人教版初一数学代数式章节教案.doc
初中初一数学上册《代数式》教案、教学设计

一、教学目标
(一)知识与技能
1.理解代数式的概念,能够识别和书写基本的代数式,如:单项式、多项式、有理式等。
2.学会使用字母表示数,理解字母在代数式中的意义,并能进行简单的代数式的运算。
3.掌握合并同类项的法则,能够对代数式进行简化。
4.学会解代数方程,理解等式的性质,掌握移项、合并同类项等解方程的基本步骤。
2.教学内容:分享小组讨论成果,交流解题经验。
教学过程:各小组汇报讨论成果,展示解题过程。其他小组认真倾听,学习他人的解题方法。最后,教师对各组的表现进行点评,总结解题经验。
(四)课堂练习
1.教学内容:设计不同难度的练习题,巩固所学知识。
教学过程:根据学生的水平,设计基础、中等、提高三个层次的练习题。让学生独立完成,巩固代数式的书写、运算及解方程的方法。在此过程中,教师关注学生的解题情况,及时发现问题并进行个别指导。
2.教学内容:强调学习代数式的重要性,激发学生的学习兴趣。
教学过程:强调代数式在数学学习中的重要性,以及在生活实际中的应用。鼓励学生在课后继续探索代数式的奥秘,提高学生的数学素养。同时,关注学生的情感态度,激发学生的学习兴趣,为下一节课的学习打下基础。
五、作业布置
为了巩固本节课所学的代数式知识,培养学生的数学思维能力,特布置以下作业:
三、教学重难点和教学设想
(一)教学重难点
1.重点:代数式的概念、书写及简单运算;合并同类项;解代数方程。
2.难点:字母表示数的理解;代数式的简化;等式性质的运用。
(二)教学设想
1.对于重点内容的把握:
(1)通过生动的实例引入代数式的概念,如:用a表示苹果的价格,b表示购买的数量,让学生感受到代数式的实际意义。
新人教版七年级上册数学第一章代数式全章教案

新人教版七年级上册数学第一章代数式全章教案主题:代数式的基本概念和运算目标:1. 理解代数式的定义和基本概念;2. 掌握代数式的加减法运算;3. 能够应用代数式解决实际问题。
教学内容:1. 代数式的定义和基本概念- 引导学生理解代数式的概念:由数字、字母和运算符号等组成的符号集合;- 解释代数式的元素:常数、变量和运算符号;- 分析代数式的组成部分:系数、指数和字母。
2. 代数式的加法运算- 讲解代数式的加法原则:相同字母项的系数相加,不同字母项保持不变;- 给予示例演示代数式的加法运算;- 提供练题供学生巩固加法运算技巧。
3. 代数式的减法运算- 讲解代数式的减法原则:通过加上相反数实现减法运算;- 给予示例演示代数式的减法运算;- 提供练题供学生巩固减法运算技巧。
4. 代数式应用实际问题的解决- 引导学生分析实际问题,抽象出对应的代数式;- 帮助学生进行代数式的加减法运算,解决实际问题;- 鼓励学生思考如何将代数式应用到解决其他实际问题中。
教学方法:- 教师讲授:通过讲解、示例演示和提问引导学生理解代数式的定义和基本概念,以及加减法运算技巧;- 学生练:提供练题供学生巩固加减法运算技巧,培养学生的解决问题能力;- 课堂讨论:组织学生围绕实际问题展开讨论和思考,激发学生的创新思维。
教学评价:- 在课堂上观察学生的参与度和表现;- 批改学生完成的练题,评价学生的运算准确性和思维能力。
课后作业:1. 完成课堂练题;2. 思考如何将代数式应用到其他实际问题中。
扩展延伸:- 引导学生了解代数式的进一步应用,如代数方程的解析;- 提供更复杂的代数式和实际问题,培养学生的综合解决问题能力。
最新初中初一数学教案:代数式的值.doc

初中初一数学教案:代数式的值教学目标1使学生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值;2培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。
教学重点和难点重点和难点:正确地求出代数式的值课堂教学过程设计一、从学生原有的认识结构提出问题1用代数式表示:(投影)(1)a与b的和的平方;(2)a,b两数的平方和;(3)a与b的和的50%2用语言叙述代数式2n+10的意义3对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打投影)某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,代数式的值是40;当n=20时,代数式的值是50我们将上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值这就是本节课我们将要学习研究的内容二、师生共同研究代数式的值的意义1用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值2结合上述例题,提出如下几个问题:(1)求代数式2x+10的值,必须给出什么条件?(2)代数式的值是由什么值的确定而确定的?当教师引导学生说出:“代数式的值是由代数式里字母的取值的确定而确定的”之后,可用图示帮助学生加深印象然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有确定的值与它对应(3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?下面教师结合例题来引导学生归纳,概括出上述问题的答案(教师板书例题时,应注意格式规范化)例1 当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值解:当x=7,y=4,z=0时,xl (2)注意书写格式,“当……时”的字样不要丢;(3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数最后,请学生总结出求代数值的步骤:①代入数值②计算结果三、课堂练习1(1)当x=2时,求代数式x2-1的值;(2)当x= ,y= 时,求代数式x(x-y)的值2当a= ,b= 时,求下列代数式的值:(1)(a+b)2;(2)(a-b)23当x=5,y=3时,求代数式的值答案:1.