2018学年山东滨州中考数学试题详解
2018年山东省青岛市数学中考真题含答案解析

10
∵点 B 是 的中点, ∴∠AOB= ∠AOC=70°, 由圆周角定理得,∠D= ∠AOB=35°, 故选:D.
6. 【解答】解: ∵沿过点 E 的直线折叠,使点 B 与点 A 重合, ∴∠B=∠EAF=45°, ∴∠AFB=90°, ∵点 E 为 AB 中点, ∴EF= AB,EF= ,
4
18.(6 分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校 随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制 了以下统计图.
请根据图中信息解决下列问题: (1)共有 名同学参与问卷调查。 (2)补全条形统计图和扇形统计图。 (3)全校共有学生 1500 人,请估计该校学生一个月阅读 2 本课外书的人数约为 多少. 19.(6 分)某区域平面示意图如图,点 O 在河的一侧,AC 和 BC 表示两条互相垂 直的公路.甲勘测员在 A 处测得点 O 位于北偏东 45°,乙勘测员在 B 处测得点 O 位于南偏西 73.7°,测得 AC=840m,BC=500m.请求出点 O 到 BC 的距离. 参考数据:sin73.7°≈ ,cos73.7°≈ ,tan73.7°≈
因式分解分式二次根式含解析-中考各地试题分类汇编

专题1.4 因式分解分式二次根式一、单选题1.【湖南省邵阳市2018年中考数学试卷】将多项式x﹣x3因式分解正确的是()A. x(x2﹣1) B. x(1﹣x2) C. x(x+1)(x﹣1) D. x(1+x)(1﹣x)【答案】D【解析】【分析】直接提取公因式x,然后再利用平方差公式分解因式即可得出答案.【详解】x﹣x3=x(1﹣x2)=x(1﹣x)(1+x).故选D.【点睛】本题主要考查了提取公因式法以及公式法分解因式,正确应用公式法是解题关键.2.【台湾省2018年中考数学试卷】已知某文具店贩售的笔记本每本售价均相等且超过10元,小锦和小勤在此文具店分别购买若干本笔记本.若小锦购买笔记本的花费为36元,则小勤购买笔记本的花费可能为下列何者?()A. 16元 B. 27元 C. 30元 D. 48元【答案】D点睛:此题主要考查了质因数分解,正确得出笔记本的单价是解题关键.3.【湖南省郴州市2018年中考数学试卷】下列运算正确的是()A. a3•a2=a6 B. a﹣2=﹣ C. 3﹣2= D.(a+2)(a﹣2)=a2+4【答案】C【解析】【分析】直接利用同底数幂的乘除运算法则、负指数幂的性质、二次根式的加减运算法则、平方差公式分别计算即可得出答案.【详解】A、a3•a2=a5,故A选项错误;B、a﹣2=,故B选项错误;C、3﹣2=,故C选项正确;D、(a+2)(a﹣2)=a2﹣4,故D选项错误,故选C.【点睛】本题考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法则是解题关键.4.【河北省2018年中考数学试卷】若2n+2n+2n+2n=2,则n=()A.﹣1 B.﹣2 C. 0 D.【答案】A【点睛】本题考查了乘法的意义以及同底数幂的乘法,熟知相关的定义以及运算法则是解题的关键.同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n(m,n是正整数).5.【湖北省孝感市2018年中考数学试题】已知,,则式子的值是()A. 48 B. C. 16 D. 12【答案】D【解析】分析:先通分算加法,再算乘法,最后代入求出即可.详解:(x-y+)(x+y-)===(x+y)(x-y),当x+y=4,x-y=时,原式=4×=12,故选:D.点睛:本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.6.【湖南省邵阳市2018年中考数学试卷】据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9m B. 2.8×10﹣8m C.28×109m D. 2.8×108m【答案】B【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.【四川省内江市2018年中考数学试卷】已知:﹣=,则的值是()A. B.﹣ C. 3 D.﹣3【答案】C【解析】分析:已知等式左边两项通分并利用同分母分式的减法法则计算,变形后即可得到结果.详解:∵﹣=,∴=,则=3,故选:C.点睛:此题考查了分式的化简求值,化简求值的方法有直接代入法,整体代入法等常用的方法,解题时可根据题目具体条件选择合适的方法,当未知的值没有明确给出时,所选取的未知数的值必须使原式的各分式都有意义,且除数不能为0.8.【四川省内江市2018年中考数学试卷】小时候我们用肥皂水吹泡泡,其泡沫的厚度是约0.000326毫米,用科学记数法表示为()A.毫米 B.毫米 C.厘米 D.厘米【答案】A点睛:此题考查了科学记数法—表示较小的数,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.9.【河北省2018年中考数学试卷】老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙 B.甲和丁 C.乙和丙 D.乙和丁【答案】D【解析】【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.【详解】∵=====,∴出现错误是在乙和丁,故选D.【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键. 10.【四川省达州市2018年中考数学试】题二次根式中的x的取值范围是()A. x<﹣2 B.x≤﹣2 C. x>﹣2 D.x≥﹣2【答案】D点睛:本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.11.【台湾省2018年中考数学试卷】算式×(﹣1)之值为何?()A. B. C. 2- D. 1【答案】A【解析】分析:根据乘法分配律可以解答本题.详解:×(﹣1)=×﹣1=,故选:A.点睛:本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.12.【山东省聊城市2018年中考数学试卷】下列计算正确的是()A. B.C. D.【答案】B点睛:本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则. 13.【湖南省张家界市2018年初中毕业学业考试数学试题】下列运算正确的是()A. B. C. D.=【答案】D【解析】分析:根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;=a (a≥0);完全平方公式:(a±b)2=a2±2ab+b2;幂的乘方法则:底数不变,指数相乘进行计算即可.详解:A、a2和a不是同类项,不能合并,故原选项错误;B、=|a|,故原选项错误;C、(a+1)2=a2+2a+1,故原选项错误;D、(a3)2=a6,故原选项正确.故选:D.点睛:此题主要考查了二次根式的性质、合并同类项、完全平方公式、幂的乘方,关键是掌握各计算法则和计算公式.二、填空题14.【山东省东营市2018年中考数学试题】分解因式:x3﹣4xy2=_____.【答案】x(x+2y)(x﹣2y)【解析】分析:原式提取x,再利用平方差公式分解即可.详解:原式=x(x2-4y2)=x(x+2y)(x-2y),故答案为:x(x+2y)(x-2y)点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.【湖南省郴州市2018年中考数学试卷】因式分解:a3﹣2a2b+ab2=_____.【答案】a(a﹣b)2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.【湖南省怀化市2018年中考数学试题】因式分解:ab+ac=_____.【答案】a(b+c)【解析】分析:直接找出公因式进而提取得出答案.详解:ab+ac=a(b+c).故答案为:a(b+c).点睛:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.17.【河北省2018年中考数学试卷】若a,b互为相反数,则a2﹣b2=_____.【答案】0【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a,b互为相反数,∴a+b=0,∴a2﹣b2=(a+b)(a﹣b)=0,故答案为:0.【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.18.【山东省威海市2018年中考数学试题】分解因式:﹣a2+2a﹣2=__.【答案】﹣(a﹣2)2【解析】分析:原式提取公因式,再利用完全平方公式分解即可.详解:原式=﹣(a2﹣4a+4)=﹣(a﹣2)2,故答案为:﹣(a﹣2)2点睛:此题考查了因式分解﹣运用公式法,熟练掌握因式分解的方法是解本题的关键.19.【湖南省湘西州2018年中考数学试卷】要使分式有意义,则x的取值范围为_____.【答案】x≠﹣2【解析】【分析】根据分式有意义的条件可得x+2≠0,解这个不等式即可求出答案.【详解】由题意可知:x+2≠0,∴x≠﹣2,故答案为:x≠﹣2.【点睛】本题考查分式有意义的条件,解题的关键是正确理解分式有意义的条件:分母不为0.20.【湖北省襄阳市2018年中考数学试卷】计算的结果是_____.【答案】【点睛】本题考查了同分母分式的加减法,熟练掌握同分母公式加减法的法则是解题的关键,注意结果要化成最简分式.21.【湖北省武汉市2018年中考数学试卷】计算的结果是_____.【答案】【解析】【分析】根据分式的加减法法则进行计算即可得答案.【详解】原式===,故答案为:.【点睛】本题考查分式的加减运算,熟练掌握分式加减的运算法则是解题的关键,本题属于基础题.22.【山东省滨州市2018年中考数学试题】若分式的值为0,则x的值为______.【答案】-3点睛:本题主要考查分式的值为0的条件,注意分母不为0.23.【新疆自治区2018年中考数学试题】如果代数式有意义,那么实数x的取值范围是_____.【答案】x≥1.【解析】分析:直接利用二次根式的定义分析得出答案.详解:∵代数式有意义,∴x-1≥0,解得,x≥1.∴实数x的取值范围是:x≥1.故答案为:x≥1.点睛:此题主要考查了二次根式的定义,正确把握定义是解题关键.24.【山东省烟台市2018年中考数学试卷】与最简二次根式5是同类二次根式,则a=_____.【答案】2【解析】分析:先将化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a的方程,解出即可.详解:∵与最简二次根式5是同类二次根式,且=2,∴a+1=3,解得:a=2.故答案为2.点睛:本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.25.【黑龙江省哈尔滨市2018年中考数学试题】计算6﹣10的结果是_____.【答案】【解析】分析:首先化简,然后再合并同类二次根式即可.详解:原式=6-10×=6-2=4,故答案为:4.点睛:此题主要考查了二次根式的加减,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.三、解答题26.【浙江省杭州市临安市2018年中考数学试卷】阅读下列题目的解题过程:已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4(A)∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)∴c2=a2+b2(C)∴△ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为:;(3)本题正确的结论为:.