第4章:催化剂的结构(上)
第四章 催化剂

一种催化剂只能选择性地加速某一或某些特定的化学反应, 意即同一催化剂对于不同的反应具有不同的催化活性,称 催化剂选择性。利用催化剂对反应的选择性来控制原料的 化学转变方向,在化学工业中有重要意义。 在可逆反应中,对于正、逆反应的速度,催化剂是以同样 的倍率产生影响的。所以催化剂虽然能加速化学反应, 但它不能改变化学平衡常数,只能影响反应向平衡状态推 进的速度。例如铂、钯催化剂可使苯加氢转变为环己烷, 但在有利于脱氢反应的热力学条件下,它们亦可使环己烷 脱氢成苯。
Ⅱ、线缺陷(一维缺陷)——位错
指晶体中某处有一列原子发生有规 律的错排现象称为位错(dislocation)。
分类
刃型位错(Edge Dislocation) 螺旋位错(Screw Dislocation)
Ⅲ、面缺陷(二维缺陷)——晶 界和亚晶界
面缺陷( Planar Defect )又称为二 维缺陷,是指在二维方向上偏离理想晶体 中的周期性、规则性排列而产生的缺陷, 即缺陷尺寸在二维方向上延伸,在第三维 方向上很小。金属晶体中的面缺陷主要有 晶界和亚晶界。
②原子个数比表示法
3.
性能参数 ①比表面积(用BET公式测定);
②密度; ③孔结构参数(孔隙率、比孔容、平均孔径); ④机械强度 ⑤气体流通性--压力降
4.
催化剂作用的基本原理
催化反应过程,尤其是多相催化反应,是一个 复杂的过程,包括了扩散、吸附、表面反应、 脱附、再扩散等步骤。每一步骤又分别涉及到 物理、化学、量子化学、反应工程等基本原理。
5. 几种常用的催化剂载体
① 氧化铝 作为催化剂载体的多用多孔性氧化铝,它 有8种晶型,作为催化剂和载体使用的是γ和η型氧化 铝。
制法:水合氧化铝加热失水;用铝酸钠和硫酸铝中和, 再烧制。 催化活性中心形成:①氧化铝在焙烧中残留有羟基,失 水形成路易斯碱中心;②表面原子的丢失形成空缺或晶 体中的缺陷;③制备过程中带入的微量杂质。
第4章3过渡金属氧化物催化剂及其催化作用

第4章3过渡金属氧化物催化剂及其催化作用过渡金属氧(硫)化物催化剂是一类广泛应用于化学反应中的催化剂。
它们由过渡金属和氧(硫)等原子组成,具有独特的结构和催化性能。
在本文中,我们将重点介绍过渡金属氧(硫)化物催化剂的种类、结构和催化作用,以及其在化学合成和能源转化等领域的应用。
过渡金属氧(硫)化物催化剂主要有负载型和非负载型两种形式。
负载型催化剂是将过渡金属氧(硫)化物负载在二氧化硅、活性炭等载体上,以增加其表面积和催化活性。
非负载型催化剂则是纯粹由过渡金属氧(硫)化物构成的颗粒或薄膜,具有较高的比表面积和催化活性。
这两种形式的催化剂在不同的反应中具有不同的催化机理和催化性能。
过渡金属氧(硫)化物催化剂的结构是其催化性能的关键因素。
大多数过渡金属氧(硫)化物催化剂具有复杂的晶体结构,如层状结构、中空球状结构等。
这些结构可以提供丰富的活性位点,并且具有调节反应中间体吸附和反应通道的能力。
此外,过渡金属氧(硫)化物催化剂还可以通过改变晶体结构或添加协同剂来调节其催化性能,提高催化活性和选择性。
过渡金属氧(硫)化物催化剂在化学反应中具有广泛的应用。
例如,通过调节过渡金属氧(硫)化物催化剂的结构和成分,可以实现氧化反应、氢化反应、催化裂解等各种化学转化。
特别是在有机合成中,过渡金属氧(硫)化物催化剂可以催化氧化还原反应、催化偶联反应、催化环化反应等,为合成高附加值化合物提供了重要的技术手段。
另外,过渡金属氧(硫)化物催化剂还可以催化电化学反应、光化学反应等非常规化学反应,为能源转化和环境保护等领域提供了新的解决方案。
总之,过渡金属氧(硫)化物催化剂是一类重要的催化剂,在化学合成和能源转化等领域具有广泛的应用。
通过调节其结构和成分,可以实现多种化学反应的高效催化。