(1)3;(2) ;2.(1) ;(2) ;3. .四、师生共同小结首先,请学生回答下面问题:1本节课学习了哪些内容?2求代数式的值应分哪几步?3在“代入”这一步应注意什么”其次,结合学生的回答,教师指出:(1)求代数式的值,就是用数值代替代数式里的字母按照代数式的运算顺序,直接计算后所得的结果就叫做代数式的值;(2)代数式的值是由代数式里字母所取值的确定而确定的.五、作业当a=2,b=1,c=3时,求下列代数式的值:(1)c-(c-a)(c-b);(2) .。
3.1.3列代数式(教案)-人教版七年级数学上册

(五)总结回顾(用时5分钟)
今天的学习,我们了解了代数式的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对代数式的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-代数式的化简:学生在化简代数式时可能会出现运算错误,需要指导学生掌握化简的方法和技巧。
-突破方法:举例讲解,如3a + 2a = (3+2)a,以及合并同类项的方法。
-代数式在实际问题中的应用:学生可能难以将实际问题抽象为代数式,需要通过典型例题和练习,引导学生学会建立数学模型。
-突破方法:设计不同类型的实际问题,如行程问题、工程问题等,让学生练习将问题转化为代数表达式。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解代数式的基本概念。代数式是用字母和数字表示数及其关系的式子。它是数学表达和逻辑推理的基础,可以帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。比如,用x表示一本书的价格,那么3x就表示买三本书的总价。这个案例展示了代数式在实际中的应用,以及它如何帮助我们解决问题。
2.培养学生的逻辑推理能力,通过代数式的化简与应用,学会运用数学语言进行逻辑推理和分析问题;
3.培养学生的数学建模素养,将实际问题转化为代数表达式,提高解决实际问题的能力;
4.培养学生的运算能力,掌握代数式的运算规则,熟练进行代数式的计算;
5.培养学生的数据分析素养,通过代数式的运用,学会收集、整理和分析数据,提高数据处理能力。
本节课着重培养学生以上核心素养,使学生在掌握代数式知识的基础上,提升数学思维品质和实际应用能力。
七年级数学上册《代数式》教案、教学设计

-设计不同类型的练习题,让学生在练习中巩固所学知识,提高解题能力。
-及时反馈,针对学生的错误进行纠正和指导,帮助他们查漏补缺。
5.拓展延伸,培养思维:
-引导学生运用代数式解决实际问题,培养他们的问题解决能力和创新思维。
-适当拓展代数式的应用领域,提高学生的数学素养。
6.总结反思,提升认知:
2.培养学生的自主学习能力、合作意识和创新思维。
3.激发学生的学习兴趣,使他们乐于探索数学的奥秘。
4.提高学生的问题解决能力,为后续学习打下坚实基础。
四、教学内容与过程
(一)导入新课,500字
1.教师以生活中的实际例子,如手机话费套餐、购物打折等,引出代数式的概念。
“同学们,你们在生活中有没有遇到过这样的问题:手机话费套餐如何计算更划算?购物打折后,实际支付多少钱?这些问题都可以通过一种数学工具来解决,那就是我们今天要学习的代数式。”
2.学生在小组内分享观点,共同解决问题。
“在小组内,大家各抒己见,把你们的方法和思路分享给其他同学。通过讨论,我们可以互相学习,共同提高。”
(四)课堂练习,500字
1.设计不同类型的练习题,让学生独立完成。
“下面,请同学们独立完成以下练习题。这些题目涵盖了代数式的各个方面,希望大家能够巩固所学知识。”
2.举例说明代数式的性质和运算规则,如合并同类项、去括号等。
“代数式具有一些基本的性质,比如交换律、结合律等。在运算过程中,我们可以根据这些性质简化代数式。接下来,我们来看一些具体的例子。”
(三)学生小组讨论,500字
1.教师设计具有梯度的问题,引导学生小组讨论。
“请同学们分组讨论以下问题:如何用代数式表示手机话费套餐?合并同类项、去括号的方法有哪些?”
初中数学初一数学上册《代数式》优秀教学案例

3.教师在批改作业时,要及时给予学生反馈,关注学生的学习进步,为下一节课的教学做好准备。
五、案例亮点
1.生活化的情景创设
本案例将代数式教学与学生的生活实际紧密结合,通过设计富有生活气息的实际问题,让学生在轻松愉快的氛围中感受数学的魅力。这种生活化的情景创设,有助于激发学生的学习兴趣,提高他们解决实际问题的能力。
4.多元化的评价方式
本案例采用多元化的评价方式,如小组互评、学生自评、教师评价等,关注学生的全面发展。这种评价方式有助于激发学生的学习积极性,提高他们的自信心,培养良好的学习习惯。
5.反思与总结的环节设计
在教学过程中,本案例特别强调反思与总结环节。教师引导学生及时反思学习过程中的收获和不足,促使他们形成自我监控和自我调节的能力。同时,通过课堂总结,帮助学生巩固所学知识,形成完整的知识体系。
4.结合实际生活中的问题,让学生体验数学知识的实际应用,培养学生运用数学知识解决实际问题的能力。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣,激发学生的学习热情,使他们能够主动、积极地参与数学学习活动。
