第二节非线性光学极化率

合集下载

二阶光学非线性方程的摄动解与系统的极化率

二阶光学非线性方程的摄动解与系统的极化率
维普资讯 http://www.Leabharlann
第 l卷第 3 5 期 20 0 8年 6 月
J OURN AL OF DON GGU AN I UN VER S nY OF TECH NOLOGY
东 莞 理 工 学 院 学 报
V 1 5NO3 O. . 1
J n. u 2 008
— ・ —




・ —









项 颖等:二阶光学非线性方程的摄动解与系统的极化率
- — — — — - — — — — — — — — — — — — — — — — — — — - — — — — —
. . . — — — . — — — — — . — . — . . . — . — . . . .
性微 分方程 ,并用摄 动法 找到 了系统 的零 阶近 似解和 一 阶近似 解 .由于二 阶 非线性 的存 在 , "输入信 号为 3 - 单 色光 时, 系统将 输 出直 流信 号 、倍 频信 号与和频 或差频信 号等 ,并进 一步分析 了介质 的零 阶极化 率和一
阶极 化率 .
关键词 :非线性 极化 ;摄 动 法;倍频 ;极 化率
d () V r =一 一 ∞ mDP一…
假 设 入 射光 是 沿r 向 的单 色 光 ( 面 波 ) 方 平
E( f = Eo r, ) ” () 6

( = -k , 三。 + jr . 岫 ()  ̄) t -
收 稿 日 期 : 0 8 4 1 2 0 —0 — 0
作者简 介 : 颖(1 6 一 ) 男 。 北荆州 人 , 项 99 , 湖 副教 授 。 博士 , 主要 从事物理 学和通 信技 术研 究 。

第4章二阶非线性光学效应

第4章二阶非线性光学效应

0
1 n2
2
E0 0
1
n
2 y
,
1 n2
5
E0 0
0
1 n2
3
E0 0
1 nz2
,
1 n2
6
E0 0
0
(4.1-7)
第4章 二阶非线性光学效应
1) KDP(KH2PO4)晶体中的线性电光效应
KDP晶体属于42m对称群, 其光轴取为z轴, 另外两 个对称轴为x轴和y轴。 根据表4.1-1, 它的线性电光张量 的非零元素只有γ41=γ52和γ63, 其矩阵形式为
[ (2) (3,1)
:
a(2 )a(3)a(1)]E(3,
z)E(1,
z)eikz
(4.3-12)
dE(3, t )
dz
i32
k3c2
[ (2) (1,2 )
:
a(3)a(1)a(2 )]E(1,
z ) E (2 ,
z)eikz
(4.3-13)
第4章 二阶非线性光学效应
4.3.2 曼利-罗关系
乘 乘
第4章 二阶非线性光学效应
线性电光效应是一种特殊的二阶非线性光学效应。 在这里, 作用于介质的两个电场, 一个是光电场, 另一 个是低频场或直流场, 在这两个电场的作用下产生了二 阶非线性极化。 现在假定作用于介质的直流场为E0、 光电场为E exp(-iωt)+c.c., 则根据极化强度的一般表示 式(1.1-39)式和(1.1-40)式, 有
z )e ik 2 z
dE(3,
dz
z)
i320
2k3
a(3)
PNL (3,
z )e ik3 z

(非线性光学课件)第二章 非线性光学极化强度和极化率的经典

(非线性光学课件)第二章 非线性光学极化强度和极化率的经典

因果关系
因果关系: 任意时刻t1的光场E(t1)都会对其后时刻t的极 化强度产生贡献。
dP(1) (t) 0R(1) (t, t1) E(t1)dt1
线性响应函数
时刻t介质的极化强度P(t)是所有t时刻之前介质对光场
响应的积累
t
P(1) (t)
R(1)
0
(t
,
t1
)
E(t1
)dt1
线性响应函数的特性:
t3)
E(t1)E(t2 )E(t3)dt1
极化强度与极化率张量
t
P(1) (t) 0R(1) (t t1) E(t1)dt1
P(1) (t) 0R(1) ( ) E(t )d
t t
0
P(2) (t)
R(2)
0
(t
t1,
t
t2
)
:
E(t1
)E(t2
)dt1dt2
P(n) (t) d
P(1) (t)
R(1)
0
(t
t1)
E(t1)dt1
因果关系
类似地,t1、t2时刻的电场对t时刻媒质的极化强 度也有贡献,这种贡献可以写成:
dP(2) (t) 0R(2) (t t1, t t2 ) : E(t1)E(t2 )dt1dt2
P(2) (t)
dt2
R(2)
0
(t
t1
,
电极化率可以理解为耦合系数。
在非线性光学中, 由于极化强度P与电场强度E之间是非线性关系,
或者说与光电场的强度有关, 因此,电极化率就与光电场强度或者说与光电场的强度有关。
2
介质分为光学上各向同性介质和各向异性介质。