【答案】(1)C;(2)没有考虑a=b的情况;(3)△ABC是等腰三角形或直角三角形.(2)错误的原因为:没有考虑a=b的情况,故答案为:没有考虑a=b的情况;(3)本题正确的结论为:△ABC是等腰三角形或直角三角形,故答案为:△ABC是等腰三角形或直角三角形.【点睛】本题考查因式分解的应用、勾股定理的逆定理,解答本题的关键是明确题意,写出相应的结论,注意考虑问题要全面.27.【上海市2018年中考数学试卷】先化简,再求值:(﹣)÷,其中a=.【答案】原式=【点睛】本题考查了分式的化简求值,熟练掌握分式化简求值的步骤是解题的关键.28.【吉林省长春市2018年中考数学试卷】先化简,再求值:,其中x=﹣1.【答案】【解析】【分析】根据分式的加法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【详解】====x+1,当x=﹣1时,原式=﹣1+1=.【点睛】本题考查分式的化简求值,熟练掌握分式化简求值的方法是解答本题的关键.29.【云南省昆明市2018年中考数学试题】先化简,再求值:(+1)÷,其中a=tan60°﹣|﹣1|.【答案】原式=【解析】分析:根据分式的运算法则即可求出答案.详解:当a=tan60°-|-1|时,∴a=-1∴原式===.点睛:本题考查分式的运算法则,解题的关键是熟练运用分式运算法则.30.【黑龙江省哈尔滨市2018年中考数学试题】先化简,再求代数式(1﹣)÷的值,其中a=4cos30°+3tan45°.【答案】点睛:本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.31.【广西钦州市2018年中考数学试卷】计算:|﹣4|+3tan60°﹣﹣()﹣1【答案】+2【解析】【分析】按顺序先进行绝对值的化简、特殊角的三角函数值、二次根式的化简、负指数幂的计算,然后再按运算顺序进行计算即可得出答案.【详解】|﹣4|+3tan60°﹣﹣()﹣1=4+3﹣2﹣2=+2.【点睛】本题考查了实数的混合运算,涉及到特殊角的三角函数值、二次根式的化简、负指数幂的运算等,熟练掌握各运算的运算法则以及实数混合运算的运算法则是解题的关键.32.【江苏省徐州巿2018年中考数学试卷】计算:(﹣1)2008+π0﹣()﹣1+.【答案】1【解析】【分析】按顺序分别进行乘方的运算、0次幂的运算、负指数幂的运算、立方根的运算,然后再按去处顺序进行运算即可.【详解】(﹣1)2008+π0﹣()﹣1+=1+1﹣3+2=1.【点睛】本题考查了实数的混合运算,涉及到0次幂、负指数幂,熟练掌握0次幂的运算法则、负指数幂的运算法则以及实数混合运算的运算法则是解题的关键.33.【湖北省荆门市2018年中考数学试卷】先化简,再求值:(x+2+)÷,其中x=2.【答案】,4-2.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算顺序和运算法则是解题的关键.34.【四川省达州市2018年中考数学试题】化简代数式:,再从不等式组的解集中取一个合适的整数值代入,求出代数式的值.【答案】0【解析】分析:直接将所给式子进行去括号,利用分式混合运算法则化简,再解不等式组,进而得出x的值,即可计算得出答案.点睛:此题主要考查了分式的化简求值以及不等式组解法,正确掌握分式的混合运算法则是解题关键.35.【湖南省邵阳市2018年中考数学试卷】计算:(﹣1)2+(π﹣3.14)0﹣|﹣2|【答案】【解析】【分析】按顺序先分别进行乘方的计算,零指数幂的运算、绝对值的化简,然后再按运算顺序进行计算即可.【详解】(﹣1)2+(π﹣3.14)0﹣|﹣2|=1+1-(2-)=1+1-2+=.【点睛】本题考查了实数的运算,熟练掌握运算法则是解本题的关键.36.【湖北省随州市2018年中考数学试卷】先化简,再求值:,其中x为整数且满足不等式组.【答案】,.【解析】【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,由x为整数且满足不等式组可以求得x的值,然后代入化简后的结果进行计算即可得答案.【详解】===,由得,2<x≤3,∵x是整数,∴x=3,∴原式=.【点睛】本题考查分式的化简求值、解一元一次不等式组、一元一次不等式组的整数解,熟练掌握分式的化简求值的方法是解答本题的关键.37.【山东省烟台市2018年中考数学试卷】先化简,再求值:(1+)÷,其中x满足x2﹣2x ﹣5=0.【答案】5点睛:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.38.【江苏省淮安市2018年中考数学试题】先化简,再求值:(1﹣)÷,其中a=﹣3.【答案】原式==﹣2.【解析】分析:原式利用分式混合运算顺序和运算法则化简,再将a的值代入计算可得.详解:原式===,当a=﹣3时,原式==﹣2.点睛:本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.39.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】(1)计算:|﹣2|﹣2cos60°+()﹣1﹣(2018﹣)0(2)先化简(1﹣)•,再在1、2、3中选取一个适当的数代入求值.【答案】(1)6;(2)-2(2)(1﹣)•,===,当x=2时,原式=.点睛:本题考查分式的化简求值、绝对值、特殊角的三角函数值、负整数指数幂、零指数幂,解答本题的关键是明确它们各自的计算方法.40.【湖北省黄石市2018年中考数学试卷】先化简,再求值:.其中x=sin60°.【答案】【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再根据三角函数值代入计算可得.详解:原式==,当x=sin60°=时,原式==.点睛:本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.41.【江苏省盐城市2018年中考数学试题】先化简,再求值:,其中.【答案】原式=x-1=点睛:本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.42.【湖北省恩施州2018年中考数学试题】先化简,再求值:,其中x=2﹣1.【答案】【解析】分析:直接分解因式,再利用分式的混合运算法则计算得出答案.详解:==,把x=2-1代入得,原式==.点睛:此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.43.【新疆自治区2018年中考数学试题】先化简,再求值:(+1)÷,其中x是方程x2+3x=0的根.【答案】-2点睛:本题考查分式的化简求值、一元二次方程的解,解答本题的关键是明确分式的化简求值的计算方法.44.【山东省聊城市2018年中考数学试卷】先化简,再求值:,其中.【答案】-4【解析】分析: 首先计算括号里面的减法,然后再计算除法,最后再计算减法,化简后,再代入a的值可得答案.详解:原式====-当a=-时,原式=-4.点睛:此题主要考查了分式的化简求值,关键是掌握化简求值,一般是先化简为最简分式或整式,再代入求值.45.【四川省眉山市2018年中考数学试题】先化简,再求值:,其中x满足x2-2x-2=0.【答案】点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.46.【湖南省常德市2018年中考数学试卷】先化简,再求值:,其中.【答案】【解析】【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除运算,最后把数值代入化简后的结果进行计算即可得.【详解】原式=[+]×(x﹣3)2=×(x﹣3)2=x﹣3,当x=时,原式=﹣3=﹣.【点睛】本题主要考查了分式的化简求值,熟练掌握分式的混合运算法则是解题关键.47.【湖南省常德市2018年中考数学试卷】计算:.【答案】-2.【解析】【分析】按顺序先分别进行零指数幂运算、绝对值化简、二次根式化简、负指数幂的运算,然后再按运算顺序进行计算即可得.【详解】原式=1﹣(2﹣1)+2﹣4,=1﹣2+1+2﹣4,=﹣2.【点睛】本题主要考查了实数的混合运算,解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等的运算.48.【2018年湖南省湘潭市中考数学试卷】先化简,再求值:(1+)÷.其中x=3.【答案】x+2,5点睛:本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.49.【江苏省泰州市2018年中考数学试题】(1)计算:π0+2cos30°﹣|2﹣|﹣()﹣2;(2)化简:(2﹣)÷.【答案】(1)2﹣5;(2)【解析】分析:(1)先计算零指数幂、代入三角函数值,去绝对值符号、计算负整数指数幂,再计算乘法和加减可得;(2)根据分式的混合运算顺序和运算法则计算可得.详解:(1)原式=1+2×﹣(2﹣)﹣4=1+﹣2+-4=2﹣5;(2)原式=,=,=.点睛:本题主要考查分式和实数的混合运算,解题的关键是掌握零指数幂、三角函数值、绝对值性质、负整数指数幂及分式的混合运算顺序和运算法则.50.【山东省菏泽市2018年中考数学试题】先化简,再求值:,其中,.【答案】7点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.。
2018年中考数学试题(含答案)

一、选择题(本题有10小题,每小题3分,共30分) 1. 3-=( ) A. 3 B. 3- C. 31 D. 31- 2.数据1800000用科学计数法表示为( )A.68.1B.6108.1⨯C. 51018⨯D. 61018⨯3.下列计算正确的是( )A. 222=B. 222±=C. 242=D. 242±=4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响的是( )A.方差B. 标准差C. 中位数D. 平均数5.若线段 AM ,AN 分别是ABC ∆边上的高线和中线,则( )A.AN AM >B. AN AM ≥C. AN AM <D. AN AM ≤6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。
已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( )A. 20=-y xB. 20=+y xC. 6025=-y xD. 6025=+y x7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1~6)朝上一面的数字。
