He-Ne laser 激光发散角测量说明
实验三 He-Ne激光器的横模、远场发散角a

实验三He-Ne激光器的横模、远场发散角、输出光功率的测量实验目的:掌握检测He-Ne激光器模式、远场发散角的一种方法,并且通过实验对He-Ne激光器的横模分布,光斑大小、发散角、激光功率有一感性认识。
实验原理:激光是六十年代发展起来的一门尖端科学。
激光不同于一般的光,它有四个独有的特性:高度的方向性、极好的相干性、高亮度以及单色性强。
正因为这些宝贵的特点使它在许多技术领域中得到广泛的应用。
He-Ne激光器是气体激光器中最先发明的一种激光器。
由于它结构简单、使用方便、工作可靠、制造比较容易,应用范围广,目前仍是最通用的激光器。
普通的He-Ne激光器基本上是由激光放电管和一对镀有多层介质膜的高反射球面镜组成,在图1中用放置在Z0和-Z0位置上的两个圆弧表示。
这两个反射镜组成激光器的光学谐振腔。
其中一个是全反镜,在工作波长上具有尽可能接近100%的反射率;另一个是输出反射镜,是在工作波长上具有特定透过率的部分反射镜。
反射镜准确调准产生的光束是发散的,如图1所示,也就是说其强度分布由光束的中心向光束边缘逐渐减少。
在光束截面上光通量密度分布是理想的高斯型的,这样的光称为“单模”,也称“TEM00”模式。
TEM00的发散角最小,可聚焦成尺寸最小的光点。
TEM00模是最合适的工作模式。
在图1中,Z0称为高斯光束的共焦参量....,其物理意义待后阐明。
在激光管的中心,即z=0处,光束最细,W称为最小光斑尺寸.........,或束腰、腰斑..。
在实验中使用的250mm的He-Ne激光器,激光波长为6328埃,是在可见光谱的红光部分。
一、H e-Ne激光器横模的测定检测激光波长为6328A的He-Ne激光器模式的最简便的方法是直接用眼睛或用放大镜观察距离激光器输出端4m以远的白屏上激光光斑的亮度分布。
此法只能作粗略的检查,要鉴定激光器输出的激光是否是严格的基模,则需要采用更为精确的方法。
在实验中,用硅光电池作探测器件,对激光光斑进行扫描,逐点记录硅光电池的光电流,得到一条激光远场某横截面上的光功率分布曲线。
刀口法测量He-Ne激光束发散角实验的再认识

刀口法测量He-Ne激光束发散角实验的再认识魏奶萍;张相武【摘要】The method of edge of He-Ne laser beam divergence angle measurement principle is proved in theo-ry,and then according to the relative power of 0. 25 and 0. 75 points in laser Gaussian distribution curve on both sides of the maximum. The data measured in the experiment are processed by curve fitting,the laser beam divergence angle is obtained.%对刀口法测量He-Ne激光束发散角的测量原理从理论上进行了证明,然后根据激光束相对功率为0.25和0.75的点位于高斯分布曲线极大值两侧,距离为ep=0.6745σ=0.3373W ,对测量实验数据进行曲线拟合,求得其激光光束发散角。
【期刊名称】《大学物理实验》【年(卷),期】2015(000)004【总页数】3页(P78-80)【关键词】刀口法;曲线拟合;发散角【作者】魏奶萍;张相武【作者单位】西安文理学院,陕西西安 710065;西安文理学院,陕西西安 710065【正文语种】中文【中图分类】TN206在激光应用中,激光光束的发散角是一个很重要的参数,它的测量精度会直接影响到光束质量因子M2[1-4].目前,常用的测量方法有焦点刀口扫描法[5]、CCD 摄像法[6]、偏振光干涉法[7]和BBO晶体倍频法[8]等.但在大学本科期间,对He-Ne激光束发散角的测量仍然采用的是刀口法[9],学生对于刀口法测量原理中的相关内容不甚清楚(激光束发散角在其相对功率为0.25和0.75的点位于高斯分布曲线极大值的两侧,其距离为ep=0.674 5σ =0.337 3W .).鉴于此,对刀口法测量原理想从理论上予以证明,然后再结合实验数据进行曲线拟合,求得其激光光束发散角。
11 实验十一 He-Ne激光器实验