第二章 非线性光学极化率(2)

第二章 非线性光学极化率(2)

2.2非线性极化率的经典非简谐振子模型1.物理模型采用Lorentz 模型来研究介质的非线性极化率。

设介质中含有振荡频率为0ω的振子集合,单位体积内共有N 个振子。

如图所示,在外加电场)(t E 作用下,原子中的电子做强迫振动。

恢复力和外加光电场为3220mBr mAr r m F ++ω-= (2.17)..)exp()()(21C C t i E t E +ω-ω= (2.18)图2.15 Lorentz 振子模型电子运动方程为eE mBr mAr r m dt dr m dtr d m -=--ω+Γ+3220222 (2.19)这里r 是电子偏离平衡位置的位移,左边第二项为弛豫力。

Lorentz 模型的不足之处是只用一个共振频率0ω来描述每一个原子。

事实上,每一个原子有许多本征能级,因而应有许多共振频率。

它不能描述非线性极化率的完全共振特性。

但它也能体现非线性极化率的一些特性。

2.数学技巧:微扰迭代法(2.19)式没有解析解,可采用微扰迭代方法来求解。

其思想是,我们总可以将r 展开成E 的幂级数+++=)()()(33221E r E r E r r (2.20)因此就能得到关于1r 、2r 和3r 的迭代微分方程组。

将(2.20)式代入(2.19)式,得到一系列方程中最低阶次的三个方程为()..)exp()(221201212C C t i E m e r dt dr dt r d +ω-ω-=ω+Γ+ (2.21a) 2122022222Ar r dt dr dtr d =ω+Γ+(2.21b)3121320323222Br r Ar r dt dr dtr d +=ω+Γ+ (2.21c) 先看(2.21a)式,它是关于t 的线性方程。

令..)exp(211C C t i q r +ω-= (2.22) 解得)()(ωω-=F E meq (2.23) 其中ωΓ-ω-ω=ωi F 21)(220(2.24)于是⎥⎦⎤⎢⎣⎡+ωω-=ω-..)()(211C C e F E m e r ti (2.25) 再看(2.21b)式。

第1章 非线性光学极化率的经典描述n

第1章 非线性光学极化率的经典描述n
1.1 极化率的色散特性 1.2 非线性光学极化率的经典描述 1.3 极化率的一般性质 习题
第1章 非线性光学极化率的经典描述
1.1 极化率的色散特性
1.1.1 介质中的麦克斯韦方程
由光的电磁理论已知, 光波是光频电磁波, 它在介
质中的传播规律遵从麦克斯韦方程组:
B E t D H J t D H 0
(r)
1 1 2 2 r r



第1章 非线性光学极化率的经典描述
如果组成光波的各个频率分量是不连续的,则极化强 度表示式中的积分由求和代替,表示为
P(1) (t ) 0 (1) (n ) E(n )eint
n
(1.1 - 39)
P(2) (t ) 0 (2) (m , n ) : E(m ) E(n )ei (m n )t
P (t ) 0 d1 d2 ( 2) (1, 2 ) : E (1 ) E (2 )ei (1 2 )t

(1.1 - 35)
第1章 非线性光学极化率的经典描述
并与(1.1 - 34)式进行比较, 可以得到二阶极化率张量 表示式为
(1,2 ) d1 d 2 R( 2) (1, 2 )ei (
参考书:
1、《非线性光学》
2、《量子电子学》 3、《非线性光学》
石顺祥 等著
A. 亚里夫 著 沈元壤 著 刘颂豪 等译
光与物质相互作用的半经典理论:
非线性光学现象的理论描述涉及到激光辐射场与物
质相互作用的问题,通常采用半经典理论处理。
第1章 非线性光学极化率的经典描述
第1章 非线性光学极化率的经典描述
以, 下面给出(r)和(r)mic在c.g.s./e.s.u.单位制中的单位:

