IIR数字滤波器的原理及设计说明

合集下载

IIR滤波器设计报告

IIR滤波器设计报告

IIR滤波器设计报告IIR(Infinite Impulse Response)滤波器是数字信号处理领域中常用的一种滤波器类型。

与FIR(Finite Impulse Response)滤波器相比,IIR滤波器具有更高的滤波效率和更窄的频带宽度。

本文将介绍IIR滤波器的设计原理、设计步骤以及在实际应用中的一些注意事项。

一、IIR滤波器的设计原理IIR滤波器的设计基于递归差分方程的实现方法。

其基本结构包括反馈回路和前馈路径。

具体而言,IIR滤波器的输出值是输入值和过去输出值的加权和。

这种反馈结构使得IIR滤波器具有无限冲击响应的特性,即滤波器的输出值受到过去输出值的影响。

二、IIR滤波器的设计步骤1.确定滤波器的类型:根据实际需求确定滤波器是低通、高通、带通还是带阻类型。

2.确定滤波器的阶数:滤波器的阶数决定了滤波器对信号的响应速度和滤波器的复杂程度。

一般而言,阶数越高,滤波器的响应速度越快,但也会增加计算的复杂度。

3.确定滤波器的截止频率:根据实际需求确定滤波器的截止频率,即滤波器开始起作用的频率。

4. 计算滤波器的系数:根据滤波器的类型、阶数和截止频率,使用滤波器设计软件或公式来计算出滤波器的系数。

常用的设计方法包括巴特沃斯(Butterworth)滤波器设计、切比雪夫(Chebyshev)滤波器设计和椭圆(Elliptic)滤波器设计等。

5.实现滤波器:将滤波器的系数应用到差分方程或差分方程的转移函数中,从而实现滤波器。

三、IIR滤波器的应用注意事项1.阶数选择:较低的阶数可以实现基本的滤波效果,但可能无法满足更高的要求。

较高的阶数可以实现更精确的滤波效果,但同时也会增加计算的复杂度。

在实际应用中,需根据具体要求和系统的计算能力来选择适当的阶数。

2.频率响应:不同类型的IIR滤波器具有不同的频率响应特性。

在设计和选择滤波器的时候,需要根据实际应用需求来确定适合的滤波器类型。

3.稳定性:IIR滤波器可能会存在稳定性问题,即滤波器的输出会发散或产生震荡。

iir数字滤波器设计原理

iir数字滤波器设计原理

iir数字滤波器设计原理IIR数字滤波器设计原理IIR(Infinite Impulse Response)数字滤波器是一种常用的数字滤波器,其设计原理基于无限冲激响应。

与FIR(Finite Impulse Response)数字滤波器相比,IIR数字滤波器具有更低的计算复杂度和更窄的频率过渡带。

在信号处理和通信系统中,IIR数字滤波器被广泛应用于滤波、陷波、均衡等领域。

IIR数字滤波器的设计原理主要涉及两个方面:滤波器的结构和滤波器的参数。

一、滤波器的结构IIR数字滤波器的结构通常基于差分方程来描述。

最常见的结构是直接型I和直接型II结构。

直接型I结构是基于直接计算差分方程的形式,而直接型II结构则是通过级联和并联方式来实现。

直接型I结构的特点是简单直接,适用于一阶和二阶滤波器。

它的计算复杂度较低,但对于高阶滤波器会存在数值不稳定性的问题。

直接型II结构通过级联和并联方式来实现,可以有效地解决数值不稳定性的问题。

它的计算复杂度相对较高,但适用于高阶滤波器的设计。

二、滤波器的参数IIR数字滤波器的参数包括滤波器的阶数、截止频率、增益等。

这些参数根据实际需求来确定。

滤波器的阶数决定了滤波器的复杂度和性能。

阶数越高,滤波器的频率响应越陡峭,但计算复杂度也越高。

截止频率是指滤波器的频率响应开始衰减的频率。

截止频率可以分为低通、高通、带通和带阻滤波器。

根据实际需求,选择合适的截止频率可以实现对信号的滤波效果。

增益是指滤波器在特定频率上的增益或衰减程度。

增益可以用于滤波器的频率响应的平坦化或强调某些频率。

IIR数字滤波器的设计通常包括以下几个步骤:1. 确定滤波器的类型和结构,如直接型I或直接型II结构;2. 确定滤波器的阶数,根据要求的频率响应和计算复杂度来选择;3. 设计滤波器的差分方程,可以使用脉冲响应不变法、双线性变换法等方法;4. 根据差分方程的系数,实现滤波器的级联和并联结构;5. 进行滤波器的参数调整和优化,如截止频率、增益等;6. 对滤波器进行性能测试和验证,确保设计满足要求。

