程即可得到原始的语音信号。
语音编码技术有多种方法。
以下几种语音编码技术已经得到广泛应用。
1. PCM编码PCM编码是将模拟语音信号直接进行抽样量化,按照一定的位数将每个数字成码字,这是最简单、常见的一种压缩方法。
其原理是将连续的模拟信号转换为一连串数字信号,使其成为数字信号。
PCM编码处理效率较高且压缩率较低,但是容易受到信道噪声的干扰,使得音质明显降低。
2.ADPCM编码ADPCM编码是自适应差分脉冲编码,从语音的脉冲模式和动态范围的角度来处理压缩问题,可以快速反应出语音发生的动态变化。
由于ADPCM编码采用不同的量化等级来减小数据流量,因此它比PCM编码具有更高的压缩率,但引入了一些误差,使音质受到一定程度的影响。
3.MDCT编码MDCT编码方法是一种新兴的时间-频率分析技术。
通过对语音信号做窗口变换获取信号的频谱信息,再使用变换系数压缩来实现信号的压缩。
由于它在处理音乐的时候效果明显,在语音信号的压缩方面也得到了广泛的应用。
MDCT编码的压缩效率较高并偏向于无损压缩,音质稳定,而且它及其变种已经被广泛争用于现代音频编码器中。
语音编码技术的应用已经涉及到广泛的领域,如语音通信、数据存储、音视频等等。
语音编码技术将语音信息转换为数字信息、压缩和解压缩,已经成为现代数字通信中不可或缺的一部分,促进了数字通信技术的发展。
语音压缩编码与图像压缩编码

语音压缩编码与图像压缩编码语音压缩编码语音压缩编码可分为三类:波形编码、参量编码和混合编码。
这些都属于有损压缩编码。
1.波形编码(1)波形编码的定义波形编码是指对利用调制信号的波形对语音信号进行调制编码的方式。
(2)波形编码的性能要求保持语音波形不变,或使波形失真尽量小。
2.语音参量编码(1)语音参量编码的定义语音参量编码是将语音的主要参量提取出来编码的方式。
(2)语音参量编码的基本原理首先分析语音的短时频谱特性,提取出语音的频谱参量,然后再用这些参量合成语音波形。
(3)语音参量编码的性能要求保持语音的可懂度和清晰度尽量高。
3.混合编码(1)混合编码的定义混合编码是既采用了语音参量又包括了部分语音波形信息的编码方式。
(2)混合编码的基本原理混合编码除了采用时变线性滤波器作为核心外,还在激励源中加入了语音波形的某种信息,从而改进其合成语音的质量。
(3)混合编码的性能要求保持语音的可懂度和清晰度尽量高。
图像压缩编码图像压缩按照图像是否有失真,可分为有损压缩和无损压缩;按照静止图像和动态图像,又可分为静止图像压缩和动态图像压缩。
1.静止图像压缩编码的特点(1)静止数字图像信号是由二维的许多像素构成的;(2)在各邻近像素之间都有相关性;(3)所以可以用差分编码(DPCM)或其他预测方法,仅传输预测误差从而压缩数据率。
2.动态图像压缩编码的特点(1)动态数字图像是由许多帧静止图像构成的,可看成是三维的图像;(2)在邻近帧的像素之间有相关性;(3)动态图像的压缩可看作是在静止图像压缩基础上再设法减小邻近帧之间的相关性。
2 语音编码技术2

移动通信中采用的语音编码方法主要取决于无线 移动信道的条件:
(1) 由于频率资源十分有限 , 因此要求编码信号的 速率较低; 由于移动信道的传播条件恶劣, 因而编码算 法应有较好的抗误码特性。 (2) 另外, 从用户的角度出发, 还应有较好的话音质 量和较短的时延。
移动通信对数字语音编码的要求如下:
掩蔽阈值
被掩蔽掉的不可闻信号的最大声压级称为
掩蔽门限和掩蔽阈值(masking threshold),
在这个掩蔽阈值以下的声音将被掩蔽掉。
掩蔽效应分为同时掩蔽(频域掩蔽)和短时
掩蔽(时域掩蔽)。同时掩蔽是指存在一个弱
信号和一个强信号,当其频率接近时,强信号
会提高弱信号的阈值,就会导致弱信号变得不 可闻。
寻求低速高质的语音编码方法一直是数字通信
领域的一个重要研究课题。
一个重要概念:对反映语音信号特征的参量进
行编码与传输而不是对信号的时域波形本身, 即所谓参量编码。可大大降低编码信号的速率。
参量编码的基础是语音信号特征参数的提取与
语音信号的恢复,这将涉及到语音产生的物理 模型。
2.2 参数编码——定义
pL ( x) 0.5e
正常人的听觉系统是极为灵敏的,可听声的范围 为20Hz-20kHz。 可听声的最小声压级(dB)称为听阈。-5~130dB, 对低频和高频是不敏感的,听阈为60dB,在1kHz附近 最敏感。
人耳的掩蔽效应
人耳的掩蔽(masking phenomenon)效应: 在一个强信号附近弱信号将变得不可闻,被掩 蔽掉了。
iong、uan、uen、uang、ueng、 ü an、ü n
鼻韵母
i表示3个韵母,即韵母、舌尖前韵母和舌尖后韵母。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
预测编码(APC)、子带编码(sBo及自适应变换编码(ATC)等均属于这一种。但这种方式 所需的编码速率较高,在16kbit/s~64kbit/s速率范围能得到较高的重建质量,而当速率 进一步降低时,语音重建质量就会急剧下降。
(2)参量编码