2.培养学生勇于探究、善于思考的良好习惯,使他们具有面对困难、解决问题的勇气和信心。
3.引导学生认识到数学知识的实用性和普遍性,培养他们的数学素养,使他们在日常生活中能够自觉地运用数学知识。
3.引导学生探讨代数式在实际问题中的应用,例如在购物、出游等情境中如何列出代数式,并解决相关问题。
(三)学生小组讨论
1.教师给出几个实际问题,要求学生分组讨论,运用代数式表示问题中的数量关系。
2.各小组展示自己的讨论成果,其他小组进行评价和补充,共同解决问题。
初中数学初一数学上册《代数式》教案、教学设计
5.定期进行课堂小结,引导学生总结所学知识,形成知识体系。
(三)情感态度与价值观
1.增强学生对数学学科的兴趣,激发他们学习数学的积极性。
2.培养学生勇于探究、善于思考的学习态度,增强克服困难的信心。
3.通过代数式的学习,让学生体会到数学的简洁美和逻辑美,提高审美能力。
5.定期进行评价与反馈:
a.通过课堂提问、课后作业、阶段测试等方式,了解学生的学习进度,发现存在的问题。
b.根据评价结果,及时调整教学策略,给予学生有针对性的指导。
c.鼓励学生进行自我评价,培养他们的自主学习能力。
四、教学内容与过程
(一)导入新课
1.教学活动设计:通过一个简单的数学故事引入新课,例如“小明的年龄问题”。讲述小明比小红大3岁,今年小红的年龄是x岁,那么小明今年几岁?通过这个问题,让学生感受到字母在数学表达中的便利性,从而引出代数式的概念。
初中数学初一数学上册《代数式》教案、教学设计
一、教学目标
(一)知识与技能
1.理解代数式的概念,能够识别和书写基本的代数式。
2.学会使用字母表示数,理解字母在代数式中的含义,并能进行简单的代数式变换。
3.掌握代数式的性质,如交换律、结合律等,能够运用这些性质简化代数式。
4.能够求解简单的一元一次方程,理解等式的性质,并掌握方程的解法。
3.一元一次方程的解法:这是本章的核心内容,学生需要理解等式的性质,并能够灵活运用这些性质求解方程。
(二)教学设想
1.创设情境,激发兴趣:在教学代数式概念时,可以通过生活中的实例,如购物时计算总价、距离和速度的关系等,让学生感受到代数式的实际意义,从而激发他们的学习兴趣。
初中数学新人教版七年级上册第三章《代数式》教案(2024秋)
第三章代数式3.1 列代数式表示数量关系第1课时:代数式【素养目标】借助现实情境了解代数式,进一步理解用字母表示数的意义,体验用数学符号表达数量关系的过程,发展学生的抽象能力与符号意识,感受数学与生活的密切联系.【教学重点】代数式的概念及意义,用代数式表示实际问题中的数量和数量关系.【教学难点】相同代数式在不同实际问题中的意义不同.【教学过程】活动一:创设情境,新课导入[设计意图]设置具体的问题情境使学生思考,在解决问题的过程中接触代数式.[情境导入]在小学,我们学过用字母表示数,知道可以用字母或含有字母的式子表示数和数量关系.我们来看下面的问题.表中的这些式子,每个只能表示某一年爸爸的年龄,你能用一个式子简明地表示任何一年爸爸的年龄吗?若赵红的年龄为ɑ岁,则爸爸的年龄为(ɑ+30)岁.可以看到,这样的式子在数学中有重要作用,并在解决实际问题中有着广泛的应用.今天我们一起来学习下![教学提示]教师先引导学生回忆小学时学过的用字母表示数的方法,然后结合后面的实际问题使学生自行思考,调动学生学习的主动性与积极性.活动二:交流合作,探究新知设计意图通过用含字母的式子表示实际问题中的数量和数量关系,归纳引入代数式的概念,并明确代数式的书写规范. 探究点1 代数式的概念问题1 (教材P68引言)智能机器人的广泛应用是智慧农业的发展趋势之一.某品牌苹果采摘机器人平均每秒可以完成5m2范围内苹果的识别,并自动对成熟的苹果进行采摘,它的一个机械手平均8s可以采摘一个苹果.根据这些数据回答下列问题:(1)①你知道本题中工作量、工作效率、工作时间之间的关系吗?工作量=工作效率×工作时间.②该机器人10s能识别多大范围内的苹果?60s呢?ts呢?你能得到什么启示?启示:用字母代替数使我们的表达从一个具体问题推广到一类问题,更具有一般性.(2)该机器人识别n m2范围内的苹果需要多少秒?n5s.(3)若该机器人搭载了m个机械手(m>1),它与采摘工人同时工作1h,已知工人平均5s可以采摘一个苹果,则机器人可比工人多采摘多少个苹果?分析提问:根据上面的分析,最终我们可以列出如下的式子:问题2 (1)某工程队负责铺设一条长2km的地下管道,经过d天完成,用式子表示这支工程队每天铺设的管道长度.(2)一个正方形的边长是ɑ,这个正方形的周长l是多少?面积S呢?上述问题中列出的式子5t,n5,450m-720,2d,4ɑ,ɑ2,它们都是用运算符号把数或表示数的字母连接起来的式子,我们称这样的式子为代数式.注意:单独的一个数或字母也是代数式,例如,5,t都是代数式.【对应训练】判断下列式子是否符合代数式的书写规范,不符合的请改正.x×y,256ɑb,-1n,x3,m÷3.解:均不符合,改正如下:x×y 256ɑb -1n x3 m÷3 xy 176ɑb -n 3x m3[教学提示]教学时通过设置的情境使学生明白,探究用字母代替数从而将数和数量关系一般而又简明地表达出来是必要的,能使应用更加广泛,从而为描述和研究问题带来方便.并通过这两个问题进一步引导学生归纳写出的式子的共性.提醒学生解题时注意单位要换算成一致.跟学生明确代数式的书写规范,这里尤其注意跟学生强调代数式中的运算符号不是关系符号,比如用“=”“>”“<”,抑或是以后将要学到的“≥”“≤”“≠”这些符号连接而成的式子不是代数式.有关代数式书写的具体要求教师可参看后面的解题大招,讲解时根据情况选讲即可.[设计意图]通过例题使学生掌握用代数式表示简单实际问题中的数量或数量关系的方法,并明确相同的代数式在不同实际问题中的含义不同. 