任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于( )A. 61B. 31C. 21D. 32 8.如图,已知点P 矩形ABCD 内一点(不含边界),设1θ=∠PAD ,2θ=∠PBA ,3θ=∠PCB ,4θ=∠PDC ,若︒=∠︒=∠50,80CPD APB ,则( )A.()︒=++30-3241θθθθ)( B. ()︒=++40-3142θθθθ)( C.()︒=++70-4321θθθθ)( D. ()︒=+++1804321θθθθ)( 9.四位同学在研究函数是常数)c b c bx ax y ,(2++=时,甲发现当1=x 时,函数有最小值;乙发现1-是方程02=++c bx ax 的一个根;丙发现函数的最小值为3;丁发现当2=x 时,4=y .已知这四位同学中只有一位发现的结论是错误的,则该同学是( )A. 甲B.乙C. 丙D.丁10.如图,在ABC ∆中,点D 在AB 边上,BC DE //,与边AC 交于点E ,连结BE ,记BCE ADE ∆∆,的面积分别为21,S S ,( )A. 若AB AD >2,则2123S S >B. 若AB AD >2,则2123S S <C. 若AB AD <2,则2123S S >D. 若AB AD <2,则2123S S <二、填空题(本大题共有6个小题,每小题4分,共24分)11.计算:=-a a 312.如图,直线b a //,直线c 与直线b a ,分别交于A,B ,若︒=∠451,则=∠213.因式分解:()()=---a b b a 2 14.如图,AB 是⊙的直径,点C 是半径OA 的中点,过点C 作AB DE ⊥,交O 于点D 、E 两点,过点D 作直径DF ,连结AF ,则=∠DFA15.某日上午,甲、乙两车先后从A 地出发沿一条公路匀速前往B 地,甲车8点出发,如图是其行驶路程s (千米)随行驶时间t (小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v (单位:千米/小时)的范围是16.折叠矩形纸片ABCD 时,发现可以进行如下操作:①把ADE ∆翻折,点A 落在DC 边上的点F 处,折痕为DE ,点E 在AB 边上;②把纸片展开并铺平;③把CDG ∆翻折,点C 落在直线AE 上的点H 处,折痕为DG ,点G 在BC 边上,若AB=AD+2,EH=1,则AD=三、简答题(本大题共7个小题,共66分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分6分)已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货,设平均卸货速度为v (单位:吨0/小时),卸完这批货物所需的时间为t (单位:小时)。
2018年中考数学真题分类汇编(第二期)专题10平面直角坐标系与点的坐标试题(含解析)

平面直角坐标系与点的坐标一.选择题1.(2018•山东东营市•3分)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m 的取值范围是()A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣1【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组求解即可.【解答】解:∵点P(m﹣2,m+1)在第二象限,∴,解得﹣1<m<2.故选:C.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.(2018•山东聊城市•3分)如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC 边上的A1处,则点C的对应点C1的坐标为()A.(﹣,) B.(﹣,) C.(﹣,)D.(﹣,)【分析】直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.【解答】解:过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠3,则△A1OM∽△OC1N,∵OA=5,OC=3,∴OA1=5,A1M=3,∴OM=4,∴设NO=3x,则NC1=4x,OC1=3,则(3x)2+(4x)2=9,解得:x=±(负数舍去),则NO=,NC1=,故点C的对应点C1的坐标为:(﹣,).故选:A.【点评】此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.3. (2018•乌鲁木齐•4分)在平面直角坐标系xOy中,将点N(﹣1,﹣2)绕点O旋转180°,得到的对应点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,﹣2)D.(1,﹣2)【分析】根据题意可知点N旋转以后横纵坐标都互为相反数,从而可以解答本题.【解答】解:在平面直角坐标系xOy中,将点N(﹣1,﹣2)绕点O旋转180°,得到的对应点的坐标是(1,2),故选:A.【点评】本题考查坐标与图形变化﹣旋转,解答本题的关键是明确题意,利用旋转的知识解答.4.(2018•金华、丽水•3分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x 轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A. (5,30)B. (8,10) C. (9,10) D. (10,10)【解析】【解答】解:因为点P在第一象限,点P到x轴的距离为:40-30=10,即纵坐标为10;点P到y轴的距离为,即横坐标为9,∴点P(9,10),故答案为:C。
一次函数的图像

2018-2019全国各中考数学试题分考点解析汇编一次函数(正比例函数)的图像、性质一、选择题1.(2018重庆江津4分)直线1y x =-的图象经过的象限是A 、第一、二、三象限B 、第一、二、四象限C 、第二、三、四象限D 、第一、三、四象限【答案】D 。
【考点】一次函数的性质。
【分析】由1y x =-可知直线与y 轴交于(0,﹣1)点,且y 随x的增大而增大,可判断直线经过第一、三、四象限。
故选D 。
2.(2018黑龙江牡丹江3分)在平面直角坐标系中,点O为原点,直线y kx b =+交x 轴于点A(-2,0),交y 轴于点B .若△AOB 的面积为8,则k 的值为A .1B .2C .-2或4D .4或-4【答案】D 。
【考点】待定系数法,点的坐标与方程的关系。
【分析】根据题意画出图形,注意要分情况讨论,当B 在y 的正半轴和负半轴上时,分别求出B 点坐标,然后再利用待定系数法求出一次函数解析式,得到k的值:①当B 在y 的正半轴上时,∵△AOB 的面积为8,∴12·OA·OB=8。
∵A(-2,0),∴OA=2,∴OB=8。
∴B(0,8)。
∵直线y kx b =+经过点A (-2,0)和点B (0,8).∴208k b b -+=⎧⎨=⎩,解得48k b =⎧⎨=⎩。
②当B 在y 的负半轴上时,同①可得4k =-。
故选D 。
3.(2018广西桂林3分)直线1y kx =-一定经过点A 、(1,0)B 、(1,k )C 、(0,k )D 、(0,﹣1)【答案】D 。
【考点】直线上点的坐标与方程的关系。
【分析】根据点在直线上,点的坐标 满足方程的关系,由一次函数y kx b =+与y 轴的交点为(0,b )进行解答即可:∵直线y kx b =+中b =-1,∴此直线一定与y 轴相较于(0,-1)点,∴此直线一定过点(0,-1)。
故选D 。
4.(2018广西百色3分)两条直线11y k x b =+和22y k x b =+相交于点A(-2,3),则方程组⎩⎨⎧+=+=2211b x k y b x k y 的解是A ⎩⎨⎧==32y xB ⎩⎨⎧=-=32y xC ⎩⎨⎧-==23y xD ⎩⎨⎧==23y x【答案】B 。
华师大版七年级数学专题4.4 圆-2018年中考数学试题分项版解析汇编(解析版)

一、单选题1.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A. 35°B. 45°C. 55°D. 65°【来源】江苏省盐城市2018年中考数学试题【答案】C点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.2.如图,一把直尺,的直角三角板和光盘如图摆放,为角与直尺交点,,则光盘的直径是( )A. 3B.C.D.【来源】广东省深圳市2018年中考数学试题【答案】D【解析】【分析】设光盘圆心为O,连接OC,OA,OB,由AC、AB都与圆O相切,利用切线长定理得到AO平分∠BAC,且OC垂直于AC,OB垂直于AB,可得出∠CAO=∠BAO=60°,得到∠AOB=30°,利用30°所对的直角边等于斜边的一半求出OA的长,再利用勾股定理求出OB的长,即可确定出光盘的直径.【详解】如图,设光盘圆心为O,连接OC,OA,OB,∵AC、AB都与圆O相切,∴AO平分∠BAC,OC⊥AC,OB⊥AB,∴∠CAO=∠BAO=60°,∴∠AOB=30°,在Rt△AOB中,AB=3cm,∠AOB=30°,∴OA=6cm,根据勾股定理得:OB=3,则光盘的直径为6,故选D.【点睛】本题考查了切线的性质,切线长定理,含30°角的直角三角形的性质,以及勾股定理,熟练掌握切线的性质是解本题的关键.3.如图,在中,,的半径为3,则图中阴影部分的面积是()A. B. C. D.【来源】四川省成都市2018年中考数学试题【答案】C【解析】分析:根据平行四边形的性质可以求得∠C的度数,然后根据扇形面积公式即可求得阴影部分的面积.详解:∵在▱ABCD中,∠B=60°,⊙C的半径为3,∴∠C=120°,∴图中阴影部分的面积是:=3π,故选C.点睛:本题考查扇形面积的计算、平行四边形的性质,解答本题的关键是明确题意,利用扇形面积的计算公式解答.学科&网4.在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为()A. B. C. 34 D. 10【来源】四川省宜宾市2018年中考数学试题【答案】D【解析】分析:设点M为DE的中点,点N为FG的中点,连接MN,则MN、PM的长度是定值,利用三角形的三边关系可得出NP的最小值,再利用PF2+PG2=2PN2+2FN2即可求出结论.详解:设点M为DE的中点,点N为FG的中点,连接MN交半圆于点P,此时PN取最小值.∵DE=4,四边形DEFG为矩形,∴GF=DE,MN=EF,∴MP=FN=DE=2,∴NP=MN-MP=EF-MP=1,∴PF2+PG2=2PN2+2FN2=2×12+2×22=10.点睛:本题考查了点与圆的位置关系、矩形的性质以及三角形三变形关系,利用三角形三边关系找出PN的最小值是解题的关键.5.已知半径为5的⊙O是△ABC的外接圆,若∠ABC=25°,则劣弧的长为()A. B. C. D.【来源】山东省滨州市2018年中考数学试题【答案】C点睛:此题考查三角形的外接圆与外心,关键是根据圆周角定理和弧长公式解答.6.如图,过点,,,点是轴下方上的一点,连接,,则的度数是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【解析】【分析】连接CD,根据圆周角定理可知∠OBD=∠OCD,根据锐角三角形函数即可求出∠OCD的度数.【解答】连接CD,∵∠OBD与∠OCD是同弧所对的圆周角,∴∠OBD=∠OCD.∵∴故选B.【点评】考查圆周角定理,解直角三角形,熟练掌握在同圆或等圆中,同弧所对的圆周角相等是解题的关键.7.用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是()A. 点在圆内B. 点在圆上C. 点在圆心上D. 点在圆上或圆内【来源】2018年浙江省舟山市中考数学试题【答案】D【解析】【分析】在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.【解答】用反证法证明时,假设结论“点在圆外”不成立,那么点应该在圆内或者圆上.故选D.【点评】考查反证法以及点和圆的位置关系,解题的关键是掌握点和圆的位置关系.8.如图,从一块直径为的圆形铁皮上剪出一个圆心角为90°的扇形.则此扇形的面积为()A. B. C. D.【来源】山东省德州市2018年中考数学试题【答案】A【解析】分析:连接AC,根据圆周角定理得出AC为圆的直径,解直角三角形求出AB,根据扇形面积公式求出即可.详解:连接AC.∵从一块直径为2m的圆形铁皮上剪出一个同心角为90°的扇形,即∠ABC=90°,∴AC为直径,即AC=2m,AB=BC.∵AB2+BC2=22,∴AB=BC=m,∴阴影部分的面积是=(m2).