第六章IIR数字滤波器设计HD--8

第六章IIR数字滤波器设计HD--8
pk e 2 2N , k 0,1,, N 1
Ha ( p)
b0
b1
p
1 bN 1 p N 1
pN
(3) 将Ha(p)去归一化。将p=s/Ωc代入Ha(p),得到实际的滤波器 传输函数Ha(s)。
Ha (s) Ha ( p) p s c
例: 已知通带截止频率fp=5kHz,通带最大衰减p=2dB,阻带 截止频率fs=12kHz,阻带最小衰减s=30dB,按照以上技术指 标设计巴特沃斯低通滤波器。
现代滤波器:如维纳滤波器,卡尔曼滤波器,自适 应滤波器等最佳滤波器(按随机信号 内部的统计分布规律,从干扰中最佳 提取信号)
经典滤波器的几种类型:
数字滤波器从实现的网络结构或者从单位脉冲响应 分类,可以分成无限脉冲响应(IIR)滤波器和有限脉冲 响应(FIR)滤波器。它们的系统函数分别为:
IIR滤波器
解: (1) 确定阶数N:
100.1ap 1 ksp 100.1as 1 0.0242
sp
2 2
fs fp
2.4
N lg 0.0242 4.25, N 5 lg 2.4
(2) 求极点:
j ( 1 2k1)
pk e 2 2N , k 0,1,, N 1
归一化传输函数为
Ha( p) 4 1
设ha(t)的采样信号用 hˆa (t)表示,
( p pk )
k 0
上式分母可以展开成为五阶多项式,或者将共轭极点放在 一起,形成因式分解形式。不如直接查表简单,由N=5,直接 查表得到:
极点:-0.3090±j0.9511、-0.8090±j0.5878、 -1.0000
Ha( p)
p5
b4 p4
1 b3 p3 b2 p2

iir数字滤波器工作原理

iir数字滤波器工作原理

iir数字滤波器工作原理
IIR数字滤波器(Infinite Impulse Response Digital Filter)是一
种数字信号处理器(Digital Signal Processor)中常用的滤波器。

其工作原理基于数字滤波器的差分方程,可以实现对数字信号进行滤波。

IIR数字滤波器的工作原理可以分为两个阶段:前馈阶段和反
馈阶段。

1. 前馈阶段:在该阶段,输入信号与前向传递函数(forward transfer function)的系数相乘,并通过一个加法器将它们的和
作为输出信号的一部分。

一般来说,前馈传递函数的系数是事先根据滤波器的类型和设计要求确定的。

2. 反馈阶段:在该阶段,输出信号与反馈传递函数(feedback transfer function)的系数相乘,并通过一个延迟缓冲器(delay buffer)将它们的和延迟一定时间后再次与输入信号相加。


馈传递函数的系数也是根据滤波器的类型和设计要求确定的。

通过不断重复进行前馈和反馈阶段的操作,IIR数字滤波器可
以实现对输入信号的滤波效果。

其输出信号的特点是:它不仅受到当前输入信号的影响,还受到之前输入信号和输出信号的影响。

这个特点使得IIR数字滤波器具有无限脉冲响应(Infinite Impulse Response)的特性,因为它的输出信号中包
含了之前输入信号和输出信号的影响。