参量编码,又叫声码化编码。是在信源信号频率域或其它正交域提取特征参量并将 其变换为数字代码进行传输,以及在接收端从数字代码中恢复特征参量,并由特征参量 重建语音信号的一种编码方式。这种方式在提取语音特征参量时,往往会利用某种语音 生成模型在幅度谱七逼近原语音,以使重建语音信号有尽可能高的可懂性,即力图保持 语音的原意,但重建语音的波形与原语音信号的波形却有相当大的区别。这种方式的特 点是编码速率低(1.2kbit/s~2.4kbi怕),但只能达到合成语音的质量(即自然度、讲话者的
(3)复杂度
复杂度决定了编码器硬件的成本和功耗以及软件实现的难度,也影响到语音数据的 实时性。一般越先进的编码器其算法复杂度越高。
(4)语音质量
语音质量是指接收端合成语音的可懂度、自然度和清晰度,他们分别反映说话人的 语义、个人信息和被噪声干扰的程度。声音的质量与声音的频率范围有关,一般来说采
样频率范围越宽、声音质量也就越高,而在口电话中,声音的质量还与语音的时延、抖 动等因素有关。
2.2.3主要语音编码标准
(1)ccrrr 1972年确定64kbit/s PCM语音编码G711建议,极为广泛地应于数字通信,
数字交换机以及一切语音数字化接口。
(2)ccrllr 1984年确定32kbit/s ADPCM语音编码G721建议,它不仅与PCM有相同
重建语音质量,而且具有比PCM更优良的抗误码性能,己逐渐广泛应用于卫星,海缆 和数字语音插空设备以及可变速率编码器中。这种ADPCM算法在16kbit/s到64kbit/s 的速率范围内其重建语音质量平坦,很适宜于可变速率的应用。 (3)ccrrr 1995年5月采纳了由AT&T公司提出的一种称为低迟延码激励线性预测 (LD-CELP)语音编码方案,作为16kbit/s速率的国际标准,并定为G728建议。LD-CELP 算法特点是将语音短时谱与长时谱预测、增益因子预测等参数不是从输入语音中直接提
取,而是用50阶长的预测器在后向来实现。传送的信息则只是激励矢量,这就膨寓了传
输比特率。它是用分析综合方法优化出来的5个抽样为一组的激励矢量,因此,5个抽
样就是基本迟延,即5X 1.259s=0.625ms。原CCITr要求编码迟延<Sms,所以,该算法
远优于要求的指标,达到进入公众通信网的标准。LD-CELP的应用领域,CCITT建议 如下:(1)可视电话的伴音:(2)无绳电话机;(3)单路单载波卫星和海事卫星通信;(4)数
2.2.2语音编码的主要方法
目前发展出来的语音编码方法主要有三种,波形编码、参数编码和混合编码
(1)波形编码
波形编码是将时间域信号直接变换为数字代码进行传输,也就是说这种编码是将语 音信号作为一般的波形信号来处理,力图保持重建的语音波形与原语音信号波形一样;
这种编码方式的特点是适应能力强、重建语音的质量高,例如PCM,ADPCM和自适应
可识别性都较差的语音1,当码率提高到与波形编码相当时,语音质量也不如波形编码。 利用参量编码实现语音通信的设备通常称为声码器,例如通道声码器、共振峰声码器、
.6.Leabharlann 东北太学硕士学位论文第2章lP电话终端相关的关键技术和标准
同态声码器以及广泛应用的线性预测(LPC)声码器等都是典型的语音参量编码器。
∽混合编码
当前由参量编码与波形编码相结合的混合编码的编码器正在得到人们较大的关注。
这种编码器既具备了声码器的特点(利用语音生成模型提取语音参数),又具备了波形编 码的特点(优化擞励信号,使其与输入语音波形相匹配),同时还百r利用感知加权最小均 方误差的准则使编码器成为一个闭环优化的系统,从而在较低的比特率上能获得较高的 语音质量。例如,多脉冲激励线性预测(MPLPC编码),正规脉冲激励线性预测(RPE 编码和码激励线性预测(CELP)编码都属于这一种,这种编码方式能在4kbit/s~16kbit/s 中低编码的速率上得到高质量的重建语音。
以包含长周期预测(LTP)的反馈型量化结果为脉冲振幅。算法亦属_F分析综合法。由于帧 长为20ms甸隔处理,在J下向提取谱包络参数和增益因子等参数,其编码迟延达25ms,
对编译码处卿则总迟延将达60n3s。RPE,l胛编码比特率为13kbit/s,若加入3kbit/s纠错
码保护其中重要参数,这种算法能在误码率为0.1时有足够的可博度,比LD.CELP在同 样速率下有更人的适应性。
字插空设备:(5)存储和转发系统:(6)话音信息录音;仍数字移动无线系统;(8)分组化
话音。 (4)泛欧数字移动通信标准RPF_/LTP(13kbit/s)。这一标准从1982年到1988年经过优 选及严格试验,是从六种提案中优选并制定的。RPE/LTP是以等间隔(每3个抽样)的规
则脉冲序列柬模拟音源,以线性预测残差信号的振幅值为基准决定脉冲位置、残差信号,
.7.
东北大学硕士学位论文
第2幸IP电话终端相关的关键技术和标准
Noise
用于确定输入信号是语音还是背景噪声:二是舒适噪声生成(CNG:Comfortable
Generation),主要用于接收端重建背景噪声。目前IP电话一般采用5kbit/s到16kbit/s的 中低速率编码器。 (2)算法时延
语音编码的算法时延指运行编码算法压缩语音信号所带来的时延。开始对语音数据 编码前必须先等待一帧语音数据采样完成,所以, 算法时延=对一帧语音编码所需时间+一帧语音的持续时问。 由于语音通信对时延比较敏感,时延太大的算法不适合于实时语音传输。