故选A.点睛:本题考查了圆周角定理和扇形的面积计算,能熟记扇形的面积公式是解答此题的关键.9.如图,的半径为2,圆心的坐标为,点是上的任意一点,,且、与轴分别交于、两点,若点、点关于原点对称,则的最小值为()A. 3B. 4C. 6D. 8【来源】山东省泰安市2018年中考数学试题【答案】C点睛:本题考查了直角三角形斜边上中线的性质以及两点间的距离公式.解题的关键是利用直角三角形斜边上中线等于斜边的一半把AB的长转化为2OP.10.如图,与相切于点,若,则的度数为()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】A【解析】分析:连接OA、OB,由切线的性质知∠OBM=90°,从而得∠ABO=∠BAO=50°,由三角形内角和定理知∠AOB=80°,根据圆周角定理可得答案.详解:如图,连接OA、OB.∵BM是⊙O的切线,∴∠OBM=90°.∵∠MBA=140°,∴∠ABO=50°.∵OA=OB,∴∠ABO=∠BAO=50°,∴∠AOB=80°,∴∠ACB=∠AOB=40°.故选A.点睛:本题主要考查切线的性质,解题的关键是掌握切线的性质:①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.11.如图,已知AB是的直径,点P在BA的延长线上,PD与相切于点D,过点B作PD的垂线交PD的延长线于点C,若的半径为4,,则PA的长为()A. 4B.C. 3D. 2.5【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】A【解析】【分析】连接OD,由已知易得△POD∽△PBC,根据相似三角形对应边成比例可求得PO的长,由PA=PO-AO即可得.【详解】连接OD,∵PD与⊙O相切于点D,∴OD⊥PD,∴∠PDO=90°,∵∠BCP=90°,∴∠PDO=∠PCB,∵∠P=∠P,∴△POD∽△PBC,∴PO:PB=OD:BC,即PO:(PO+4)=4:6,∴PO=8,∴PA=PO-OA=8-4=4,故选A.【点睛】本题考查了切线的性质、相似三角形的判定与性质,连接OD构造相似三角形是解题的关键. 12.如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是()A. 75°B. 70°C. 65°D. 35°【来源】浙江省衢州市2018年中考数学试卷【答案】B【解析】分析:直接根据圆周角定理求解.详解:∵∠ACB=35°,∴∠AOB=2∠ACB=70°.故选B.点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.学科&网13.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A. 3cmB. cmC. 2.5cmD. cm【来源】浙江省衢州市2018年中考数学试卷【答案】D【解析】分析:根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.详解:连接OB,点睛:本题考查了垂径定理,关键是根据垂径定理得出OE的长.二、填空题14.如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB=__________.【来源】江苏省连云港市2018年中考数学试题【答案】44°【解析】分析:首先连接OB,由点C在过点B的切线上,且OC⊥OA,根据等角的余角相等,易证得∠CBP=∠CPB,利用等腰三角形的性质解答即可.详解:连接OB,∵BC是⊙O的切线,∴OB⊥BC,∴∠OBA+∠CBP=90°,∵OC⊥OA,∴∠A+∠APO=90°,∵OA=OB,∠OAB=22°,∴∠OAB=∠OBA=22°,∴∠APO=∠CBP=68°,∵∠APO=∠CPB,∴∠CPB=∠ABP=68°,∴∠OCB=180°-68°-68°=44°,故答案为:44°点睛:此题考查了切线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.15.如图,将含有30°角的直角三角板ABC放入平面直角坐标系,顶点A,B分别落在x、y轴的正半轴上,∠OAB=60°,点A的坐标为(1,0),将三角板ABC沿x轴向右作无滑动的滚动(先绕点A按顺时针方向旋转60°,再绕点C按顺时针方向旋转90°,…)当点B第一次落在x轴上时,则点B运动的路径与坐标轴围成的图形面积是________.【来源】江苏省宿迁市2018年中考数学试卷【答案】+π【解析】【分析】在Rt△AOB中,由A点坐标得OA=1,根据锐角三角形函数可得AB=2,OB=,在旋转过程中,三角板的角度和边的长度不变,所以点B运动的路径与坐标轴围成的图形面积:S=,计算即可得出答案.【详解】在Rt△AOB中,∵A(1,0),∴OA=1,又∵∠OAB=60°,∴cos60°=,∴AB=2,OB=,∵在旋转过程中,三角板的角度和边的长度不变,∴点B运动的路径与坐标轴围成的图形面积:S==π,故答案为:π.【点睛】本题考查了扇形面积的计算,锐角三角函数的定义,旋转的性质等,根据题意正确画出图形是解题的关键.16.一个扇形的圆心角是120°.它的半径是3cm.则扇形的弧长为__________cm.【来源】江苏省连云港市2018年中考数学试题【答案】2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.17.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是________cm2.【来源】江苏省宿迁市2018年中考数学试卷【答案】15π【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.18.如图,左图是由若干个相同的图形(右图)组成的美丽图案的一部分.右图中,图形的相关数据:半径OA=2cm,∠AOB=120°.则右图的周长为________cm(结果保留π).【来源】江苏省盐城市2018年中考数学试题【答案】【解析】分析:先根据图1确定:图2的周长=2个的长,根据弧长公式可得结论.详解:由图1得:的长+的长=的长,∵半径OA=2cm,∠AOB=120°则图2的周长为:.故答案为:.点睛:本题考查了弧长公式的计算,根据图形特点确定各弧之间的关系是本题的关键.19.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ所在的直线经过点M,PB=5cm,小正六边形的面积为cm2,则该圆的半径为________cm.【来源】浙江省温州市2018年中考数学试卷【答案】8.【解析】分析: 设两个正六边形的中心为O,连接OP,OB,过点O作OG⊥PM于点G,OH⊥AB于点H,如图所示:很容易证出三角形PMN是一个等边三角形,边长PM的长,,而且面积等于小正六边形的面积的,故三角形PMN的面积很容易被求出,根据正六边形的性质及等腰三角形的三线和一可以得出PG的长,进而得出OG的长,,在Rt△OPG中,根据勾股定理得OP的长,设OB为x,,根据正六边形的性质及等腰三角形的三线和一可以得出BH,OH的长,进而得出PH的长,在Rt△PHO中,根据勾股定理得关于x的方程,求解得出x的值,从而得出答案.详解: 设两个正六边形的中心为O,连接OP,OB,过点O作OG⊥PM于点G,OH⊥AB于点H,如图所示:很容易证出三角形PMN是一个等边三角形,边长PM=,而且面积等于小正六边形的面积的,故三角形PMN的面积为cm2,∵OG⊥PM,且O是正六边形的中心,∴PG=PM=∴OG=,在Rt△OPG中,根据勾股定理得:OP2=OG2+PG2,即=OP2,∴OP=7cm,设OB为x,∵OH⊥AB,且O是正六边形的中心,∴BH=X,OH=,∴PH=5-x,在Rt△PHO中,根据勾股定理得OP2=PH2+OH2,即;解得:x1=8,x2=-3(舍)故该圆的半径为8cm.故答案为:8.点睛:本题以相机快门为背景,从中抽象出数学模型,综合考查了多边形、圆、三角形及解三角形等相关知识,突出考查数学的应用意识和解决问题的能力。
2024年山东省滨州市中考数学试题+答案详解
2024年山东省滨州市中考数学试题+答案详解(试题部分)温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页,满分120分,考试用时120分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共24分)一、选择题:本大题共8个小题,每小题3分,满分24分.每小题只有一个选项符合题目要求. 1. 12−的绝对值是( )A. 2B. 12 C. 12− D. 2−2. 如图,一个三棱柱无论怎么摆放,其主视图不可能是( )A. B.C. D.3. 数学中有许多精美的曲线,以下是“悬链线”“黄金螺旋线”“三叶玫瑰线”和“笛卡尔心形线”.其中不是轴对称图形的是( )A. B.C. D.4. 下列运算正确的是( )A. ()336n n =B. 22(2)4a a −=−C. 824x x x ÷=D. 23m m m ⋅=5. 若点()12,N a a −在第二象限,那么a 的取值范围是( ) A. 12a > B. 12a < C. 102a << D. 102a ≤< 6. 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:某同学分析上表后得出如下结论:①这些运动员成绩的平均数是1.65;②这些运动员成绩的中位数是1.70;③这些运动员成绩的众数是1.75.上述结论中正确的是( )A. ②③B. ①③C. ①②D. ①②③7. 点()11,M x y 和点()22,N x y 在反比例函数223k k y x−+=(k 为常数)的图象上,若120x x <<,则120y y ,,的大小关系为( )A. 120y y <<B. 120y y >>C. 120y y <<D. 120y y >>8. 刘徽(今山东滨州人)是魏晋时期我国伟大的数学家,中国古典数学理论的奠基者之一,被誉为“世界古代数学泰斗”.刘徽在注释《九章算术》时十分重视一题多解,其中最典型的是勾股容方和勾股容圆公式的推导,他给出了内切圆直径的多种表达形式.如图,Rt ABC △中,90C ∠=︒,,,AB BC CA 的长分别为,,c a b .则可以用含,,c a b 的式子表示出ABC 的内切圆直径d ,下列表达式错误的是( )A. d a b c =+−B. 2ab d a b c =++C. d =D. |()()|d a b c b =−−第Ⅱ卷(非选择题共96分)二、填空题:本大题共8个小题,每小题3分,满分24分.9. 若分式11x −在实数范围内有意义,则x 的取值范围是_____.10.小的整数是___________.11. 将抛物线2y x =−先向右平移1个单位长度,再向上平移2个单位长度,则平移后抛物线的顶点坐标为____________.12. 一副三角板如图1摆放,把三角板AOB 绕公共顶点O 顺时针旋转至图2,即AB OD ∥时,1∠的大小为____________︒.13. 如图,在ABC 中,点D ,E 分别在边,AB AC 上.添加一个条件使ADE ACB ∽,则这个条件可以是____________.(写出一种情况即可)14. 如图,四边形ABCD 内接于⊙O ,若四边形AOCD 是菱形,∠B 的度数是______.15. 如图,四边形AOBC 四个顶点的坐标分别是(1,3)A −,(0,0)O ,(3,1)B −,(5,4)C ,在该平面内找一点P ,使它到四个顶点的距离之和PA PO PB PC +++最小,则P 点坐标为____________.16. 如图,在边长为1的正方形网格中,点A ,B 均在格点上.(1)AB 的长为____________;(2)请只用..