随着新材料合成和催化机理的深入研究,过渡金属氧(硫)化物催化剂的催化性能有望进一步提高,为社会经济的可持续发展作出更大的贡献。
第四章金属催化剂及其催化剂作用 2

第四章金属催化剂及其催化作用4.1 金属催化剂的应用及其特性4.1.1 金属催化剂概述及应用金属催化剂是一类重要的工业催化剂。
主要包括块状催化剂,如电解银催化剂、融铁催化剂、铂网催化剂等;分散或者负载型的金属催化剂,如Pt-Re/-Al2O3重整催化剂,Ni/Al2O3加氢催化剂等;4.1.2 金属催化剂的特性几乎所有的金属催化剂都是过渡金属,这与金属的结构、表面化学键有关。
过渡金属能级中都含有未成对电子,在物理性质中表现出具有强的顺磁性或铁磁性,在化学吸附过程中,这些d电子可与被吸附物中的s电子或p电子配对,发生化学吸附,生成表面中间物种,从而使吸附分子活化。
金属适合于作哪种类型的催化剂,要看其对反应物的相容性。
发生催化反应时,催化剂与反应物要相互作用。
除表面外,不深入到体内,此即相容性。
如过渡金属是很好的加氢、脱氢催化剂,因为H2很容易在其表面吸附,反应不进行到表层以下。
但只有“贵金属”(Pd、Pt,也有Ag)可作氧化反应催化剂,因为它们在相应温度下能抗拒氧化。
故对金属催化剂的深入认识,要了解其吸附性能和化学键特性。
4.2 金属催化剂的化学吸附4.2.1 金属的电子组态与气体吸附能力间的关系不同的金属催化剂的化学吸附能力取决于各种因素,包括金属化学性质、气体化学性质、金属结构、吸附条件等等,见表4-3。
1 具有未结合d电子的金属催化剂容易产生化学吸附2 电子云重叠少,吸附弱;电子云重叠多,吸附强。
3 气体的化学性质越活泼,化学吸附越容易。
4 吸附条件也有一定影响。
低温有利于物理吸附,高温有利于化学吸附(但不能太高,否则TPD怎么做?)。
压力增加对物理吸附和化学吸附都有利。
4.2.2 金属催化剂的化学吸附与催化性能的关系金属催化剂催化活化的过程可以看成是化学吸附的过程,化学吸附的状态与金属催化剂的逸出功及反应物气体的电离势有关。
1 电子逸出功:将电子从金属催化剂中移到外界所需的最小功,或电子脱离金属表面所需的最低能量。
改.第4章 金属催化剂及其催化作用

多位理论的几何适应性
由计算可以看出: 乙烯在Ni-Ni间距离为0.35l nm晶面上吸附形成的 键造成分子内的张力较大,是一种弱吸附。 在Ni-Ni间距离为0.2489 nm时乙烯吸附较容易,是 一种强吸附。
实验发现,仅有(110)晶面的Ni,比混合晶 面[(110),(100),(111)各占1/3的Ni的活性 大5倍。(110)晶面上Ni原子间距0.351nm的 数目是最多的。
C=0.154 nm
多位理论的几何适应性
反过来以=109o28’倒算出的a=0.273nm, 也就是说在a=0.273nm的晶格上吸附时, 分子内完全没有张力。 于是预测a在0.24nm-0.28nm之间的Re, Ni,Co,Cu,Pt,V,Pd,Mo,W等均可 吸附乙烯,实验证实了这个预言。 几何对应理论从某一方面反映了吸附的 本质。
第4章 金属催化剂及其催化作用
金属
金属催化剂的类型
金属催化剂是一类重要的工业催化剂,主要类型有: 块状金属催化剂:如电解银、熔铁、铂网等催化 剂; 负载型金属催化剂:如Ni/Al2O3,Pd/C等催化剂; 合金催化剂:指活性组分是二种或两种以上金属 原子组成,如Ni-Cu合金加氢催化剂、LaNi5加氢 催化剂; 金属簇状物催化剂:如Fe3(CO)12催化剂等。
一个金属原子缺位,原来的金属原 子跑到金属表面上去了。
弗兰克尔点缺陷
由一个金属原子缺位,和一个间隙原子组 成。
点缺陷引起晶格的畸变
内部缺陷的存在引起晶格的畸变(1)空 位;(2)间隙质点;(3)杂质。
见教材p101 图4-20
4.5 负载型金属催化剂及其催化作用
催化剂导论PPT课件

3.×,起加速反应作用而又不改变该反应的标
4.