第1章非线性光学极化率的经典描述2

第1章非线性光学极化率的经典描述2

(1.2 - 14) (1.2 - 15) (1.2 - 16)
第1章 非线性光学极化率的经典描述 章
e r1 = − E (ω ) exp(−ιωt ) F (ω ) + C.C. m
(1.2-17)
e2 r2 = 2 AE 2 (ω ) exp( −2ιω t ) F ( 2ω ) F (ω ) F (ω ) m e2 (1.2-18) + 2 AE (ω ) E * (ω ) exp( −2ιω t ) F (ω ) F ( −ω ) F (0) + C .C . m
第1章 非线性光学极化率的经典描述 章
P (t ) =


P ( k ) (t )
(1.2-20) (1.2-21)
k =1
P
(k )
(t ) = − nerk (t )
P ( 2) (t ) = −ner2 (t ) ne 3 = − 2 AE 2 (ω ) exp(−2ιωt ) F (ω ) F (ω ) F (2ω ) m (1.2-22) ne 3 − 2 AE (ω ) E * (ω ) F (ω ) F (−ω ) F (0) + C.C. m

1
ω − ω − 2ihω
2 0 2
(1.2 - 8)
ne2 (1) F (ω ) = χ ′(ω ) + iχ ′′(ω ) χ (ω ) = ε 0m
式中
(1.2 - 9)
ω02 − ω 2 ne 2 χ ′(ω ) = ε 0m (ω02 − ω 2 ) 2 + 4h 2ω 2 2 ne 2 hω χ ′′(ω ) = ε 0m (ω02 − ω 2 ) 2 + 4h 2ω 2

非线性光学-第二章

非线性光学-第二章

(
)
(
v v 1 3 2 3 (2) (1 ) (3) P = ε 0 x E 0 + (ε 0 x E 0 + ε 0 x E 0 ) cos ω t − k ⋅ r 4 2
(
) )
v v 1 v v 1 2 3 (2) ( 3) + ε 0 x E 0 cos 2ω t − 2 k ⋅ r + ε 0 x E 0 cos 3ω t − 3 k ⋅ r + L 2 4 = P ( 0 ) + P (1) + P ( 2 ) + P ( 3 ) + L
(
)
(
)
(
Hale Waihona Puke ) ()和频
差频
举例三:若光场 由一系列频率为 由一系列频率为ω 举例三:若光场E由一系列频率为ω1, ω2, …ωN的单色光组成,同 ω 的单色光组成, 方向入射到电介质中,电极化强度P又如何表示呢? 方向入射到电介质中,电极化强度 又如何表示呢?
v v 第i个光场表示为 Ei = E0i cos(ωi t − ki ⋅ r ) 个光场表示为
为简单起见,上式先假定 为简单起见,上式先假定E, P及各阶极化率χ(i)均为标量 及各阶极化率 ) v v 举例一: 举例一:假设入射光场为单频余弦波 E = E0 cos ωt − k ⋅ r
(
)
将入射光场代入极化强度表达式中
v v v v v v 2 3 ( 2) 2 (3) 3 P = ε0 x E0 cos ωt − k ⋅ r + ε0 x E0 cos ωt − k ⋅ r + ε0 x E0 cos ωt − k ⋅ r +L
(1)

非线性光学极化率的描述n.pptx

非线性光学极化率的描述n.pptx

(2)
i (112 2 )
1 2
12
• 同理, 若将r阶非线性极化强度表示为
(1.1 - 36)
r
P(r) (t) 0
d1
d
2
dr
(
r
)
(1,2
,,
r
)
|
E
(1
)
E
(2
)
E
(r
i
)e
mt
m 1
(1.1 - 37)
式中, (r)(ω1,ω2,…,ωr)与E(ω1)之间的竖线表示 r 个点, 则第r阶极化率张量表示式为
有关, 这种 与波矢 k 的依赖关系, 叫做介质极化率的空间色散, 其空间色散关系
可以通过空间域的傅里叶变换得到。