探究点2 用代数式表示数量关系例1 (教材P70例1)(1)苹果原价是p元/kg,现在按九折优惠出售,用代数式表示苹果的售价;(2)一个长方形的长是0.9m,宽是pm,用代数式表示这个长方形的面积;(3)某产品前年的产量是n件,去年的产量比前年产量的2倍少10件,用代数式表示去年的产量;(4)一个长方体水池底面的长和宽都是ɑm,高是hm,池内水的体积占水池容积的三分之一,用代数式表示池内水的体积.分析提问:想一想各小题中的数量关系是怎样的?试着填写下表:解:(1)苹果的售价是0.9p元/kg;(2)这个长方形的面积是0.9pm2;(3)去年的产量是(2n-10)件;(4)由长方体的体积=长×宽×高,得这个长方体水池的容积是ɑ·ɑ·hm3,即ɑ2hm3,故池内水的体积为13ɑ2hm3.追问 (1)观察(1)(2)小题的结果,你有什么发现?它说明了什么问题?所列代数式一样,0.9p既可以表示苹果的售价,也可以表示长方形的面积.它说明:用字母表示数后,同一个代数式可以表示不同实际问题中的数量或数量关系.(2)0.9p还可以表示什么?请你再举出一个例子.某人走路的速度为0.9m/s,若他行走ps,则走了0.9pm.(答案不唯一)【对应训练】教材P71练习第1题.[教学提示](1)教师提问,学生自主作答,在经历上一环节的学习后,学生不难得出这些问题的答案,目的在于通过例题使学生掌握代数式的书写规范,能从实际问题中抽象出数学问题,写出简单的代数式,感受数学建模的过程.(2)在用同一个代数式表示不同实际问题中的数量或数量关系时,尽可能让学生多举些实例.设计意图使学生能透过代数式了解到其中所蕴含的运算,明确数学意义,并能发挥想象给代数式赋予实际意义.活动三:随堂训练,课堂总结探究点3 代数式的意义例2(教材P71例2)说出下列代数式的意义:(1)2ɑ+3; (2)2(ɑ+3); (3)cɑb; (4)x2+2x+8.解:(1)2ɑ+3的意义是ɑ的2倍与3的和;(2)2(ɑ+3)的意义是ɑ与3的和的2倍;(3)cɑb的意义是c除以ɑ,b的积的商;(4)x2+2x+8的意义是x的平方,x的2倍,与8的和.问题举例说明2ɑ+3,2(ɑ+3)所表示的实际问题中的数量关系.在相同情境下:李明买了一些水果,其中橘子有ɑ个,李子的数量比橘子的2倍还多3,则李子买了(2ɑ+3)个;若再多买3个橘子,买到橙子的数量就刚好是橘子数量的2倍,则橙子买了2(ɑ+3)个.在不同情境下:李明买了一些橘子和李子,其中橘子有ɑ个,李子的数量比橘子的2倍还多3,则李子买了(2ɑ+3)个;小宝今年3岁,爸爸今年ɑ岁,爷爷的年龄是小宝和爸爸的年龄和的2倍,则爷爷今年的年龄是2(ɑ+3)岁.(答案不唯一)【对应训练】教材P71练习第2,3题.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.什么是代数式?你能用代数式表示简单实际问题中的数量或数量关系吗?2.同一个代数式在不同实际问题中表示的数量或数量关系相同吗?举例说明.3.你能说出某个代数式的数学意义吗?能赋予它实际意义吗?【作业布置】1.教材P76习题3.1第2,6,7,8题.[教学提示]教师引导学生自主探究,可选取学生代表回答代数式的数学意义,重点在于对代数式用运算符号连接的各部分进行“拆解”,从而明确采用的是何种运算,比如分数线所代表的除法意义等.在探究代数式的实际意义时,注意若两个式子在同一个情境下,则相同字母必须代表同一个量.【教学后记】第2课时:列代数式表示数量关系【素养目标】1.能分析具体问题中的简单数量关系,并用代数式表示.2.初步培养学生的观察、分析能力,发展学生的抽象能力与符号意识,感受数学与实际生活的密切联系.【教学重点】列代数式.【教学难点】根据稍复杂实际问题中的数量关系列代数式.【教学过程】活动一:创设情境,新课导入[设计意图]设计真实情境让学生回答,既能回顾上节课所学,也为更深入地探讨列代数式做铺垫.【情境引入】在解决一些数学问题与实际问题时,往往需要先把问题中的数量关系用含有数、字母和运算符号的式子表示出来,也就是要列代数式.回忆上节课所学内容,解答下面的问题:如图,在国庆阅兵式上,有女民兵和三军女兵两种特殊方队.(1)若女民兵方队有ɑ人,三军女兵方队有b人,则两种方队共有(ɑ+b)人;(2)若三军女兵方队的平均年龄为m岁,比女民兵方队的平均年龄大n岁,则女民兵方队的平均年龄为(m-n)岁;(3)若三军女兵方队共有m排,且每排有25人,则三军女兵方队的人数为25m;(4)女民兵方队用ts走了sm,则她们的平均速度可以表示为 st m/s.这就是列代数式,这节课我们将更深入地对这方面进行探究,让我们准备好一起进入今天的探索之旅吧![教学提示]通过阅兵式的情境再现,激励学生的斗志,激发学生的学习热情.问题并不难,可让学生口答,答案的4个式子包含有+,-,×,÷这四种运算,学生口答过程中,教师顺势板书好答案,为下一步学生观察、理解和更深入地探究列代数式埋下伏笔.活动二:自主思考,探究新知设计意图探究列代数式表示数学运算,以及用代数式表示运算律或公式等. 探究点1 列代数式表示数学运算中的数量关系思考我们在上一节课曾探讨过代数式的意义,如2ɑ+3的意义是ɑ的2倍与3的和.反过来,如果已知某种数学运算,如ɑ,b两数的和与差的积,那么该如何用代数式表示呢?可以按下面的步骤列代数式:所以ɑ,b两数的和与差的积为(ɑ+b)(ɑ-b).例1 用代数式表示:(1)比m的3倍小3的数;(2)m的平方的3倍与5的和;(3)m的倒数与n的积.解:(1)3m-3;(2)3m2+5;(3)nm.【对应训练】教材P73练习第1题.[教学提示]这一环节教学时教师以引导为主,不要直接明晰结论,应先鼓励学生尽可能回忆以前学过的运算法则、运算律及计算公式等,用代数式表示出来,并让学生说明其中每个字母代表的含义.