准Gibbs自由焓变化的物质是催化剂。
4. √
5. ×,催化剂参与化学反应过程
6. √
7. √
8. ×,由盐溶液共沉淀法制备氢氧化物时,部
分氢氧化物沉淀的PH可值编辑都课件 大于7
19
二、在下列各题叙述中选择你认为正确的答案
1.下列分子筛中择形性突出的为: D
可编辑课件
7
第五节 离子交换法
1. 分子筛的合成
2. 分子筛的分类
3.
A、X、Y、ZSM-5等
3. Si/Al比与分子筛的稳定性关系
4.
第六节 催化剂成型
5. 压片、挤条、油可编辑中课件 、转动成型
8
第三章 催化剂性能的评价、 测试和表征
1.催化反应动力学研究的意义和作用
催化动力学研究的一个重要目标是为所研 究的催化反应提供数学模型,帮助弄清催 化反应机理。
知道NaY的结晶度)? (5)你估计图示该工艺中制备NaY的导向剂是何物质? (6)如何将制得的NaY原粉做成球型催化剂?
可编辑课件
26
答: (1)将水玻璃,硫酸铝,偏铝酸钠按合适比例与一定 量导向剂混合,搅拌使成胶,在一定温度下晶化一定时 间后,过滤洗涤除去硫酸根等,干燥即制得NaY原粉 (2)影响晶化的因素主要是:晶化温度、晶化时间、 原料配比及其碱度。通过单因素实验,正交与均匀设 计实验等,即可确定这些因素的较佳值。 (3)导晶沉淀法 (4)通过X射线粉末衍射即可测定NaY的晶化程度 (5)NaY晶种(P52:化学组成、结构类型与分子 筛相类似的、具有一定粒度的半晶化分子筛)。 (6)成球机成型;胶溶后,油柱成型。
催化剂工程导论
各种催化剂及其催化作用

酸中心的强度
5、固体酸、碱的催化作用
酸位的性质与催化作用关系
大多数的酸催化反应是在B酸位上进行的,并且催 化活性与B酸位的浓度有良好的关联
烃的骨架异构化、二甲苯的异构化,甲苯和乙苯的歧化, 异丙苯的烷基化以及正己烷的裂化等,单独的L酸位没有 催化活性 常用AlCl3,FeCl3等 r-Al2O3
软酸 交界酸, 介于两者之间
软酸硬酸理论
硬碱
给电子原子极化率低,电负性高,难氧化, 不易变形,即对外层电子吸引力强; 难于失去电子对的碱
软碱 交界碱, 介于两者之间
软酸硬酸理论
苯的烷基化可用三氯化铝催化,因为三氯化铝 是硬酸,可与氯代烷中的硬碱cl-配合使其中软 酸烷基成为正离子r+,从而对软碱苯核的反应 性增大。
1、催化剂的分类
固体碱
担载碱:NaOH、KOH载于氧化硅或氧化铝上;碱金属或者碱土金属分散于氧 化硅或氧化铝上;K2CO3、Li2CO3在于氧化硅上等 阴离子交换树脂 焦碳于1173K下热处理,或用NH3、ZnCl2-NH4Cl-CO2活化 金属氧化物:Na2O、K2O、Cs2O、BeO、MgO、CaO、SrO、BaO、ZnO、 La2O3、CeO4等 氧化物混合物 金属盐:Na2CO3、K2CO3、CaCO3、SrCO3、BaCO3、(NH4)2CO3、KCN 等 经碱金属或者碱土金属改性的各种沸石分子筛 H2SO4、H3PO4、HCl水溶液、醋酸等 NaOH水溶液、KOH水溶液
P-水的物质的量
6、沸石分子筛催化剂
结构单元
一级结构
《工业催化(第3版)》教学课件—04络合催化与聚合催化

• 4.4.4 羰基合成与氢甲酰化
• 4.4.5 甲醇络合羰化合成乙酸
• 这是20世纪70年代工业催化开发中最突出的成就之一。它 使基本有机原料合成工业从石油化工向一碳化工的领域转 化打开了大门。催化剂可用羰基钴,也可用铑的络合物。 以CH3I为促进剂。铑催化剂的反应条件相对来说要温和得 多。温度约175℃,压力为1~12MPa,反应物的转化率 高。总反应式为
• 它们都是亲核的碳烯。引发了新的催化反应。
• (1)缩合反应 Knoevenagel缩合,是一个以哌啶 剂的缩合反应。
• (2)其他类型反应 包括加成反应、酰化反应、开环反 应等。
4.8 聚合催化
图4-8 聚烯烃配位聚 合催化剂的变迁