无刻度的直尺,在如图所示的网格中,画出以AB 为边的矩形ABCD ,使其面积为263,并简要说明点C ,D 的位置是如何找到的(不用证明):____________. 三、解答题:本大题共8个小题,满分72分.解答时请写出必要的演推过程.17. 计算:()11222−⎫⎛+−⨯−− ⎪⎝⎭ 18. 解方程:(1)21132x x −+=; (2)240x x −=.19. 欧拉是历史上享誉全球的最伟大的数学家之一,他不仅在高等数学各个领域作出杰出贡献,也在初等数学中留下了不凡的足迹.设a ,b ,c 为两两不同的数,称()()()()()()()0,1,2,3n n nn a b c P n a b a c b c b a c a c b =++=−−−−−−为欧拉分式. (1)写出0P 对应的表达式;(2)化简1P 对应的表达式.20. 某校劳动实践基地共开设五门劳动实践课程,分别是A :床铺整理,B :衣物清洗,C :手工制作、D :简单烹饪、E :绿植栽培;课程开设一段时间后,季老师采用抽样调查的方式在全校学生中开展了“我最喜欢的劳动实践课程”为主题的问卷调查.根据调查所收集的数我进行整理、绘制了如下两幅不完整的统计图.根据图中信息,请回答下列问题:(1)请将条形统计图补充完整,并直接写出“手工制作”对应的扇形圆心角度数;(2)若该校共有1800名学生,请你估计全校最喜欢“绿植栽培”的学生人数;(3)小兰同学从B ,C ,D 三门课程中随机选择一门参加劳动实践,小亮同学从C ,D ,E 三门课程中随机选择一门参加劳动实践,求两位同学选择相同课程的概率.21. 【问题背景】某校八年级数学社团在研究等腰三角形“三线合一”性质时发现:①如图,在ABC 中,若AD BC ⊥,BD CD =,则有B C ∠=∠;②某同学顺势提出一个问题:既然①正确,那么进一步推得AB AC =,即知AB BD AC CD +=+,若把①中的BD CD =替换为AB BD AC CD +=+,还能推出B C ∠=∠吗?基于此,社团成员小军、小民进行了探索研究,发现确实能推出B C ∠=∠,并分别提供了不同的证明方法.小军小民ADB 与△【问题解决】(1)完成①的证明;(2)把②中小军、小民的证明过程补充完整.22. 春节期间,全国各影院上映多部影片,某影院每天运营成本为2000元,该影院每天售出的电影票数量y (单位:张)与售价x (单位:元/张)之间满足一次函数关系(3080x ≤≤,且x 是整数),部分数据如下表所示:(1)请求出y 与x 之间的函数关系式;(2)设该影院每天的利润(利润=票房收入-运营成本)为w (单位:元),求w 与x 之间的函数关系式;(3)该影院将电影票售价x 定为多少时,每天获利最大?最大利润是多少?如图1,ABC 中,点D ,E ,F 分别在三边BC CA AB ,,上,且满足DF AC DE AB ,∥∥.23. ①求证:四边形AFDE 为平行四边形;②若AB BD AC DC=,求证:四边形AFDE 为菱形; 24. 把一块三角形余料MNH (如图2所示)加工成菱形零件,使它的一个顶点与MNH △的顶点M 重合,另外三个顶点分别在三边MN NH HM ,,上,请在图2上作出这个菱形.(用尺规作图,保留作图痕迹,不写作法.)25. 【教材呈现】现行人教版九年级下册数学教材85页“拓广探索”第14题: ABC 中,)【得出结论】sin sin sin a b c A B C==. 【基础应用】在ABC 中,75B ∠=︒,45C ∠=︒,2BC =,利用以上结论求AB 的长;【推广证明】 进一步研究发现,sin sin sin a b c A B C==不仅在锐角三角形中成立,在任意三角形中均成立,并且还满足2sin sin sin a b c R A B C===(R 为ABC 外接圆的半径). 请利用图1证明:2sin sin sin a b c R A B C===.【拓展应用】如图2,四边形ABCD 中,2AB =,3BC =,4CD =,90B C ∠=∠=︒.求过A ,B ,D 三点的圆的半径.2024年山东省滨州市中考数学试题+答案详解(答案详解)温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页,满分120分,考试用时120分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共24分)一、选择题:本大题共8个小题,每小题3分,满分24分.每小题只有一个选项符合题目要求.1.12−的绝对值是()A. 2B. 12C.12− D. 2−【答案】B【解析】【分析】本题考查了绝对值,根据数轴上某个数与原点的距离叫做这个数的绝对值的定义进行求解即可.【详解】解:∵11 22−=,∴12−的绝对值是12,故选:B.2. 如图,一个三棱柱无论怎么摆放,其主视图不可能是()A. B.C. D.【答案】A【解析】【分析】本题考查了物体的三视图,根据三棱柱的表面由2个三角形,1个正方形,2个矩形构成即可判断求解,掌握三棱柱的结构特点是解题的关键.【详解】解:∵三棱柱的表面由2个三角形,1个正方形,2个矩形构成,∴其主视图可能是三角形或正方形或矩形,不可能是圆,故选:A.3. 数学中有许多精美的曲线,以下是“悬链线”“黄金螺旋线”“三叶玫瑰线”和“笛卡尔心形线”.其中不是轴对称图形的是()A. B.C. D.【答案】B【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,进行判断即可.【详解】解:A,C,D选项中的图形都能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;B选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形.故选:B.4. 下列运算正确的是( )A. ()336n n =B. 22(2)4a a −=−C. 824x x x ÷=D. 23m m m ⋅=【答案】D【解析】【分析】本题考查了幂的运算.根据幂的乘方运算、积的乘方运算、同底数幂的乘法运算、同底数幂的除法运算逐项验证即可得到答案.【详解】解:A 、()3396n n n =≠,本选项不符合题意;B 、222(2)44a a a −=≠−,本选项不符合题意;C 、8264x x x x ÷=≠,本选项不符合题意;D 、23m m m ⋅=,本选项符合题意;故选:D .5. 若点()12,N a a −在第二象限,那么a 的取值范围是( ) A. 12a > B. 12a < C. 102a << D. 102a ≤< 【答案】A【解析】【分析】本题考查各象限内的点的坐标特点,解一元一次不等式组.根据点()12,N a a −在第二象限可得不等式组1200a a −<⎧⎨>⎩,求解即可. 【详解】解:∵点()12,N a a −在第二象限,∴1200a a −<⎧⎨>⎩, 解得:12a >. 故选:A .6. 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:某同学分析上表后得出如下结论:①这些运动员成绩的平均数是1.65;②这些运动员成绩的中位数是1.70;③这些运动员成绩的众数是1.75.上述结论中正确的是( )A. ②③B. ①③C. ①②D. ①②③ 【答案】A【解析】【分析】本题考查了平均数、中位数、众数.根据平均数、中位数、众数的意义求解即可.【详解】解:①这些运动员成绩的平均数是()12 1.53 1.62 1.653 1.74 1.751 1.8 1.615⨯+⨯+⨯+⨯+⨯+⨯=,原说法不正确;②这些运动员成绩的中位数是从小到大排列第8个数为1.70,原说法正确;③这些运动员成绩出现最多的是1.75,则的众数是1.75,原说法正确.故选:A .7. 点()11,M x y 和点()22,N x y 在反比例函数223k k y x −+=(k 为常数)的图象上,若120x x <<,则120y y ,,的大小关系为( )A. 120y y <<B. 120y y >>C. 120y y <<D. 120y y >>【答案】C【解析】【分析】本题考查了反比例函数的性质,利用配方法可得()2223120k k k −+=−+>,进而得到反比例函数的图象分布在一、三象限,0x >时,0y >,0x <时,0y <,据此即可求解,利用配方法得到()2223120k k k −+=−+>是解题的关键.【详解】解:∵()2223120k k k −+=−+>, ∴反比例函数的图象分布在一、三象限,0x >时,0y >,0x <时,0y <,∵120x x <<,∴120y y <<,故选:C .8. 刘徽(今山东滨州人)是魏晋时期我国伟大的数学家,中国古典数学理论的奠基者之一,被誉为“世界古代数学泰斗”.刘徽在注释《九章算术》时十分重视一题多解,其中最典型的是勾股容方和勾股容圆公式的推导,他给出了内切圆直径的多种表达形式.如图,Rt ABC △中,90C ∠=︒,,,AB BC CA 的长分别为,,c a b .则可以用含,,c a b 的式子表示出ABC 的内切圆直径d ,下列表达式错误的是( )A. d a b c =+−B. 2ab d a b c =++C. d =D. |()()|d a b c b =−−【答案】D【解析】【分析】如图,设E F G 、、为切点,连接OC OD OE OF 、、、,则OE AC ⊥,再结合切线长定理可判定A ,再结合三角形的面积可判定B ,再由d a b c =+−,结合完全平方公式与勾股定理可判断C ,通过举反例可得D 错误.【详解】解:如图,设E F G 、、为切点,连接OC OD OE OF 、、、,则OE AC ⊥,OD BC ⊥,OF AB ⊥,2d OD OE OF ===,由切线长定理得,AE AF =,CE CD =,BD BF =,∵90ACB OEC ODC ∠=∠=∠=︒,CE CD =,∴四边形ODCE 是正方形, ∴2d CE CD OD ===, ∴2d AE b =−,2d BD a =−,∴2d BF a =−, ∴22d d AF c a c a ⎛⎫=−−=−+ ⎪⎝⎭, ∵AE AF =, ∴22d d b c a −=−+, ∴d a b c =+−,故A 正确,不合题意;∵ABC BOC AOC AOB S S S S =++△△△△, ∴11112222222d d d ab a b c =⨯+⨯+⨯, ∴2ab ad bd cd =++ ∴2ab d a b c=++,故B 正确,不合题意; ∵d a b c =+−,∴()22d a b c =+− 222222a b c ab ac bc =+++−−,∵222+=a b c ,222222d c ab ac bc ∴=+−−()()22c c a b c a =−−−()()2c a c b =−−,∵0d >,d ∴=C 正确;令3a =,4b =,5c =,3452d a b c ∴=+−=+−=,而()()()()34541a b c b −−=−⨯−=,|()()|d a b c b ∴≠−−,故D 错误;故选D【点睛】本题考查的是三角形的内切圆的性质,勾股定理的应用,分解因式的应用,举反例的应用,切线长定理的应用,掌握基础知识并灵活应用是解本题的关键.第Ⅱ卷(非选择题共96分)二、填空题:本大题共8个小题,每小题3分,满分24分.9. 若分式11x−在实数范围内有意义,则x的取值范围是_____.【答案】x≠1【解析】【分析】分式有意义的条件是分母不等于零.【详解】∵分式11x−在实数范围内有意义,∴x−1≠0,解得:x≠1故答案为x≠1.【点睛】此题考查分式有意义的条件,解题关键在于分母不等于零使得分式有意义.10.小的整数是___________.【答案】2或3【解析】的大小,然后确定范围在其中的整数即可.