因为在光学波段,光波波长比原子内电子轨道半径大的多通常,空间色
散可以忽略 。
第17页/共37页
• 极化率的单位

上面引入了宏观介质的极化率(r), 实际上在文献中还经常用到单个
原子极化率这个参量, 我们用符号(r)mic表示。 宏观极化率与单个原子极化率
(1.2 - 6)
(1) ()
P( ) 0 E ( )
ne2
0m
02
1
2
2ih
(1.2 - 7)
第22页/共37页
如果引入符号

F
(
)
02
1 2
2ih
(1)() ne2 F() () i() 0m
(1.2 - 8) (1.2 - 9)
• 式中
( )
ne2
0m
(02
02 2 2 )2 4h2 2
/0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节 非线性光学极化率一 密度矩阵表述法(一)刘维方程: 非线性光学极化率是介质的特征性质――与介质的电子和分子结构的细节有关――量子力学计算――密度矩阵表述法――最方便的方法,特别当必须处理激发的弛豫时. 令ϕ是在电磁场影响下物质系统的波函数.密度矩阵算符:ϕϕρ= () 物理量P 的系综平均由下式给出:()P Tr P Pρϕϕ== ()[]ρρ,1H =∂∂i t () 该方程称作刘维方程(Liouville ’s equation ).哈密顿算符H 是由三部分组成:H HH H ++=随机int()1)0H 是未受扰动的物质系统的哈密顿算符,其本征态是n ,而本征能量是n E,nn E Hn =0;2)nt H 是描述光与物质相互作用的相互作用哈密顿算符;3)而随机H 是描述系统周围的热库施于该系统随机的扰动的哈密顿算符.H int 在电偶极矩近似下,相互作用哈密顿算符由下式给定:ntH E r e⋅= ()在这里将只考察电子对极化率的贡献. 对于离子的贡献,就必须用—E R q i ii⋅∑代替E r e⋅,其中q i 和i R 分别是第i 个离子的电荷和位置.H 随机 哈密顿算符随机H 是造成物质激发的弛豫的原因,或者换言之,它是造成被扰动了的ρ弛豫回到热平衡的原因. 于是我们可以把式()表示成iht 1=∂∂ρ[]ρ,int 0,H H +弛豫⎪⎭⎫ ⎝⎛∂∂+t ρ()其中 []ρρ,随机弛豫Hiht 1=⎪⎭⎫⎝⎛∂∂ρ的矩阵元的物理意义:将本征态n 作为基矢,并把ϕ写成n 的线性组合: ∑=nn na ϕ,那么,ρ的矩阵元的物理意义就十分清楚了. 矩阵元2annnn n =≡ρρ表示系统在n 态中的布居,而非对角矩阵元*'''a a n n nn n n =≡ρρ表明系统的态具有n和'n 的相干混合.在n 和'n 有混合的情况下,如果a n 与a n '的相对相位是随机的(或不相干的),那么,通过系综平均后就有0'=ρnn 。