• 4.8.1 Ziegler-Natta催化剂
• 其组成是由周期表中第Ⅳ类过渡金属的其中之一和第Ⅰ到第 Ⅲ类碱性金属烷基化合物共同组成。后者作为助催剂或称 活化剂,是供过渡金属变成活性中心前先还原和烷基化所 必需的。助催化剂为烷基铝,可以是三甲基铝(TMA)、 三乙基铝(TEA)或者二乙基铝的氯化物(DEAC)。该催 化体系可以是均相、反应介质可溶,也可以是负载型多相 体系。Natta是在Ziegler工作的基础上创建了丙烯 合反应体系。
• NHC能加速化学反应,是一种不含金属原子的逊量有机化 合物,故谓之Organocata-lyst。这类催化剂是 H、O、N、S和P原子组成的小分子。这类分子与金属络合 物相比较具有以下优点:①便宜易得,不像过渡金属消 耗多;②在空气中、水介质中稳定;③反应完成后无需 分离回收;④属环境友好的,不像过渡金属有毒,易污 染环境。
第4章 络合催化与聚合催化
4.1 概述
• 络合催化,是指催化剂在反应过程中对反应物起络合作用 ,并且使之在配位空间进行催化的过程。催化剂可以是溶 解状态,也可以是固态;可以是普通的化合物,也可以是 络合物,包括均相络合催化和非均相络合催化。
第4章 工业催化剂的制备、成型与使用

举例
沉淀法 水合氧化物,如氢氧化铁等的制备
浸渍法 混合法
贵金属负载到金属氧化物载体Al2O3 或 SiO2 等载体上
氧化铁-氧化铬CO 变换催化剂的制备
熔融法 合成氨的铁催化剂的制备
沥滤法 瑞尼镍催化剂的制备
… ……
10
§1 沉淀法制备工业催化剂
沉淀法是借助沉淀反应,用沉淀剂(如碱类物质) 将可溶性的催化剂组分(金属盐类的水溶液)转化为 难溶化合物,再经过滤、洗涤、干燥、焙烧、成型 等工序制得成品催化剂。
老化阶段的变化 ① 细晶体逐渐溶解,并沉积到粗晶体上,……, 获得颗粒大小较为均一的粗晶体 ② 孔隙结构和表面积发生变化,原来吸留在细晶 体之中的杂质随溶解过程转入溶液 ③ 初生的非稳定结构的晶体,会逐渐变成稳定的 结构
37
五、沉淀物的过滤、洗涤、 干燥、焙烧、成型和还原操作
1. 过滤与洗涤
悬浮液的过滤,可使沉淀物与水分开,同时除 去NO3-、SO42-、Cl-、K+、Na+、NH4+等离子。
一、沉淀过程和沉淀剂的选择
沉淀产生的条件 ——形成沉淀物的离子浓度积大于该条件下的
浓度积Ksp 沉淀物的形成过程,包括两方面: 1) 晶核的生成,-- 形成沉淀物的离子相互碰撞生 成沉淀的晶核 2) 晶核的长大,-- 溶质分子在溶液中扩散到晶核 表面,晶核继续长大成为晶体
19
图 难溶沉淀的生成速率示意组图
4.浸渍沉淀法 盐溶液浸渍操作完成后,再加沉淀剂,
而使待沉淀组份沉积在载体上。
沉淀法分类
6.超均匀共沉淀法
将沉淀操作分成两步进行,先制成盐溶液的悬 浮层,并将这些悬浮层立即瞬间混合成为超饱和 的均匀溶液;然后由超饱和的均匀溶液得到超均 匀的沉淀物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金红石(110):TiO2/SnO2/RuO2
2.2 氧化物的表面化学
(Henrich/Cox, Cambridge, 1994)
金红石(100):TiO2/SnO2/RuO2
2.2 氧化物的表面化学
(Henrich/Cox, Cambridge, 1994)
刚玉:Al2O3/Ti2O3/V2O3/α-Fe2O3
钙钛矿(100):SrTiO3/BaTiO3/WO3/NaXWO3
2.2 氧化物的表面化学
钙钛矿(111):SrTiO3/BaTiO3/WO3/NaXWO3
(Henrich/Cox, Cambridge, 1994)
2.2 氧化物的表面化学
(Henrich/Cox, Cambridge, 1994)