总结来说,IIR数字滤波器的工作原理是通过前馈和反馈阶段
来实现对输入信号的滤波,并且它的输出信号受到当前和之前输入信号以及输出信号的影响。

这种滤波器常用于音频处理、图像处理等领域。

数字信号处理第五章-IIR数字滤波器的设计

数字信号处理第五章-IIR数字滤波器的设计
24
2、由模平方函数确定系统函数
模拟滤波器幅度响应常用幅度平方函数表示:
| H ( j) |2 H ( j)H *( j)
由于冲击响应h(t)为实函数,H ( j) H *( j)
| H ( j) |2 H ( j)H ( j) H (s)H (s) |s j
H (s)是模拟滤波器的系统函数,是s的有理分式;
分别对应:通带波纹和阻带衰减(阻带波纹)
(4种函数)
只介绍前两种
31
32
33
无论N多大,所 有特性曲线均通 过该点
特性曲线单调减小,N越大,减小越慢 阻
特性曲线单调减小,N越大,减小越快
34
20Nlog2:频率增加一倍,衰减6NdB
35
另外:
36
无论N多大,所 有特性曲线均通 过Ωc点: 衰减3dB, Ωc 为 3dB带宽
8
根据
(线性相位滤波器)
非线性相位滤波器
9
问题:
理想滤波器的幅度特性中,频带之间存 在突变,单位冲击响应是非因果的;
只能用逼近的方法来尽量接近实际的要 求。
滤波器的性能要求以频率响应的幅度特 性的允许误差来表征,如下图:
10
p
11
低通滤波器的频率响应包括:
通带:在通带内,以幅度响应的误差δp逼近 于1;
20
3、数字滤波器设计的基本方法
利用模拟理论进行设计 先按照给定的技术指标设计出模拟滤波 器的系统函数H(s),然后经过一定的变 换得到数字滤波器的系统函数H(z),这实 际上是S平面到Z平面的映射过程: 从时域出发,脉冲响应不变法 从频域出发,双线性变换法 适合于设计幅度特性较规则的滤波器, 如低通、高通等。
由于系统稳定, H(s)的极点一定落在s的左半 平面,所以左半平面的极点一定属于H(s),右 半平面的极点一定属于H(-s)。

iir数字滤波器的设计原理

iir数字滤波器的设计原理

iir数字滤波器的设计原理
IIR(Infinite Impulse Response)数字滤波器是一种常见的数字滤波器类型,其设计基于具有无限冲激响应的差分方程。

相比于FIR(Finite Impulse Response)数字滤波器,IIR滤波器通常可以用更少的系数实现相似的频率响应,但也可能引入稳定性和相位延迟等问题。

以下是设计IIR数字滤波器的原理:
选择滤波器类型:首先,确定所需的滤波器类型,例如低通滤波器、高通滤波器、带通滤波器或带阻滤波器。

确定规格:定义滤波器的规格,包括截止频率、通带和阻带的幅度响应要求、群延迟要求等。

选择滤波器结构: IIR滤波器有不同的结构,如Butterworth、Chebyshev Type I和 Type II、Elliptic等。

选择适当的滤波器结构取决于应用的要求。

模拟滤波器设计:利用模拟滤波器设计技术,例如频率变换法或波纹变换法,设计出满足规格要求的模拟滤波器。

离散化:使用数字滤波器设计方法,将模拟滤波器离散化为数字滤波器。

这通常涉及将模拟滤波器的差分方程转换为差分方程,通常使用褶积法或双线性变换等方法。

频率响应调整:通过调整设计参数,如截止频率、阻带衰减等,以满足实际需求。

稳定性分析:对设计的数字滤波器进行稳定性分析,确保它在所有输入条件下都是稳定的。

实现和优化:最后,将设计好的数字滤波器实现为计算机程序或硬件电路,并进行必要的性能优化。

总体而言,IIR数字滤波器设计是一个复杂的过程,涉及到模拟滤波器设计、频域和时域变换、数字化和稳定性分析等多个步骤。

在实际应用中,通常使用专业的工具和软件来辅助设计和分析。

5IIR数字滤波器设计ppt课件

5IIR数字滤波器设计ppt课件

j c
sk
e j(2kN 1) / 2N c
k 1,2,,2N
23
模拟滤波器的设计
下图给出的是按以上公式所求得的N=3和N=4时的极点发布图:

于 极 点 的
在归一化频率的情况 c=1,极点均匀分布在单位圆上
s e j(2k N 1) / 2N k
k 1,2,, N
讨 对于物理可实现系统,它的所有极点均应在 s的左半平面上
| H ( j) |2 H ( j)H ( j) s j H (s)H (s)
16
模拟滤波器的设计
由给定的模平方函数求所需的系统函数的方法:
① 解析延拓:令 s j代入模平方函数得:H(s)H(s),
并求其零极点。
②取H(s)H(s) 所有左半平面的极点作为 H (s)的极点。
③按需要的相位条件(最小相位、混合相位等)取 H(s)H(s)
2 ( s )2N 2
p
N lg( / ) 1 lg[(100.1As 1) /(100.1Ap 1)]
lg( s / p ) 2
lg( s / p )
若给定的指标 Ap =3dB, 即通带边频 p c时,
ε=1,可求得:
lg( / )
lg( )
lg( 100.1As 1)