寻找(t ∂∂/ρ)弛豫表达式.布居的弛豫是系统与热库的相互作用引起的态之间的跃迁的结果.令W n-n ’是由热引起的丛态n到态'n 的跃迁的速率.于是,n 中的过剩布居的弛豫速率应是()tnn∂∂/ρ弛豫=]'''''_[ρρnnn n n n n nn w w→→∑ ()在热平衡时,就有 0]_[/)0(')0('''')0(==⎪⎭⎫ ⎝⎛∂∂→→∑ρρρnn n n n n n n n nnw w t ()因此,也可以把式()写成()]___[]_[)0(')0('''''')0(⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=∂∂→→∑ρρρρρρnn nn n n n n n n n n n nn w w nn t弛豫 () 非对角元的弛豫更复杂. 然而,在一些简单的情况中,预期相位相干性指数的衰减到零.这样,对于n ≠n ’,我们有ρρ'''nn nn nn t Γ-=⎪⎪⎭⎫⎝⎛∂∂弛豫() 这里'21'1')(nn n n nn T ==ΓΓ--是态n与'n 之间的特征弛豫时间.在磁共振中,布居的弛豫称作纵向弛豫,而非对角矩阵元的弛豫称作横向弛豫. 在某些情况下,态的纵向弛豫能用下式来近似:⎪⎭⎫ ⎝⎛--=∂∂-ρρρρ)0(1)0()(1]_[nn nn n nn nn T t弛豫 () 这样,T 1叫做纵向弛豫时间. 相应的T 2叫做横向弛豫时间.(二)微扰法解刘维方程在计算中采用微扰展开. 令()()()⋅⋅⋅+++=210ρρρρ()()()⋅⋅⋅+++=321P P P P()其中)()()P Tr n n Pρ=( ()式中ρ)0(是热平衡的系统的密度矩阵算符,而且我们假设在介质中没有固有极化,因而00=P)(.把ρ的级数展开式代入式(),再把nt H 视为一级微扰,相同级的相收集在一起,就得到弛豫⎪⎪⎪⎭⎫ ⎝⎛∂∂++=∂∂H H t i tρρρρ)1()0(int )1(0)1(]),[],([1 弛豫⎪⎪⎪⎭⎫ ⎝⎛∂∂++=∂∂H H t i tρρρρ)2()1(int )2(0)2(]),[],([1 ()我们在这里感兴趣的是对能分解成傅立叶分量的场 ∑=E i?i )exp(t ir i ii ω-⋅K的响应. 于是,由于 )(int int ωi i∑H H =和)exp()(int t i i i i ωεω-∝H算符ρ)(n 也能展开成傅立叶级数 )()()(ωρρi in n ∑=当)(/)()()(ωρωωρi n i i n i t -=∂∂时,就能从式()具体的逐级解出)()ωρi n (.第一级解是)()(')]([)()0()0(''''int )1('ρρωωωωρnnn n nn nn i nn i i nn i -+-=ΓH ()这里我们采用了记号''n A n A nn =. 可以很容易得到更高级的解,尽管这种推倒是冗长乏味的,每当在推导中出现对角元)0()(ρn mm 时,为了得到一个封闭的解,常常必须对式()中的()弛豫t mm ∂∂/ρ作进一步的近似. 我们还需提及,只要0≠+ωωk j 式()中)()2('ωωρk j nn +的表达式即使在n=n ’时也是适用的,因为那时可在计算机中略去弛豫⎪⎭⎫ ⎝⎛∂∂t nn /)2(ρ这一项.二. 非线性极化率的微观表达式非线性极化强度()n p 和非线性极化率()n χ 的完全的微观表达式得到的. 在式()和()中,当H int =e E r ⋅和r Ne P-=时,很容易得到由电子贡献引起的一阶和二阶极化率.用明显的笛卡儿张量标记,这些极化率就由下列各式给出:一阶: χij(1)=pi1(1)(ω)/E j (ω)=,)()()()()0(2g gn ng ng gn i ng j ng ng gn j ng i i r r i r r e Nρωωωω∑⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧Γ+--Γ++注意:ij =1,2,3 共有9个分量。

二阶:=+=)(21)2(ωωωijkX [])()(/)(21)2(ωωωk J i E E P∑⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧ ⎝⎛⨯-++--=,,,223.()(((n n g j r eN ωωωωω .)在χ)1(ij 中有两项,而在χ)2(ijk中有8项. 注意:χ)2( 有27个分量三阶:χ)3(ijkL (31ωωωω++=),它总共48项. 在文献(5)中给出了χ)3(ijkL的完全表达式,这里就不在重述了. χ)3(ijkL的共振结构以后要在第十四章里讨论.在非共振的情况下,可以忽略式()的分母中的衰减常数. 注意到这时χ)2(ijk的表达式中最后两项变成-+--))(()()()('21''g n ng gn k n n i ng j r r r ωωωω))(()()()(2'1''ng g n gn g n n i ng k r r r ωωωω-+二阶极化率就能被简化成只有6项的形式.当N 表示每单位体积内的原子或分子数时,表达式()实际上对于气体或分子液体或分子固体是比较合适的,而)0(gρ由玻尔兹曼分布所给定. 对于电子性质由能带结构来描述的固体,其本征态是布洛赫态,而)0(g ρ对应于费米分布. 这时χ)1(ij和χ)2(ijk的表达式应作适当的修改. 由于能带的态基本上是连续的,故可忽略去分母中的衰减常数. 在忽略了光子的波矢关系的电偶极矩近似中,对于这样的固体,χ)2(ijk具有形式χ)2(ijk()2ωωω+==-[][]⎰∑⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧--⨯',,'223)()(,,',,,,c c v v c cv kj i q q q v r q c q c r q c q c r q v q d eωωωω+[][])()(,,',',,,'1q q qv r q c q c r q c q c r q v v c cv j k iωωωω--+[][])()(,,',',,,2'q q qv r q c q c r q c q c r q v cv v c i j k ωωωω++ +[][])()(,,',',,,1'q q q v r q c q c r q c q c r q v cv v c i k j ωωωω+++[][])()(,,',',,,'21q q qv r q c q c r q c q c r q v v c cv k i jωωωω+-+[][])()(,,',',,,2'1q q qv r q c q c r q c q c r q v cv v c j i kωωωω-+()式中q表示电子波矢,v,c,和c ’是带的指标,而)(qf v 是态q v ,的费密分布因子. 对于凝聚态物质,应存在一个由感生的偶极矩-偶极矩相互作用产生的局域场. 于是一个局域场修正因子()n L 要作为一个乘数因子出现在()n χ中. 我们将在第四节中较仔细的讨论这种局域场修正. 对于固体中其波函数扩展到许多个晶胞上的布洛赫(带态)电子来说,这种局域场会有被平均掉的趋势,因而()n L也许接近于1.讨论:1大致估计极化率的数量级2 考察何时可作为微扰比较χ)1(+n与χ)(n1<<时才可用级数展开3 结构对称性对极化率有简化4 极化率的共振增强特性记住:1。