开放的沸石骨架是通过共享顶部的四面体位构建的, Si4+/Al3+交替出现在四面体位,但两个铝不能相邻,即 没有AlOAl链接。显然, AlO4 四面体需要阳离子的 参与以保持电中性,这是形成酸性位的化学本质。所 以,沸石/分子筛是典型的固体酸催化剂。
分子筛酸性位的形成
H+ H+ H+ O O O O O \ /\ /\ /\ /\ Si Al Si Si 分子筛的结构特点: 1. 晶体结构; 2. 骨架由多元环组成; 3. 有笼(cage)和孔道 (channel); 4. 酸性随硅铝比变化而变化.
Phenomenon: Ideal surface is not perfect
Phenomenon: Reconstruction
Phenomenon: Reconstruction
a)
b)
c)
Figure 8. The hydrogen induced paired new reconstruction of Ni{110}.78 Part a shows the direction of the pairing displacements of the top layer atoms; b shows a plan view of the reconstructed surface, while c shows a cross sectional view. Hydrogen atoms have been omitted for clarity.
2.6 小结
OXIDES bonding Bulk Bulk Cationic Site redox ionic radius()
sitesymmetry
ZrO2 covalent 0.79
ZrO7 ZrO8
CeO2 covalent partly 0.92
TiO2 ionic yes 0.68
2.1 简评表面化学
Surface chemistry/physics has opened up a new world in the last 40 years. Initially, scientists believed that studies on ideal surfaces would finally give us a key to open the black box of catalysis. Great progress has also been made in the studies on ideal oxide surfaces in the last ten years. How much the research of surface science based on ideal surfaces influence the science of catalysis is still an open question, however.
Phenomenon: Reconstruction and Relaxation
Figure 9. The Cu{110}-(2×3)-N structure.105 The small dark circles represent the N atoms, the white circles represent the pseudo-{100}layer,and the shaded circles represent the underlying {110} substrate.Part a shows a plan view of the surface, while b displays a cross sectional view through the surface.The outermost, {100}-like, layer is buckled by 0.52 by the registry mismatch with the second layer.