24
模拟滤波器的设计
Ⅱ 系统函数的构成
滤波器的极点求出后,可取左半平面上的所有极点构
成系统函数。
H (s) A N 1
(s si )
i 1
对于低通滤波器,为了保证在频率零点 0 处,
| H ( j) | 1,可取: N
A (1) N si
i 1
N
H (s) (1)N

iir滤波器设计方法

iir滤波器设计方法

iir滤波器设计方法IIR滤波器设计方法数字信号处理中的滤波器是一项重要的技术,用于滤除数字信号中的噪声和干扰,并对信号进行平滑处理。

IIR滤波器作为数字滤波器的一种,被广泛应用于音频处理、图像处理等领域。

下面将介绍IIR滤波器的设计方法。

一、数字滤波器的基本原理数字滤波器是一种按照某种规律改变信号频率和幅度的系统。

数字滤波器的基本原理是,将输入信号x(n)通过一定的滤波器系统后,得到输出信号y(n)。

滤波器系统可以是连续时域滤波器,也可以是离散时域滤波器。

其中,IIR滤波器是离散时域滤波器的其中一类。

二、IIR滤波器的分类IIR滤波器可以分为两类:低通滤波器和高通滤波器。

低通滤波器用于滤除高频噪声,保留低频信息,常用于音频等信号处理。

高通滤波器则用于滤除低频噪声,保留高频信息,常用于图像边缘检测等处理。

三、IIR滤波器设计方法1. 选择滤波器类型首先需要选择合适的滤波器类型,通常是根据所要处理的信号类型选择,“低通”或“高通”滤波器。

2. 确定滤波器参数在选定滤波器类型后,需要确定滤波器参数。

通常包括切-off频率、通带增益、阻带增益等。

其中,切-off频率是指信号经过滤波器后的频率处理效果,通带增益和阻带增益是指滤波器在信号传输过程中增益的波动程度。

3. 设计滤波器传递函数设计滤波器传递函数的目的是,确定在滤波器系统中所要使用的传递函数,以实现所要求的滤波效果。

根据IIR滤波器的设计方法,通常采用应用差分方程来实现传递函数。

4. 设置初始滤波器系数通过选择合适的初始滤波器系数,可以影响整个滤波器系统的滤波效果。

在确定了滤波器的传递函数后,设计人员可以根据所要求的滤波效果来选择合适的初始滤波器系数。

5. 优化滤波器系数通过不断的调节和优化滤波器系数,可以提高整个滤波器系统的滤波效果。

优化的过程通常需要根据实际的滤波效果进行多次调整和修改。

四、总结IIR滤波器是数字信号处理中一种常用的滤波器类型,其设计方法可以通过选择合适的滤波器类型、确定滤波器参数、设计滤波器传递函数、设置初始滤波器系数和优化滤波器系数等步骤来实现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.1.3 借助于模拟滤波器的理论和方法的设计原理 利用模拟滤波器来设计数字滤波器,要先根据滤波器的性
能指标设计出相应的模拟滤波器的系统函数Ha(s),然后 由Ha(s)经变换而得到所需要的数字滤波器的系统函数 H(z)。常用的变换方法有冲激响应不变法和双线性变换法。
6.2 模拟低通滤波特性的逼近 模拟滤波器的设计包括逼近和综合两大部分,其中逼近
a0
i 1 N
(6.3)
1 bi z i
(1 di z 1 )
i 1
i 1
其中ci 为零点而di为极点。H(z)的设计就是要确定系数、
或者零极点、,以使滤波器满足给定的性能指标。一般有
三种方法。
1. 零极点位置累试法
IIR系统函数在单位圆内的极点处出现峰值、在零点
处出现谷值, 因此可以根据此特点来设置H(z)的零极点以
i0
i 1
于是得到IIR数字滤波器的系统函数:
M
H (z) Y (z)
ai z i
i0
X (z)
N
1 bi z i
i 1
(6.2)
6.1.2 IIR 数字滤波器的设计方法
对(6.2)式的有理函数的分子、分母多项式进行因式分解,
可以得到:
M
M
ai z i
(1 ci z 1 )
H (z) i0 N
6.2.1 Butterworth低通滤波特性的逼近
对于Butterworth滤波器有:
|Ha (j)|2
1
[1
(
c
)
2
N
]
(6.4)
满足此平方幅度特性的滤波器又叫做B型滤波器。这里N
为正整数,为B 型滤波器的阶次,为截止频率。
6.2.1.1 B型滤波特性 1. 最平坦函数 B型滤波器的幅频特性是随增大而单调下降的。在
这种方法能够精确地设计许多复杂的滤波器,但是往往计 算很复杂,需要进行大量的迭代运算,故必须借助于计算 机,因而优化设计又叫做IIR滤波器的计算机辅助设计 (CAD)。
第一种方法的算法简单、设计粗糙,在这里不具体讨论了; 第三种方法所涉及的内容很多,并且需要最优化理论作为 基础,因此在本章中只能作简要介绍;本章将着重讨论用 得最多的第二种方法。
达到简单的性能要求。所谓累试,就是当特性尚未达到要
求时,通过多次改变零极点的位置来达到要求。当然这种
方法只适用于简单的、对性能要求不高的滤波器的设计。
2. 借助于模拟滤波器的理论和设计方法来设计数字滤波器
模拟滤波器的逼近和综合理论已经发展得相当成熟,
产生了许多效率很高的设计方法,很多常用滤波器不仅有
部分是与数字滤波器的设计有关的。本节要讨论的是,在 已知模拟低通滤波器技术指标的情况下,如何设计其系统 函数Ha(s),使其逼近所要求的技术指标。
模拟系统的频率响应Ha(jΩ)是冲激响应ha(t)的傅里叶变 换,Ha(jΩ)的模表征系统的幅频特性,下面要讨论如何 根据幅频特性指标来设计系统函数。
=0附近以及 很大时幅频特性都接近理想情况,而且在 这两处曲线趋于平坦,因此B型特性又叫做最平坦特性。
2. 3db带宽
由(6.4)式可知,当Ω=Ωc 时,| Ha ( j)|2 =
1 2
,而
10 log10
|
Ha(
jc )
|2 10 log10
1 2
3db
因此截止频率又叫做3db带宽或者半功率点。
简单而严格的设计公式,而且设计参数已图表化,设计起
来方便准确。
而数字滤波器就其滤波功能而言与模拟滤波器是相同的, 因此,完全可以借助于模拟滤波器的理论和设计方法来设 计数字滤波器。在IIR数字滤波器的设计中,较多地采用 了这种方法。
3. 用优化技术设计
系统函数H(z)的系数、或者零极点、等参数,可以采
1 [1
(
c
)
2
N
]
1
[1
(
j jc
)
2
N
]
用s代替上式中的j:
Ha (s)H a (s)
1
[1
(
s jc
)
2
N
]
(6.6)
图 6.2 阶次N对B型特性的影响
(6.6)式的极点为:sp jc (1)1/(2N) jc p p=0,1,…,2N-1
6.2.1.2 由得到Ha(s), B型滤波器的极点
由于Ha(s)是
s的实系数有理函数,故有:H
* a
(s)
Ha
(s*
),
令s=jΩ,
则有:H
* a
(
j)
Ha ( j) ,