择仪器安装场地时应注意以下几点:
1. 环境温度 20±5℃ 2. 净化湿度 < 65% 3. 无强振动源、无强电磁场干扰。 4. 室内保持清洁、无腐蚀性气体。 5. 仪器应放置在坚固的平台上。 6. 仪器放置处不可长时间受阳光照射。 7. 室内应具稳压电源装置对仪器供电,装有地线,保证仪器接地良好。
E2
hν
hν
EE1 2
E2 EE1 2
(a) 自发辐射
hν
hν
hν
高能态原子 (c) 低受能激态发原射子
(b) 受激吸收 E2
EE1 2
双能级原子中的三种跃迁
3.3 粒子数反转
一个诱发光子不仅能引起受激辐射,而且它也能引起受激吸收,所以只有当处 在高能级的原子数目比处在低能级的还多时,受激辐射跃迁才能超过受激吸收,而 占优势。由此可见,为使光源发射激光,而不是发出普通光的关键是发光原子处在 高能级的数目比低能级上的多,这种情况,称为粒子数反转。但在热平衡条件下, 原子几乎都处于最低能级(基态)。因此,如何从技术上实现粒子数反转则是产生激 光的必要条件。
5 氦氖激光器系列实验
5.1 实验一 氦氖激光束光斑大小和发散角 实验目的
1.掌握测量激光束光斑大小和发散角的方法。 2.深入理解基模激光束横向光场高斯分布的特性及激光束发散角的意义。
-4-
天津市港东科技发展有限公司
实验仪器用具
氦氖激光器、光功率指示仪、硅光电池接收器、狭缝、微动位移台。
实验原理
激光束的发散角和横向光斑大小是激光应用中的两个重要参数,激光束虽有方
4.2 激励源
为了使工作介质中出现粒子数反转,必须用一定的方法去激励原子体系,使处 于上能级的粒子数增加。一般可以用气体放电的办法来利用具有动能的电子去激发 介质原子,称为电激励;也可用脉冲光源来照射工作介质,称为光激励;还有热激 励、化学激励等。各种激励方式被形象化地称为泵浦或抽运。为了不断得到激光输 出,必须不断地“泵浦”以维持处于上能级的粒子数比下能级多。
He-Ne激光的纵模及基模的远场发散角

He-Ne激光的纵模及基模的远场发散角一、实验目的:1、通过测试分析,掌握模式分析的基本方法。
2、对实验中使用的重要分光仪器——共焦球面扫描干涉仪,了解其原理、性能,学会正确使用。
3、熟悉谐振腔的构成,学会调整的方法,体会谐振腔调整之后一些激光参数的变化。
二、实验内容:1、He-Ne激光器模式分析要测量和分析出激光器所具有的纵模个数,纵模频率间隔值,横模个数,横模频率间隔值,不同位置基模对应的光斑图形1)通过共焦球面干涉仪接示波器观察纵模频率间隔,再根据自由光谱范围的定义,确定它所对应的频率间隔(即哪两条谱线间距为ΔvS.R. )为减少测量误差,需要对x轴增幅,测出与ΔvS.R.相对应的标尺长度,计算出两者比值,即每厘米代表的频率间隔值。
(2)通过减小光阑大小,观察模式变化。
1、He-Ne激光器模式分析(1)点燃外腔激光器。
(2)调整光路,首先使激光束从光阑小孔通过,调整扫描干涉仪上下、左右位置,使光束正入射孔中心,再细调干涉仪板架上的两个方位螺丝,使从干涉仪腔镜反射的最亮的光点回到光阑小孔的中心附近,这时表明入射光束和扫描干涉仪的光轴基本重合。
(3)将放大器的接收部位对准扫描干涉仪的输出端。
接通放大器、锯齿波发生器、示波器的开关,观察示波器上的展现的频谱图,进一步细调干涉仪的两个方位螺丝,使谱线尽量强,噪声最小。
(4)改变锯齿波输出电压的峰值,看示波器上干涉序的数目有何变化,确定示波器上应展示的干涉序个数。
根据干涉序个数和频谱的周期性,确定哪些模属于同一k序。
(5)根据自由光谱范围的定义,确定它所对应的频率间隔(即哪两条谱线间距为ΔvS.R. )为减少测量误差,需要对x轴增幅,测出与ΔvS.R.相对应的标尺长度,计算出两者比值,即每厘米代表的频率间隔值。
(6)在同一干涉序k内观测,根据纵模定义对照频谱特征,确定纵模的个数,并测出纵模频率间隔ΔvΔq=1。
与理论值比较,检查辨认和测量的值是否正确。
氦氖激光参数测量实验