【详解】2<,323<<<小的整数为2或3,故答案为:2或3【点睛】本题考查了无理数的估算和大小比较,掌握无理数估算的方法是正确解答的关键.11. 将抛物线2y x=−先向右平移1个单位长度,再向上平移2个单位长度,则平移后抛物线的顶点坐标为____________.【答案】()1,2【解析】【分析】本题考查了二次函数的图象与几何变换和二次函数的性质.根据“上加下减,左加右减”的规律进行解答即可.【详解】解:由抛物线2y x =−先向右平移1个单位长度,再向上平移2个单位长度,根据“上加下减,左加右减”规律可得抛物线是()212y x =−−+,∴顶点坐标是()1,2故答案为:()1,2.12. 一副三角板如图1摆放,把三角板AOB 绕公共顶点O 顺时针旋转至图2,即AB OD ∥时,1∠的大小为____________︒.【答案】75【解析】【分析】本题考查了的平行线的性质,三角形的外角性质.由AB OD ∥,推出45BOD B ∠=∠=︒,再利用三角形的外角性质即可求解.【详解】解:∵AB OD ∥,∴45BOD B ∠=∠=︒,∴1453075BOD D ∠=∠+∠=︒+︒=︒,故答案为:75.13. 如图,在ABC 中,点D ,E 分别在边,AB AC 上.添加一个条件使ADE ACB ∽,则这个条件可以是____________.(写出一种情况即可)【答案】ADE C ∠=∠或AED B ∠=∠或AD AE AC AB= 【解析】 【分析】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.利用有两组角对应相等的两个三角形相似添加条件.【详解】解:DAE CAB ∠=∠,∴当ADE C ∠=∠时,ADE ACB ∽.当AED B ∠=∠时,ADE ACB ∽. 当AD AE AC AB=时,ADE ACB ∽. 故答案为:ADE C ∠=∠或AED B ∠=∠或AD AE AC AB =. 14. 如图,四边形ABCD 内接于⊙O ,若四边形AOCD 是菱形,∠B 的度数是______.【答案】60°##60度【解析】【分析】根据圆内接四边形的性质得到∠B +∠D =180°,根据菱形的性质,圆周角定理列式计算即可.【详解】解:∵四边形ABCD 内接于⊙O ,∴∠B +∠D =180°,∵四边形OACD 是菱形,∴∠AOC =∠D ,由圆周角定理得,∠B =12∠AOC , ∴∠B +2∠B =180°,解得,∠B =60°,故答案为:60°.【点睛】本题考查的是圆内接四边形的性质,菱形的性质,掌握圆内接四边形的对角互补是解题的关键. 15. 如图,四边形AOBC 四个顶点的坐标分别是(1,3)A −,(0,0)O ,(3,1)B −,(5,4)C ,在该平面内找一点P ,使它到四个顶点的距离之和PA PO PB PC +++最小,则P 点坐标为____________.【答案】108,99⎛⎫⎪⎝⎭##181,99⎛⎫ ⎪⎝⎭ 【解析】 【分析】本题考查了一次函数的应用,两点之间线段最短.连接AB OC 、相交于点P ,根据“两点之间线段最短”知PA PO PB PC +++最小,利用待定系数法求得直线AB 和OC 的解析式,联立即可求解.【详解】解:连接AB OC 、相交于点P ,根据“两点之间线段最短”知PA PO PB PC +++最小,设直线AB 的解析式为y kx b =+,则有331k b k b −+=⎧⎨+=−⎩, 解得12k b =−⎧⎨=⎩, ∴直线AB 的解析式为2y x =−+,设直线OC 的解析式为y mx =,则有45m =, 解得45m =, ∴直线OC 的解析式为45y x =, 联立得425x x =−+,解得109x=,则4108599y=⨯=,∴P点坐标为108,99⎛⎫ ⎪⎝⎭,故答案为:108,99⎛⎫ ⎪⎝⎭.16. 如图,在边长为1的正方形网格中,点A,B均在格点上.(1)AB的长为____________;(2)请只用..无刻度的直尺,在如图所示的网格中,画出以AB为边的矩形ABCD,使其面积为263,并简要说明点C,D的位置是如何找到的(不用证明):____________.【答案】①. ②. 取点,E F,得到正方形ABEF,AF交格线于点C,BE交格线于点D,连接DC,得到矩形ABCD,即为所求.【解析】【分析】本题考查了网格与勾股定理,勾股定理的逆定理,矩形的性质与判定,掌握勾股定理是解题的关键.(1)根据勾股定理直接计算即可求解;(2)取点,E F,得到正方形ABEF,AF交格线于点D,BE交格线于点C,连接DC,得到矩形ABCD,即为所求.【详解】(1)AB==(2)取点,E F,则AF AB===ABEF,∴正方形ABEF13=,AF交格线于点D,BE交格线于点C,连接DC ,得到矩形ABCD ,∵DG FH , ∴23AD AG AF AH ==,∴23AD AF BC ===,∴矩形ABCD 263=, 如图,矩形ABCD ,即为所求..故答案为:取点,E F ,得到正方形ABEF ,AF 交格线于点D ,BE 交格线于点C ,连接DC ,得到矩形ABCD ,即为所求.三、解答题:本大题共8个小题,满分72分.解答时请写出必要的演推过程.17. 计算:()11222−⎫⎛+−⨯−− ⎪⎝⎭ 【答案】0【解析】【分析】本题考查了实数的混合运算,根据实数的运算法则和运算律即可求解,掌握据实数的运算法则和运算律是解题的关键. 【详解】解:原式13122=+−, 13122=−+, =11−+,0=.18. 解方程:(1)21132x x −+=; (2)240x x −=.【答案】(1)5x =(2)10x =,24x =.【解析】【分析】本题主要考查了解一元一次方程和一元二次方程,解题的关键是熟练掌握解方程的一般步骤,准确计算.(1)先去分母,再去括号,然后移项并合并同类项,最后系数化为1即可得解;(2)用因式分解法,解一元二次方程即可.【小问1详解】 解:21132x x −+=, 去括号得:()()22131x x −=+,去括号得:4233x x −=+,移项合并同类项得:5x =;【小问2详解】解:240x x −=,分解因式得:()40x x −=,∴0x =或40x −=,解得:10x =,24x =.19. 欧拉是历史上享誉全球的最伟大的数学家之一,他不仅在高等数学各个领域作出杰出贡献,也在初等数学中留下了不凡的足迹.设a ,b ,c 为两两不同的数,称()()()()()()()0,1,2,3n n nn a b c P n a b a c b c b a c a c b =++=−−−−−−为欧拉分式. (1)写出0P 对应的表达式;(2)化简1P 对应的表达式.【答案】(1)()()()()()()0111P a b a c b c b a c a c b =++−−−−−−(2)10P =【解析】 【分析】本题考查分式的化简求值,弄清欧拉公式的特点,利用分式的加减法计算是解题的关键. (1)将0n =代入欧拉公式即可;(2)将1n =代入欧拉公式化简计算即可.【小问1详解】解:当0n =时,()()()()()()0000a b c P a b a c b c b a c a c b =++−−−−−− ()()()()()()111a b a c b c b a c a c b =++−−−−−− 【小问2详解】 ()()()()()()1a b c P a b a c b c b a c a c b =++−−−−−− ()()()()()()a b a c b c a b a c b c a b c =−+−−−−−− ()())()()()(a b c b a c c a b a b a c b c =−−−−−−+− ()()()ab ac ab bc ca b c b c bc a a =−−−−−−++ ()()()ab ac ab bc ca b c b c bc a a =−−−−−−++ 0=.20. 某校劳动实践基地共开设五门劳动实践课程,分别是A :床铺整理,B :衣物清洗,C :手工制作、D :简单烹饪、E :绿植栽培;课程开设一段时间后,季老师采用抽样调查的方式在全校学生中开展了“我最喜欢的劳动实践课程”为主题的问卷调查.根据调查所收集的数我进行整理、绘制了如下两幅不完整的统计图.根据图中信息,请回答下列问题:(1)请将条形统计图补充完整,并直接写出“手工制作”对应的扇形圆心角度数;(2)若该校共有1800名学生,请你估计全校最喜欢“绿植栽培”的学生人数;(3)小兰同学从B,C,D三门课程中随机选择一门参加劳动实践,小亮同学从C,D,E三门课程中随机选择一门参加劳动实践,求两位同学选择相同课程的概率.【答案】(1)补充条形统计图见解析;“手工制作”对应的扇形圆心角度数为72︒;(2)估计全校最喜欢“绿植栽培”的学生人数为540人;(3)甲乙两位同学选择相同课程的概率为:29.【解析】【分析】(1)根据选择“E”的人数及比例求出总人数,总人数乘以D占的比例求得“D”的人数,总人数减去其他类别的人数求得“A”的人数,据此即可将条形统计图补充完整,再用360度乘以“C”占的比例即为“手工制作”对应的扇形圆心角度数;(2)利用样本估计总体思想求解;(3)通过列表或画树状图列出所有等可能的情况,再从中找出符合条件的情况数,再利用概率公式计算.【小问1详解】解:参与调查的总人数为:3030%100÷=(人),“D”的人数10025%25⨯=(人),“A”的人数1001020253015−−−−=(人),“手工制作”对应的扇形圆心角度数2036072 100⨯︒=︒,补充条形统计图如图:【小问2详解】解:180030%540⨯=(人),因此估计全校最喜欢“绿植栽培”的学生人数为540人;【小问3详解】解:画树状图如下:由图可知,共有9种等可能的情况,其中两位同学选择相同课程的情况有2种, 因此甲乙两位同学选择相同课程的概率为:29. 【点睛】本题考查条形统计图、扇形统计图、利用样本估计总体、利用画树状图或者列表法求概率等,解题的关键是将条形统计图与扇形统计图的信息进行关联,掌握画树状图或者列表法求概率的原理. 21. 【问题背景】某校八年级数学社团在研究等腰三角形“三线合一”性质时发现:①如图,在ABC 中,若AD BC ⊥,BD CD =,则有B C ∠=∠;②某同学顺势提出一个问题:既然①正确,那么进一步推得AB AC =,即知AB BD AC CD +=+,若把①中的BD CD =替换为AB BD AC CD +=+,还能推出B C ∠=∠吗?基于此,社团成员小军、小民进行了探索研究,发现确实能推出B C ∠=∠,并分别提供了不同的证明方法.小军小民 ADB 与△【问题解决】(1)完成①的证明;(2)把②中小军、小民的证明过程补充完整.【答案】(1)见解析 (2)见解析【解析】【分析】题目主要考查全等三角形的判定和性质,勾股定理解三角形,理解题意,作出辅助线,综合运用这些知识点是解题关键.(1)根据题意利用全等三角形的判定和性质即可证明;(2)小军证明:分别延长,DB DC 至E ,F 两点,使得,BE AB CF AC ==,根据全等三角形的判定和性质得出E F ∠∠=,再由等边对等角及三角形的外角性质即可证明;小民证明:利用勾股定理得出AD ==,AD ==AB BD AC CD −=−,然后求和得出AB AC =,即可证明.【小问1详解】证明:∵AD BC ⊥,∴90ADB ADC ∠∠==︒, 在Rt ADB 与Rt ADC 中,90AD AD ADB ADC BD CD ∠∠=⎧⎪==︒⎨⎪=⎩,∴()SAS Rt ADB Rt ADC ≌,∴B C ∠=∠;【小问2详解】小军证明:分别延长,DB DC 至E ,F 两点,使得,BE AB CF AC ==,如图所示:∵AB BD AC CD +=+,∴BE BD CF CD +=+即DE DF =,∵AD BC ⊥,∴90ADB ADC ∠∠==︒,在Rt ADE 与Rt ADF 中,90AD AD ADB ADC ED FD ∠∠=⎧⎪==︒⎨⎪=⎩,∴()SAS Rt ADE Rt ADF ≌,∴E F ∠∠=,∵,BE AB CF AC ==,∴E EAB F FAC ∠∠∠∠===,∴,E EAB ABC F FAC ACB ∠∠∠∠∠∠+=+=,∴ABC ACB ∠∠=;小民:证明:∵AD BC ⊥.