χ)1(ij与rr,能级共振有关2.χ)2(ijk与rrr,能级共振有关三. 非线性极化率的置换对称性在极化率的微观表达式中存在固有的对称性.可以很容易从式()看出,线性极化率)1(ij χ有对称性)(*)()1()1(ωωχχ-=ijij这实际上是翁萨格关系(onsager ’s relation )的一个特殊情况.类似地,当可以略去频率分母中的衰减常数时(即非共振情况),式()中的非线性极化率()ωωωχ+=)2(ijk 或对于 ()ωωωχ+=2)2(ijk 的类似的表达式有下述置换对称性:)()()(*12)2(21)2(21)2(ωωωωωωωωωχχχ-==+-==+=kijjkiijk,)2(21)2(21)2(*)2()2()2(ωωωωωωωωωχχχ+-==-==+=jjijij ijj在这种置换操作中,笛卡儿坐标指标要同具有适当选取符号的频率一起置换.更一般地说,可以证明,n 阶非线性极化率也具有置换对称性)()()(*11)(ln 21)(21)(112121---==+-+-==++==-n n n l ll n n ll l l n n l l ll n n nωωωωωωωωωωωωχχχ如果()n χ 的色散也可忽略的话,那么式()中的置换对称性就变得与频率无关.这样,同一个()n χ 张量的不同元之间现在就存在着一种对称关系,即,当笛卡儿坐标指标被置换时,)(...,1n l l l nχ保持不变. 这称作克莱门猜想(Kleinman ’s conjecture ),利用这种猜想,()n χ的独立元的个数能被大大地减少.例如,它把)2(χ 的 27个元减少到只有10个独立元.然而,我们应该注意,由于所有介质都是色散的.所以,当所有有关频率都远离共振,以致()n χ 的色散相当不重要时,克莱门猜想才是一个很好的近似.四.非线性极化率的结构对称性非线性极化率张量作为介质的光学性质,它应满足结构对称性的某种形式的对称性.因此,某些张量元为零,而另一些相互之间有联系,从而大大减少了独立元的总数.每一个介质都具有一定的对称性,在一群对称操作{ S }的作用下,介质是不变的因而)2(χ 也保持不变. 在实际的操作中是一个二秩三线的张量lm S 于是,在对称操作下)2(χ的不变由下式来具体地描述:()()())2()2(ˆˆ:ˆijkk S j S S i χχ=⋅⋅⋅⋅+对于一个具有由n 个对称操作组成的对称群的介质来说,应有n 个这样的方程.它们给出了联系)2(χ 的各元的许多关系式,然这些关系式常常只有很少几个是独立的.因而可以用这些关系式把)2(χ 的27个元减少到很少几个独立元.例1.在电偶极矩近似下,有反演对称性I 的介质, )2(χ =0 。

相关文档
最新文档