He -Ne 激光参数测量实验氦氖激光束光斑大小和发散角测量实验目的1.掌握测量激光束光斑大小和发散角的方法。
2.深入理解基模激光束横向光场高斯分布的特性及激光束发散角的意义。
实验仪器用具氦氖激光器、光功率指示仪、硅光电池接收器、狭缝、微动位移台。
实验原理激光束的发散角和横向光斑大小是激光应用中的两个重要参数,激光束虽有方向性好的特点,但它不是理想的平行光,而具有一定大小的发散角。
在激光准直和激光干涉测长仪中都需要设置扩束望远镜来减小激光束的发散度。
1、激光束的发散角 θ激光器发出的激光束在空间的传播如图 1-1 所示,光束截面最细处成为束腰。
我们将柱坐标(z 、r 、φ)的原点选在束腰截面的中点,z 是光束传播方向。
束腰截面半径为0w ,距束腰为 z 处的光斑半径为 w(z),则 2/1220])(1[)(w z w z w πλ+= 其中λ是激光波长。
上式可改写成双曲线方程1]/[])([22020=-λπw z w z w 双曲线的形状已画在1-1 中。
我们定义双曲线渐近线的夹角θ为激光束的发散角,则有z z w w /)(2)/(20==πλθ (z 很大)(1.1)由式(1.1)可知,只要我们测得离束腰很远的 z 处的光斑大小 2 w(z),便可算出激光束发散角。
2、激光束横向光场分布如图 1-1,激光束沿 z 轴传播,其基模的横向光场振幅00E 随柱坐标值 r 的分布为高斯分布的形式)](/exp[)()(220000z w r z E r E -= (1.2)式中)(00z E 是离束腰z 处横截面内中心轴线上的光场振幅, w (z)是离束腰z 处横截面的光束半径,)(00r E 则是该横截面内离中心r 处的光场振幅。
由于横向光场振幅分布是高斯分布,故这样的激光束称为高斯光束。
当量值r =w(z) 时,则)(00r E 为)(00z E 的1/e 倍。
前面的讨论中,我们并未对光束半径下定义。
He-Ne激光模式及参数测量

不相等,因此可以判断A、B是两个纵模,而 C、D、E、F 是跳模。
(3)出现跳模的原因可能是:由于腔内温度的升高,使得粘贴在放电管两端的两个反射镜
片之间的距离加大,也就是谐振腔的腔长变大。
这将使得各本证纵模的谐振频率向低频方向漂移,输出激光的频率也随之减小。当 ������������:1
模的频率变成比������������模频率更接近中心频率 ������0 时,由于谱线竞争,������������:1模就可能战胜 ������������ 模取
(2) 保证倾角、高度不变,大范围内移动水平距离 Z,在不同距离观察 M,N,光电接
收器上的光斑位置,是否出现大幅度移动;
倘若大幅度移动,说明没有达到“平行、等高、垂直”;这时调节方向是往光斑反方向
运动的方向调节;直到光斑在 M、N、光电转换器上的光斑不随着水平距离 Z 的变化发生大
幅度移动。其原理如下:
e
2
x xc w2
2
π /2
严格满足高斯型表达式。按照高斯光束理论,w 即为光斑半径,代表着光强下降到最大
值的 ������;2。因此第一组数据测量所得的光斑半径为:
������ = 0.068 + ������������������������ × ������������������[− 2(������;26.8.644266)2]
������1 = 2.84 mm,相关系数 :γ = 0.998。满足实验精度要求。理想情况下表达式为:
������(������,
������)
=
������(������,
0)������������������[−
2������2 ������(������ )2
实验一光斑半径和发散角的测量讲义