|
Ha
(
j)|2
Ha
(
j)H
* a
( j)
Ha
( j)Ha
(
j)
(6.5)
由(6.4)式和(6.5)式有:Ha (j)Ha (j)
图6.1中用虚线画出的矩形表示一个理想的模拟低通滤波 器的指标,是以平方幅度特性|Ha(jΩ)|2来给出的。
Ωc 是截止频率,当0≤Ω<Ωc时,|Ha(jΩ)|2 =1,是通带; 当Ω>Ωc时,|Ha(jΩ)|2 =0,是阻带。图6.1中的实的曲线 表示一个实际的模拟低通滤波器的平方幅度特性,我们的 设计工作就是要用近似特性来尽可能地逼近理想特性。 通常采用的典型逼近有Butterworth逼近、 Chebyshev逼 近和Cauer逼近(也叫椭圆逼近〕。
用最优化设计方法来确定。最优化设计法的第一步是要选
择一种误差判别准则,用来计算误差和误差梯度等。
第二步是最优化过程,这个过程的开始是赋予所设计的参 数一组初值,以后就是一次次地改变这组参数,并一次次 计算H(z)的特性与所要求的滤波器的特性之间的误差,当 此误差达到最小值时,所得到的这组参数即为最优参数, 设计过程也就到此完成。
第6章 IIR数字滤波器的原理及设计
6.1 概述
6.1.1 IIR 数字滤波器的差分方程和系统函数
我们已经知道IIR数字滤波器是一类递归型的线性时不变
因果系统,其差分方程可以写为:
MNຫໍສະໝຸດ y(n) ai x(n i) bi y(n i)
i0
i 1
(6.1)
M
N
进行z变换,可得: Y (z) ai z i X (z) bi z iY (z)
图6.1 Butterworth低通滤波器的平方幅度特性
3. N的影响
在通带内,0<(Ω/Ωc)<1,故N越大, | Ha ( j)|2 随增大
而下降越慢;
在阻带内,(Ω/Ωc)>1,故N越大,| Ha ( j)|2 随增大而下
降越快。
因此,N越大,B型滤波器的幅频特性越接近理想的矩形 形状;而不同的N所对应的特性曲线都经过Ωc 处的半功 率点。离Ωc越近,幅频特性与理想特性相差越大。
相关文档
最新文档