∴ADB 与ADC △均为直角三角形,根据勾股定理,AD ==,AD ==∵AB BD AC CD +=+①,∴AB BD AC CD −=−②,+①②得:AB AC =,∴B C ∠=∠.22. 春节期间,全国各影院上映多部影片,某影院每天运营成本为2000元,该影院每天售出的电影票数量y (单位:张)与售价x (单位:元/张)之间满足一次函数关系(3080x ≤≤,且x 是整数),部分数据如下表所示:(1)请求出y 与x 之间的函数关系式;(2)设该影院每天的利润(利润=票房收入-运营成本)为w (单位:元),求w 与x 之间的函数关系式;(3)该影院将电影票售价x 定为多少时,每天获利最大?最大利润是多少?【答案】(1)()43243080y x x =−+≤≤(2)()2432420003080w x x x =−+−≤≤ (3)定价40元/张或41元/张时,每天获利最大,最大利润是4560元【解析】【分析】本题是一次函数与二次函数的应用,解题的关键是得出函数解析式,并熟练掌握二次函数的性质. (1)设y 与x 之间的函数关系式为y kx b =+,根据待定系数法代入求解即可;(2)“利润=票房收入-运营成本”可得函数解析式;(2)将函数解析式配方成顶点式,由3080x ≤≤,且x 是整数,结合二次函数的性质求解可得.【小问1详解】解:设y 与x 之间的函数关系式为y kx b =+,则1644012450k b k b =+⎧⎨=+⎩,解得4324k b =−⎧⎨=⎩, ∴y 与x 之间的函数关系式()43243080y x x =−+≤≤;【小问2详解】由题意得:22000(4324)200043242000w xy x x x x =−=−+−=−+−,即w 与x 之间的函数关系式为:()2432420003080w x x x =−+−≤≤.【小问3详解】()2281432420004()456130802w x x x x =−+−=−−+≤≤, x 是整数,且 3080x ≤≤,∴ 当40x =或41时,w 取得最大值,最大值为4560.价格低更能吸引顾客,定价40元/张或41元/张时,每天获利最大,最大利润是4560元.如图1,ABC 中,点D ,E ,F 分别在三边BC CA AB ,,上,且满足DF AC DE AB ,∥∥.23. ①求证:四边形AFDE 为平行四边形;②若AB BD AC DC=,求证:四边形AFDE 为菱形; 24. 把一块三角形余料MNH (如图2所示)加工成菱形零件,使它的一个顶点与MNH △的顶点M 重合,另外三个顶点分别在三边MN NH HM ,,上,请在图2上作出这个菱形.(用尺规作图,保留作图痕迹,不写作法.)【答案】23. ①见解析;②见解析24. 见解析【解析】【分析】本题考查了平行四边形的判定定理、菱形的判定定理、尺规作图,熟练掌握相关判定定理是解题的关键.(1)①DF AC DE AB ,∥∥,即可证明四边形AFDE 为平行四边形;②由DF AC DE AB ,∥∥,可得DF BD AC BC =,DE CD AB BC=,即DF BC AC BD ⋅=⋅, DE BC AB CD ⋅=⋅,再由AB BD AC DC=,得AB DC AC BD ⋅=⋅,因此DF DE =,进而即可证明四边形AFDE 为菱形; (2)作NMH ∠的角平分线,交NH 于点P ,作MP 的垂直平分线,交MN 于点D ,交MH 于点E ,则四边形MDPE 是菱形.【23题详解】①证明:DF AC DE AB ∥,∥,∴四边形AFDE 为平行四边形;②DF AC ∥,DF BD AC BC∴=, 即DF BC AC BD ⋅=⋅DE AB ∥,DE CD AB BC∴=, 即DE BC AB CD ⋅=⋅, 又AB BD AC DC =, AB DC AC BD ∴⋅=⋅,DF DE ∴=,由①知四边形AFDE 为平行四边形,∴四边形AFDE 为菱形;【24题详解】如图,菱形MDPE 即为所求.∵MP 平分NMH ∠,∴DMP EMP ∠=∠,∵DE 是MP 的垂直平分线,∴DM DP =,EM EP =,∴DMP DPM ∠=∠,=EMP EPM ∠∠,∴DPM EMP ∠=∠,EPM DMP ∠=∠,∴DP ME ∥,EP DM ∥,∴四边形MDPE 是平行四边形,∵DM DP =,∴平行四边形MDPE 是菱形.25. 【教材呈现】现行人教版九年级下册数学教材85页“拓广探索”第14题: ABC 中,)【得出结论】sin sin sin a b c A B C==. 【基础应用】在ABC 中,75B ∠=︒,45C ∠=︒,2BC =,利用以上结论求AB 的长;【推广证明】 进一步研究发现,sin sin sin a b c A B C==不仅在锐角三角形中成立,在任意三角形中均成立,并且还满足2sin sin sin a b c R A B C ===(R 为ABC 外接圆的半径). 请利用图1证明:2sin sin sin a b c R A B C===.【拓展应用】如图2,四边形ABCD 中,2AB =,3BC =,4CD =,90B C ∠=∠=︒.求过A ,B ,D 三点的圆的半径.【答案】教材呈现:见解析;基础应用:AB =;推广证明:见解析;拓展应用:R =. 【解析】。
中考数学复习:专题4-2 钟表角度计算的常见题型举例解析
专题02 钟表角度计算的常见题型举例解析【专题综述】表针转动一周就是一个周角,即3600,时针12小时转动一周,所以时针1小时转过了0030360121=⨯,1分针转过了005.030601=⨯;分针60分钟转动1周,所以分针1分钟转过了006360601=⨯;相同时间,分针转过的角度是时针转过的角度的12倍。
钟表角度的计算较难理解,不易找到求解途径和方法,因此,钟表角度的计算除了要理解掌握好以上一些要点外,有时还要借助方程的知识,才能使复杂问题迎刃而解。
【方法解读】一、求时针与分针所成角的度数例1 求10点24分时,时针与分针所成的角解:10点24分,时针转过了︒=⨯︒+⨯︒312245.01030,分针转过︒=⨯︒144246,时针与分针所成的角为 ︒=︒-︒168144312.学5科*网 【解读】利用时针和分针转动时角度变化的特点来求解,时针1小时转过了︒=︒⨯30360121,1分针转过了︒=︒⨯5.030601;分针60分钟转动1周,所以分针1分钟转过了︒=︒⨯6360601. 【举一反三】如图是一块手表早上8时的时针、分针的位置图,那么分针与时针所成的角的度数是( )A. 60°B. 80°C. 120°D. 150°【来源】2017-2018学年七年级数学北师大版上册 第4章基本平面图形 单元测试题 【答案】C二、时针与分针重合时求时间例2 在7点与8点之间的什么时刻,时针与分针重合?解:设7点过x 分钟时,时针与分针重合,根据题意可得方程 x x 65.0730=+⨯解得11238=x , 即7点过11238分钟时,时针与分针重合. 【解读】时针与分针重合,即时针与分针转过的角度相等,结合时针和分针转动时角度变化的特点以及构造方程来求解. 【举一反三】我们知道,钟表的时针与分针每隔一定的时间就会重合一次,请利用所学知识确定,时针与分针从上一次重合到下一次重合,间隔的时间是______ 小时.【来源】山东省滨州市惠民县2017-2018学年七年级上学期期末数学试题 【答案】1211【解析】试题解析:设间隔的时间为x 小时, 可得:(60-5)x=60, 解得:x=1211. 即再过1211小时时针与分针再次重合, 故答案为: 1211.三、时针与分针成一直线时求时间.例3 在8点与9点之间的什么时刻,时针与分针成一直线?【解读】时针与分针成一直线,即时针转过的角度与分针转过的角度之差为︒180,结合时针和分针转动时角度变化的特点及构造方程来求解. 【举一反三】上午九点时分针与时针互相垂直,再经过 分钟后分针与时针第一次成一条直线. 【来源】暖春三月,贴心开学测 初一数学第九套 【答案】11416【解析】分针每分钟转动6°,时针每分钟转动0.5°,设再经过a 分钟后分针与时针第一次成一条直线, 则有6a+90-0.5a=180,解得a=11416.学3科*网 四、时针与分针所成的角为90︒时求时间例4 在4点与5点之间的什么时刻,时针与分针所成的角为90︒?【解读】时针与分针所成角为90︒,结合时针和分针转动时角度变化的特点及构造方程来求解. 【举一反三】钟面角是指时钟的时针与分针所成的角,如果时间从下午2点整到下午4点整,钟面角为90°的情况有( )A .有一种B .有二种C . 有三种D .有四种【来源】2015-2016学年江苏省苏州工业园区七年级上学期期末考试数学试卷(带解析) 【答案】D . 【解析】试题解析:设n=分,m=点,则钟面角为 5.53030 5.5()()n m m n ︒⨯-︒⨯︒⨯-⎧⎨︒⨯⎩,分钟在前,时针在前,将m=2代入上式,得n 1=27311,n 2=60-5511=54611, 将m=3代入上式,得n 3=32811,n 4=0.4:00时,钟面角为30°×4=120°≠90°. 故选D .【强化训练】1.时钟上的时针不停地旋转,从上午8时到上午11时,时针旋转的旋转角是_____________. 【来源】2015年人教版初中数学九年级上23.1图形的旋转练习题(带解析) 【答案】90º【解析】本题主要考查了钟面角.根据时针12小时走360°,时针旋转的旋转角=360°×时间差÷12.解:∵时针从上午的8时到11时共旋转了3个格,每相邻两个格之间的夹角是30°, ∴时针旋转的旋转角=30°×3=90°.2.从 4 点开始,经过________________ 分钟,时钟的时针和分针在 4 点至 5 点之间第一次重合. 【来源】【全国百强校】广东省深圳市深圳中学2016-2017学年七年级上学期期末考试数学试题 【答案】24011【解析】设再经过x 分钟,时针与分针第一次重合,时针每小时走30度角,分针每分钟走6度角, 4点时时针与分针夹角为120度,所以60x30+120=6x. x =24011.3.李欣同学下午5:30放学离校,此刻时钟上时针与分针的夹角大小应为________ . 【来源】湖北省武汉市开发区第一初级中学2017-2018学年七年级12月月考数学试题 【答案】15°4.如图,钟表8时30分时,时针与分针所成的角的度数为( )A .30°B .60°C .75°D .90°【来源】2015-2016学年山东省东营市广饶县乐安中学七年级上期中数学试卷(带解析) 【答案】C . 【解析】试题分析:8时30分时,时针指向8与9之间,分针指向6.钟表12个数字,每相邻两个数字之间的夹角为30°,所以8时30分时分针与时针的夹角是2×30°+15°=75°.故答案选C . 5.小明每天晚上10:00回家,这时分针与时针所成的角的度数为( ) A.60° B.90° C.30° D.45° 【来源】2011年广东省徐闻县第一中学初一第一学期期末考试数学卷 【答案】A【解析】分析:晚上10:00整,时针指向10,分针指向12.钟表12个数字,每相邻两个数字之间的夹角为30°,因此晚上10:00整分针与时针的夹角正好是2个数字.解答:解:∵每相邻两个数字之间的夹角为30°,∴晚上10:00分针与时针所成的角的度数2×30°=60°.故选A.学`科4网6.下午2点30分时(如图),时钟的分针与时针所成角的度数为()A. 90°B. 105°C. 120°D. 135°【来源】广东省深圳高级中学初中部2017-2018学年第一学期期末模拟测试七年级数学试卷【答案】B7.一天,妈妈问儿子今天打球时间有多长。
2018年中考数学真题知识分类练习试卷:代数式(有答案)