注意跟学生强调:一个代数式中可能会有多个字母,它们代表的量各不相同.[设计意图]通过例题使学生明确如何将实际背景中的数量关系转化成数学语言进行描述,再进一步列出代数式. 探究点2 列代数式表示实际情境中的数量关系例2 ((教材P72例3)用代数式表示:(1)购买2个单价为ɑ元的面包和3瓶单价为b元的饮料所需的钱数.(2)把ɑ元钱存入银行,存期3年,年利率为2.75%,到期时的利息是多少元?(3)某商品的进价为x元,先按进价的1.1倍标价,后又降价80元出售,现在的售价是多少元?分析提问:想一想各小题中的数量关系是怎样的?试着填写下表:解:(1)购买2个单价为ɑ元的面包和3瓶单价为b元的饮料所需的钱数为(2ɑ+3b)元.(2)根据题意,得ɑ×2.75%×3=8.25%ɑ,因此到期时的利息为8.25%ɑ元.(3)现在的售价为(1.1x-80)元.从上面的例子可以看出,用字母表示数,字母可以和数一样参与运算,从而可以用代数式把数量或数量关系简明地表示出来,更具有一般性.【对应训练】教材P73练习第2,3,4题.[教学提示]这一环节教学可采用板演,学生自己充当小教师检查学生理解、掌握情况,仿照例题学会分析数量关系,并规范作答.最后注意强调:1.同一个字母,在不同的问题背景中可以表示不同的量,如(1)(2)中的字母ɑ;2.某些代数式中有些部分可以适当化简,如(3)中2.75%与3相乘得到8.25%.活动三:强化训练,巩固提升[设计意图]设计稍复杂的实际问题中的行程问题,以考查学生列代数式的能力,既强化了学生的应用能力,提高了学生对知识的掌握程度,也为后面学习方程、不等式等相关实际问题背景进行熟悉和预热.活动四:随堂训练,课堂总结探究点3 代数式的意义例3 (教材P72例4)甲、乙两地之间公路全长240km,汽车从甲地开往乙地,行驶速度为vkm/h.(1)汽车从甲地到乙地需要行驶多少小时?(2)如果汽车的行驶速度增加3km/h,那么汽车从甲地到乙地需要行驶多少小时?汽车加快速度后可以早到多少小时?分析提问:(1)本题包含了几个量?它们之间有什么关系?本题包含路程、速度和时间三个量.它们之间具有关系:时间=路程速度.(2)早到的时间与原来需要行驶的时间和加快速度后需要行驶的时间有什么联系?早到的时间=原来需要行驶的时间-加快速度后需要行驶的时间.解:(1)汽车从甲地到乙地需要行驶240vh.(2)如果汽车的行驶速度增加3km/h,那么汽车从甲地到乙地需要行驶240v+3h.汽车加快速度后可以早到(240v-240v)h.【对应训练】张华同学报名参加了某市越野赛10km体验组的比赛,计划以xkm/h的平均速度跑完全程,为了取得更好的成绩,实际比赛时他以计划平均速度的1.2倍跑完了全程.(1)用代数式表示张华同学实际跑完全程所用的时间:101.2x h;(2)王老师也报名参加了此次越野赛10km体验组的比赛,他计划一半路程以ɑkm/h的平均速度前进,而另一半路程以bkm/h(ɑ≠b)的平均速度前进,用代数式表示王老师跑完全程所用的时间.解:一半路程以ɑkm/h的平均速度前进,用时5ɑh,另一半路程以bkm/h的平均速度前进,用时5bh,故王老师跑完全程所用的时间为(5ɑ+5b)h.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:你能分析实际问题中的数量关系,并列出代数式吗?【作业布置】1.教材P75习题3.1第1,3,10,11题.[教学提示]例题和练习题都属于行程问题,解决这类问题必须掌握行程问题的公式,即时间、路程、速度之间的关系.需要注意跟学生强调,列出的代数式如果形式比较复杂,出现不止一个运算符号,只要不出现关系符号(如“=”“<”),无论用多少个运算符号连接都属于代数式的范畴;同时在相同的问题背景下,相同的字母表示相同的量,不同的量是用不同的字母来表示的.【教学后记】第3课时反比例关系【素养目标】1.探索简单实例中的数量关系和变化规律,结合具体情境体会反比例关系.2.初步了解反比例关系的表现形式,并能在实际问题中识别反比例关系,发展学生的抽象能力和应用意识.【教学重点】反比例关系的概念及识别.【教学难点】在实际问题中识别反比例关系.【教学过程】活动一:悬疑激趣,新课导入[设计意图]类比正比例关系,对实例进行演变,引发学生思考,为引入反比例关系的概念做铺垫.【类比引入】1.回忆:小学我们已经学过的成正比例的量的概念是什么?如果两个变化的量的比值保持不变,或用符号表示为yx=k(k是一个确定的值,且k≠0),这时称这两个量y和x为成正比例的量.2.复习:第1课时活动二中的问题1:3.猜想我们不难回答上面“猜想”中的特点,但该怎样进一步表述这两个量之间的关系呢?让我们赶快进入新的学习吧![教学提示]进入本节课之前先引导学生回顾正比例关系,再通过对问题进行演变使学生对反比例关系有一个初步感知,重点在于类比正比例关系使学生发现新问题中量和量之间存在共性(乘积为定值).活动二:交流合作,探究新知设计意图通过实例引入反比例关系的概念,并与正比例关系进行比较,帮助学生更深刻地理解. 探究点反比例关系问题 (教材P73问题)北京是全球首个既举办过夏季奥运会又举办过冬季奥运会的城市.在冬季奥运会前,某赛场计划造雪260000m3.解答下列问题:(1)根据每天造雪量,计算所需的造雪天数,填写下表.(2)每天造雪量和造雪天数这两个量是怎样变化的?它们之间有什么关系?(续表)概念引入:像这样,两个相关联的量,一个量变化,另一个量也随着变化,且这两个量的乘积一定,这两个量就叫作成反比例的量,它们之间的关系叫作反比例关系.如果用字母x和y表示两个相关联的量,用k表示它们的积(k是一个确定的值,且k≠0),反比例关系可以用xy=k来表示.