实验十三 氦氖激光束光斑大小和发散角测量一、激光原理概述1.普通光源的发光——受激吸收和自发辐射普通常见光源的发光(如电灯、火焰、太阳等的发光)是由于物质在受到外来能量(如光能、电能、热能等)作用时,原子中的电子就会吸收外来能量而从低能级跃迁到高能级,即原子被激发。
激发的过程是一个“受激吸收”过程。
处在高能级(E2)的电子寿命很短(一般为10-8~10-9秒),在没有外界作用时会自发地向低能级(E1)跃迁,跃迁时将产生光(电磁波)辐射。
辐射光子能量为12E E h −=ν这种辐射称为自发辐射。
原子的自发辐射过程完全是一种随机过程,各发光原子的发光过程各自独立,互不关联,即所辐射的光在发射方向上是无规则的射向四面八方,另外位相、偏振状态也各不相同。
由于激发能级有一个宽度,所以发射光的频率也不是单一的,而有一个范围。
在通常热平衡条件下,处于高能级E 2上的原子数密度N 2,远比处于低能级的原子数密度低,这是因为处于能级E 的原子数密度N 的大小随能级E 的增加而指数减小,即N∝exp(-E/kT),这是著名的波耳兹曼分布规律。
于是在上、下两个能级上的原子数密度比为]/)(exp[/1212kT E E N N −−∝式中k 为波耳兹曼常量,T 为绝对温度。
因为E 2>E 1,所以N 2<N 1。
例如,已知氢原子基态能量为E 1=-13.6eV,第一激发态能量为E 2=-3.4eV,在20℃时,kT≈0.025eV,则0)400exp(/12≈−∝N N可见,在20℃时,全部氢原子几乎都处于基态,要使原子发光,必须外界提供能量使原子到达激发态,所以普通广义的发光是包含了受激吸收和自发辐射两个过程。
一般说来,这种光源所辐射光的能量是不强的,加上向四面八方发射,更使能量分散了。
2.受激辐射和光的放大由量子理论知识了解,一个能级对应电子的一个能量状态。
电子能量由主量子数n(n=1,2,…)决定。
实验3 氦氖激光器的偏振与发散特性测试数据处理与分析

He-Ne激光器偏振光数据处理与分析1、He-Ne激光器偏振光测量表1 He-Ne激光器偏振光测量数据表偏振角度(°)输出功率(mW)偏振角度(°)输出功率(mW)偏振角度(°)输出功率(mW)0 1.1361250.8032500.0905 1.0731300.8592550.096100.9951350.9342600.119150.835140 1.0022650.169200.743145 1.0662700.204250.665150 1.1172750.252300.556155 1.1452800.315350.464160 1.1872850.412400.378165 1.2012900.495450.291170 1.1722950.618500.225175 1.1473000.710550.170180 1.1043050.801600.130185 1.0343100.867650.0981900.9483150.966700.0881950.841320 1.027750.0922000.755325 1.102800.1132050.659330 1.145850.1532100.574335 1.174900.1982150.473340 1.192950.2812200.386345 1.1831000.3622250.285350 1.1681050.4592300.223355 1.1471100.5252350.172360 1.0981150.6082400.1271200.6992450.099图1 He-Ne激光器偏振特性曲线图分析:由图1 He-Ne 激光器偏振特性曲线图可知,He-Ne 激光器输出的光为线偏振光;而且从图中曲线可知,曲线并非完全的平滑,有一定的凹凸瑕疵,这说明实验存在误差,这主要是受实验环境光变化的影响所致。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、激光束发散角说明
2、测量方式
a 、接收屏用来观测激光光斑尺寸,可以为纸板,墙壁等平面,接收屏到激光器距离为x ,通过测量确定,建议距离x 大于4米;点亮激光器后,在接收屏上测量光斑直径2ω。
b 、图中束腰位置为激光束光斑尺寸最小的轴向位置 (即激光器出射光束自然会聚的位置,可沿轴向移动白纸,观察光点尺寸变化找到),束腰一般与HeNe 激光器的出射窗口重合或在其附近,测量束腰到激光器出射窗口的距离x 0
c 、发散角可按下式计算
2θ=2ω/(x −x 0)
如光束尺寸2ω以毫米(mm)为单位,距离x 以米(m)为单位,则上式所得发散角单位为mrad 。
根据激光器标称参数(发散角<1.5mrad ),4米处光斑直径应小于6mm 。
d 、补充:
1、如激光自窗口出射后能观察到明显的汇聚效果,则说明激光器准直性较差。
2、如激光自窗口出射后未观察到明显的汇聚,则光束束腰位置可能与窗口重合或在激光管内部,此时可认为x 0=0。
3、当接收屏离激光器较远时(此处取x >4m ),则直接测量屏上光斑尺寸即可作为判断准直性优劣的标准。
2ω0 HeNe 激光器 2ω
x 0
x
接收屏 束腰位置 激光出
射窗口。