2.2 氧化物的表面化学
(Henrich/Cox, Cambridge, 1994)
纤维锌矿:ZnO
2.2 氧化物的表面化学
(Henrich/Cox, Cambridge, 1994)
尖晶石:MoO3/Cu2O/V2O5/PbO/γ-Al2O3/(M3O4)
2.2 氧化物的表面化学
(Henrich/Cox, Cambridge, 1994)
ZSM-5有分子级的孔道,亲 油疏水,水热稳定性高。
典型人工合成分子筛示意
沸石(zeolite)在真空下脱水得到分子筛(molecular sieves), 因为其规整的孔道结构可以“筛分”分子。现在倾向于把 所有这一类有规整孔道的骨架化合物统称为分子筛。
分子筛的人工合成
Supercage (1.3 nm)
第四章
催化剂的结构(上)
催化剂: 结构与活性关系
催化剂的选择性分四个层次: 化学选择 性 (chemo-selectivity), 立 体 选 择 性 (stereoselectivity), 对映体选择性(enantio-selectivity), 和局域选择性(regio-selectivity)。催化剂选择 (regio-selectivity) 功能的实现依赖于催化剂的结构电子的或 几何的结构。 当代催化化学的中心论题是提高催化剂 的专一性(specificity), 因而催化剂的结构设计 至关重要。
左:八面沸石
Si/Al< 3 X型分子筛 Si/Al> 3 Y型分子筛
右:丝光沸石(mordenite)
分子筛的人工合成
择形选择性
择形选择性
催化剂 SiO2/Al2O3 Zeolite L Zeolite Y C Mordenite ZSM-5 孔径() 2,6-/2,7-异构比 2,6-% 60 7.1 7.3 7.0 5.5 1 0.8 1 2.7 low 32 22 37 70 low
与最近邻中心的关系 成键
有空位,但不一定形成配 一般没有空位,新配体取 位键 代旧配体形成配位键
2.1 简评表面化学
In comparison with studies on other materials, studies of catalysts pay much more attention to the behavior on the surface or at the atomic level. Due to this point, although catalysis studies and others investigate the same materials in the same framework (from macro to meso to micro), the strategies and the methods are greatly different from each other.
原理上同担载催化剂.
四. 络合催化剂 (chemo, stereo, enantio & regio)
均相催化, 典型的立体选择性体系, 可实现不对称选择催化 (asymmetric catalysis)和官能团识别(discrimination, 生物 酶).
1. 分子筛催化剂
沸石是具有骨架结构的硅铝酸盐,沸石骨 架形成的空腔被较大的离子或水分子占据。这 些离子或水是近乎自由的,可以被离子交换或 可逆地脱去。
a)
b)
Concept: Site
Concept: Ensemble (domain)
2.2 氧化物的表面化学
(Henrich/Cox, Cambridge, 1994)
岩盐(100):MgO/CaO/MnO/NiO/CoO
2.2 氧化物的表面化学
(Henrich/Cox, Cambridge, 1994)
固体酸/碱催化剂的种类
粘 土 膨润土பைடு நூலகம் 高岭土, 水滑石
复合氧化物 沸石,分子筛 盐 硫酸盐 磷酸盐 固体酸 镁锌铜及过渡金属盐 铝等及过渡金属盐
SO42-/ZrO2, SO42-/SiO2
阳离子交换树脂 交换型分子筛, 磺化酚醛树脂
分子筛的人工合成
分子筛的人工合 成始于40年代,主要 是合成低/中硅铝比的 沸石。60年代Mobil合 成 了 高 硅 沸 石 ZSM-5 并迅速在炼油工业中 获得大规模应用,由 此开始了分子筛合成 与应用的新时代。
2.3 Concept: Two-dimensional order
2.4 Concept: Geometry
2.5 Limitations of Characterization
The comparison of CO hydrogenation catalyst ZrO2/Al2O3 catalyst between XRD and radial structure function
TiO6
γ-Al2O3 covalent 0.51