想一想:正比例关系与反比例关系有什么区别和联系?思考生活中,成反比例关系的例子是很常见的.例如,在购买某种商品时,总价一定,购物的数量与商品的单价成反比例关系.你还能举出一些例子吗?①泳池里水的体积一定,将水放完,排水的速度与所用时间成反比例关系;②路程一定,行驶速度与行完全程所需时间成反比例关系等.【对应训练】教材P75练习第1,2题.[教学提示]这部分教学应采用启发式教学的方法,教师抛出问题,鼓励学生小组合作,共同探讨、交流,引导学生通过观察和对问题的探究,说出工作时间与工作效率的乘积为定值,再一次印证学生在活动一中已经得出的结论.教师提醒学生特别注意比例系数k在当前学情下虽不做过多探讨,但k≠0仍需明确知晓,必要时可适当解释不为0的原因.[教学提示]将反比例关系与正比例关系进行对比,分析它们的异同点,这点是很有必要的,学生能借助正比例关系的探究方法进行参照学习,有助于学生更好地理解反比例关系的实质.以后这样的类比学习会经常出现,学生初学会比较困难,教师可直接讲述.而后面的“思考”是为了帮助学生更进一步巩固对反比例关系的认识.活动三:实际应用,巩固新知[设计意图]设计实际问题引导学生解决,进一步强化学生对于反比例关系的理解,并培养学生的应用能力和一定的计算能力.例 (教材P74例5)如图,四个圆柱形容器内部的底面积分别为10cm2,20cm2,30cm2,60cm2.分别往这四个容器中注入300cm3的水.(1)四个容器中水的高度分别是多少厘米?(2)分别用x(单位:cm2)和y(单位:cm)表示容器内部的底面积与水的高度,用式子表示y与x 的关系,y与x成什么比例关系?分析:题中涉及圆柱的体积、底面积及高三个量,它们之间具有关系:圆柱的体积=底面积×高,高=圆柱的体积底面积.解:(1)四个容器中水的高度分别为30010=30(cm),30020=15(cm),30030=10(cm),30060=5(cm).(2)xy=300.y与x成反比例关系.【对应训练】1.给一间教室铺地砖,每块地砖的面积(单位:cm2)与所需地砖的数量(单位:块)如下表所示.(1)这间教室的地面面积是多少平方米?(2)所需地砖的数量是怎样随着每块地砖的面积的变化而变化的?(3)若用n表示所需地砖的数量,m表示每块地砖的面积,用式子表示n与m的关系.n与m成什么比例关系?解:(1)这间教室的地面面积是300×1600=480000(cm2)=48m2.(2)由表可知所需地砖的数量随着每块地砖的面积的增大而减小,但它们的乘积一定,都为480000.(3)mn=480000.n与m成反比例关系.2.教材P75练习第3题.[教学提示]这里涉及的运算要让学生自主动手进行,一方面是加强理解,另一方面也是为后面学习代数式求值进行预演.可倡导按照自己所想的方法进行求值(不必硬套公式),学力稍强的学生可能已经运用代值求解的方法去解决问题了,应对这种思维超前、灵活运用的学生予以认可,对于其他学生也应当鼓励,营造积极的学习氛围,使学生在自主学习中获得成就感.活动四:随堂训练,课堂总结【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:什么是反比例关系?两个相关联的量何时满足反比例关系,你能举例说明吗?【作业布置】1.教材P76习题3.1第4,5,9题.【教学后记】3.2 代数式的值第1课时:求代数式的值【素养目标】1.了解代数式的值的概念,会把具体数代入代数式进行计算.2.感受代数式求值是一个转换过程或某种算法,锻炼学生的计算能力和解题能力.【教学重点】求代数式的值.【教学难点】较复杂的代数式求值,理解代数式的值与字母的取值间的对应关系.【教学过程】活动一:创设情境,新课导入[设计意图]设计实例引出代数求值的需求,为进入新课做铺垫.【情境引入】谁说数学学不好?这不,先前数学成绩很差的刘伟,经过不断努力,不但成绩直线上升,而且现在还能设计程序计算呢!如图就是刘伟设计的一个程序.当输入x的值为3时,你能求出输出的y 的值吗?y的值为-3.像上面这样,我们在列出代数式的情况后,往往还需要求出所需的数值.怎么求呢?这就是本课时需要解决的问题.[教学提示]学生独立完成说出答案,让其在按照程序探索求值的过程中感受代数式求值的必要性.活动二:交流合作,探究新知[设计意图]通过实际问题引入代数式的值的概念,并通过例题引导学生学会求代数式的值,并归纳求代数式的值的步骤. 探究点求代数式的值问题为了开展体育活动,学校要购置一批排球,每班配5个,学校另外留20个.学校总共需要购置多少个排球?记全校的班级数是n,则需要购置的排球总数是5n+20.提问 (1)如果班级数是15,怎么根据上面求得的代数式得到具体结果呢?如果班级数是15,用15代替字母n,那么需要购置的排球总数是5n+20=5×15+20=95.(2)如果班级数是20呢?同上,如果班级数是20,用20代替字母n,那么需要购置的排球总数是5n+20=5×20+20=120.概念引入:归纳总结:求代数式的值的步骤:(1)代入,即用具体数值代替代数式中的字母;(2)计算,即按照代数式指明的运算顺序计算得出结果.【对应训练】教材P80练习第1,2题.[教学提示]求代数式的值的注意事项:(1)代数式中的运算符号和具体数字都不能改变,代入数值以后原来省略的乘号一定要还原,如例1;(2)字母在代数式中所处的位置必须搞清楚;(3)若字母取值是分数,做乘方运算时必须加上括号,若字母取值是负数也必须加上括号;(4)代数式若有现实背景,也不可取不符合实际意义的值,如李明买了n个足球,这里的n就不能取正整数以外的值.活动三:实际应用,巩固新知[设计意图]通过解决实际问题提高学生对代数式求值的掌握程度. 例3 科技改变生活.刘伟是一名摄影爱好者,他最近新入手了一台如图所示的无人机进行航拍,刘伟将这台无人机放在距离地面1.5m的台子上,以ɑm/s的速度匀速上升40s后进行拍照,然后以(b-2)m/s的速度匀速下降25s后进行第二次拍照.(1)用代数式表示无人机两次拍照时距地面的高度;(2)当ɑ=12,b=10时,求无人机第二次拍照时距地面的高度.解:(1)第一次拍照时距地面的高度是(1.5+40ɑ)m,第二次拍照时距地面的高度是[(1.5+40ɑ)-25(b-2)]m.(2)当ɑ=12,b=10时,(1.5+40ɑ)-25(b-2)=(1.5+40×12)-25×(10-2)=281.5.因此,无人机第二次拍照时距地面的高度为281.5m.【对应训练】教材P80练习第3题.[教学提示]教师鼓励学生独立完成,潜移默化地提高学生观察、分析、解决问题的能力,并在这一过程中将列代数式与求代数式的值融会贯通,提高应用能力,体验克服困难的过程,树立学习数学的信心.活动四:随堂训练,课堂总结【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.什么是代数式的值?你会把具体数代入某个代数式进行求值吗?2.代数式求值时要注意运算符号和运算顺序,你能举例说明吗?3.字母的取值和代数式的值之间有何联系?你能对特定问题下某个字母的值和对应代数式的值的实际意义进行解释吗?【作业布置】1.教材P82习题3.2第1,2,3,4,7,8题.【教学后记】。
3.1 代数式 第1课时 教案 数学人教版七年级上册(2024年)新版教材
第三章代数式3.1代数式第1课时【教学目标】1.了解用字母表示数的意义.2.理解代数式的概念,能用代数式表示简单问题中的数量关系.3.能说出一个代数式所表示的数量关系,赋予代数式实际背景或几何意义,发展符号意识.4.在解决问题的过程中培养类比、联想等思维,体验数学美,增强学习自信心.【重点难点】重点:理解具体代数式的意义,能用代数式表示简单的数量关系.难点:准确列出代数式,从不同的角度给代数式赋予实际意义.【教学过程】一、创设情境你知道什么是智慧农业吗?智慧农业是指现代科学技术与农业种植相结合,从而实现无人化、自动化、智能化管理.《中国城市报》报道:《人工智能成为智慧农业发展新引擎》,“人工智能技术应用在农业,这是必然的趋势.”智能机器人的广泛应用是智慧农业的发展趋势之一.某品牌苹果采摘机器人1 s可以完成5 m2范围内苹果的识别,并自动对成熟的苹果进行采摘,它的一个机械手8 s可以采摘一个苹果.根据这些数据回答下列问题:(1)该机器人10 s能识别多大范围内的苹果?60 s呢?t s呢?(2)该机器识别n m2范围内的苹果需要多少秒?(3)若该机器人搭载了10个机械手,它与采摘工人同时工作1 h,假设工人m s可以采摘一个苹果,则机器人可比工人多采摘多少个苹果?回答上面的问题,要用到含有字母的式子,即本章节要研究的代数式.二、探究归纳探究点1:代数式的定义问题1:分别列出情境导入中的式子(1)5×10=50;5×60=300;5×t=5t;;(2)n5.(3)4 500-3600m问题2:再看用两个含有字母的式子表示数量和数量关系的问题:(1)一条河的水流速度为2.5 km/h,船在静水中的速度是v km/h,用式子表示船在这条河中顺水行驶的速度;(v+2.5)km/h(2)一个正方形的边长是a,这个正方形的周长l是多少?面积S呢?(4a,a2)问题3:观察以上两个问题中所列的式子,你有什么发现?【归纳总结】1.它们都是用运算符号把数或表示数的字母连接起来的式子,我们称这样的式子为代数式.单独一个数或一个字母也是代数式.2.说明:(1)这里的运算是指加、减、乘、除、乘方、开方(可以提出“开方”这个词,以后要学).(2)强调代数式仅指用“运算”符号连接数或字母而得到的算式,代数式中不含有等号或不等号.如S=ab是等式,也可表示长方形面积公式.它不是代数式,而ab是代数式.(3)代数式里的每个字母都表示数,因此数的一些运算规律也适用于代数式.如:2x+2y=2(x+y)【概念辨析】下列各式中哪些是代数式?哪些不是?(1)m+5;(2)a+b=b+a;(3)0;(4)x2+3x+4;(5)x+y>1;(6)1.x小结:(1)代数式中不含“=”“>”“<”“≥”“≤”“≠”等符号.(2)单独的一个数或字母也是代数式.探究点2:代数式的书写规范【典例探究】教材P70【例1】归纳总结:代数式的书写要求:1.数与字母,字母与字母相乘,乘号可以省略,也可写成“·”;数字与数字相乘,乘号不能省略,数字要写在字母前面.2.在含有字母的除法中,一般不用“÷”号,而是写成分数形式.3.式子后面有单位时,和差形式的代数式,要在单位前把代数式括起来.4.带分数一定要写成假分数.【针对性训练】教材P71练习T1探究点3:代数式的意义问题4:用字母表示数后,同一个代数式可以表示不同实际问题中的数量和数量关系,如例1中的(1)(2)题,0.9p既可以表示苹果的售价,也可以表示长方形的面积.你能再举几个例子来解释0.9p的意义吗?【针对性训练】教材P71练习T3【典例探究】教材P71例2【方法指导】解这类问题的关键是:(1)认真分析代数式中含有哪些运算,它们的运算顺序是什么,从而正确、简明地体现出代数式的运算顺序,不会引起误解;(2)为了简明地叙述代数式的意义,也可以找出最后的运算,把它用语言表达出来,其他的运算用代数式表示.【针对性训练】教材P71练习T2三、检测反馈1.下列各式:①a;②a≥b;③a(b+c)=ab+ac;④4t;⑤(m+n)2;⑥1-3m,其中代数式有()A.2个B.3个C.4个D.5个2.产量由m千克增长15%后,就达到千克.3.如果两个数的和是10,其中一个数用x表示,那么这两个数的积为.4.用代数式表示:(1)x的2倍与y的4倍的和;(2)x与4的和的3倍;(3)a,b两数的和与它们的差的积;(4)x的4倍与y的平方的和.(5)个位数字是a,十位数字是b的两位数.5.代数式6p可以表示什么?6.已知代数式5x+3y,用自然语言表示为;用它的实际意义可解释为.四、本课小结本节主要学习了代数式的概念,以及代数式的读法和写法,并初步学习用代数式表示简单的数量和数量关系.学习代数式要特别注意以下几点:(1)代数式中含有加、减、乘、除、开方、乘方等运算符号,不含有等号或不等号,单独的一个数(或字母)也是代数式.(2)代数式与公式不同,公式是等式,但不是代数式,代数式是不含“=”的.(3)代数式的书写要严格遵照其书写规定:①代数式中的“×”,简写为“·”或省略不写,数字与字母相乘时,数字要写在字母的前面,如果是带分数,要化成假分数,数字与数字相乘仍用“×”.②在代数式中遇到除法运算时,一般按分数的形式表示.(4)代数式的读法没有统一的规定,一般以能够简明地体现出代数式的运算顺序,不致于引起误会为主.五、布置作业P75习题3.1T1、P76T2六、板书设计七、教学反思1.采取抢答的形式让学生回答,对每位回答正确的学生给予积极的评价和鼓励,进一步调动学生的积极性.2.根据课程标准把握教材,淡化概念,注重知识的形成过程,如在学生已有的知识基础上引入代数式的概念,显得自然流畅.在学习例题时,让学生充分观察、思考、分析和讨论,帮助学生在不断地纠错中学习新知识,在不断归纳中学习新知识,在不断创新中学习新知识,使学生的大脑始终处于兴奋之中,收到良好的教学效果.。
七年级数学上册 2.1 代数式教案 (新版)新人教版
2.1 代数式 (1 )教学目标:
理解用字母表示数的意义 ,了解代数式的概念 ,会用字母表示简单的数量关系 ,初步建立符号意识 .
重点: 代数式的概念 . 难点:
列简单的代数式
过程:
一、复习 复习题二 (19 )、P88 (2 ) .
(4 )某机关原有工作人员m 人 ,现精简机构 ,减少20%的工作人员 ,那么有人被精简 .
解: (1 )圆的面积为2
r πcm 2; (2 )周长为)(2b a +cm ;
(3 )存款为)(b a -元;
(4 )精简m %20人员 .
书写要求:
1、 代数式中乘号可写为•或省略;
2、 数与字母相乘 ,数字写在前面 ,如a 6;
3、 除法通常写成分数 ,如a ÷1写成a
1 (0≠a ); 4、 加减代数式应加上括号 ,如)3(+x 克;
5、 带分数应写成假分数 ,如
xy 3
4 . 三、练习稳固:
P90:1、2 . 教学反思
1 、要主动学习、虚心请教,不得偷懒. 老老实实做"徒弟〞,认认真真学经验,扎扎实实搞教研.
2 、要勤于记录,善于总结、扬长避短. 记录的过程是个学习积累的过程, 总结的过程就是一个自我提高的过程.通过总结, 要经常反思自己的优点与缺点,从而取长补短,不断进步、不断完善.
3 、要突破创新、富有个性,倾心投入. 要多听课、多思考、多改良,要正确处理好模仿与开展的关系,对指导教师的工作不能照搬照抄,要学会扬弃,在原有的根底上,根据自身条件创造性实施教育教学,逐步形成自己的教学思路、教学特色和教学风格, 弘扬工匠精神, 努力追求自身教学的高品位.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版初一数学代数式章节教案
代数式
教学目标
1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;
2.了解的概念,使学生能说出一个所表示的数量关系;
3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;
4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。
教学建议
1. 知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出的概念。
2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。
运用算术的方法解决问题,是小学学生的思维方法,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。
对的概念课文没有直接给出,而是用实例形象地说明了的概念。
对的概念可以从三个方面去理解:
(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.
(2)中并不要求数和表示数的字母同时出现,单独的一个数和字母也是.如:2,都是.
(3)是用基本的运算符号把数、表示数的字母连接而成的式子,一定要弄清一个有几种运算和运算顺序。
不含表示关系的符号,如等号、不等号.如,,等都是,而,,,等都不是.
3.教学难点分析:能正确说出一个的数量关系,即用语言表达的意义,一定要理清中含有的各种运算及其顺序。
用语言表达的意义,具体说法没有统一规定,以简明而不引起误会为出发点。
如:说出7(a-3)的意义。
分析7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。
7(a-3)的最后运算是积,应把a-3作为一个整体。
所以,7(a-3)的意义是7与(a-3)的积。
4.书写的注意事项:
(1)中数字与字母或者字母与字母相乘时,通常把乘号简写作或省略不写,同时要求数字应写在字母前面.如,应写作或写作,应写作或写作.带分数与字母相乘,应把带分数化成假分数,如应写成.数字与数字相乘一般仍用号.
(2)中有除法运算时,一般按照分数的写法来写.如:应写作
(3)含有加减运算的需注明单位时,一定要把整个式子括起来.。