代数式一、单选题1.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1 B. 2 C. 3 D. 4【来源】山东省滨州市2018年中考数学试题【答案】B2.计算的结果是()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】B【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:==故选:B.点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键.3.下列计算结果等于的是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】D4.下列运算正确的是()A. B.C. D.【来源】湖南省娄底市2018年中考数学试题【答案】D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得. 【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.5.下列运算正确的是()A. B. C. D.【来源】山东省德州市2018年中考数学试题【答案】C6.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市2018年中考数学试题【答案】B7.下列运算正确的是()A. B. C. D.【来源】安徽省2018年中考数学试题【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.8.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【来源】安徽省2018年中考数学试题【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.9.下列运算正确的是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】D10.按如图所示的运算程序,能使输出的结果为的是()A. B. C. D.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C11.下列运算正确的是()A. B. C. D.【来源】江苏省宿迁市2018年中考数学试卷【答案】C12.下列运算正确的是()A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市2018年中考数学试题【答案】A13.下列运算正确的是()A. B. C. D.【来源】江苏省盐城市2018年中考数学试题【答案】C14.下列计算正确的是()A. B.C. D.【来源】湖北省孝感市2018年中考数学试题【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.15.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市2018年中考数学试题【答案】C【解析】分析:首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.16.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】B17.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=【来源】湖北省黄冈市2018年中考数学试题【答案】D【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.18.下列计算正确的是()A. B.C. D.【来源】四川省成都市2018年中考数学试题【答案】D19.下列计算正确的是( )A. B. C. D.【来源】山东省潍坊市2018年中考数学试题【答案】C【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.20.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2018年中考数学试题【答案】B【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】2018年浙江省绍兴市中考数学试卷解析【答案】C二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市2018年中考数学试题【答案】2018【解析】分析:观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;详解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2018年中考数学试题【答案】1125.若a-=,则a2+值为_______________________.【来源】湖北省黄冈市2018年中考数学试题【答案】8【解析】分析:根据完全平方公式进行变形即可求出答案.详解:∵a-=,∴(a-)2=6,∴a2-2+=6,∴a2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市2018年中考数学试题【答案】27.计算的结果等于__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市2018年中考数学试题【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市2018年中考数学试题【答案】x2﹣130.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2018年中考数学试题【答案】403532.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】1三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市2018年中考数学试题【答案】2ab﹣1,=1.【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市2018年中考数学试卷【答案】(1)5-;(2)m2+1235.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2018年中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)37.计算或化简.(1);(2).【来源】江苏省扬州市2018年中考数学试题【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省2018年中考数学试题【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.39.计算:(1)(2)【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1);(2)40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2018年中考数学试卷【答案】略11。
2018年中考数学真题知识分类练习试卷:代数式(含答案)
代数式一、单选题1.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【来源】山东省滨州市2018年中考数学试题【答案】B2.计算的结果是()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】B【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:==故选:B.点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键. 3.下列计算结果等于的是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】D4.下列运算正确的是()A. B.C. D.【来源】湖南省娄底市2018年中考数学试题【答案】D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.5.下列运算正确的是()A. B. C. D.【来源】山东省德州市2018年中考数学试题【答案】C6.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市2018年中考数学试题【答案】B7.下列运算正确的是()A. B. C. D.【来源】安徽省2018年中考数学试题【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.8.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【来源】安徽省2018年中考数学试题【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键. 9.下列运算正确的是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】D10.按如图所示的运算程序,能使输出的结果为的是()A. B. C. D.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C11.下列运算正确的是()A. B. C. D.【来源】江苏省宿迁市2018年中考数学试卷【答案】C12.下列运算正确的是()A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市2018年中考数学试题【答案】A13.下列运算正确的是()A. B. C. D.【来源】江苏省盐城市2018年中考数学试题【答案】C14.下列计算正确的是()A. B.C. D.【来源】湖北省孝感市2018年中考数学试题【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.15.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市2018年中考数学试题【答案】C【解析】分析:首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n 的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.16.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】B17.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=【来源】湖北省黄冈市2018年中考数学试题【答案】D【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.18.下列计算正确的是()A. B.C. D.【来源】四川省成都市2018年中考数学试题【答案】D19.下列计算正确的是( )A. B. C. D.【来源】山东省潍坊市2018年中考数学试题【答案】C【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.20.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2018年中考数学试题【答案】B【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】2018年浙江省绍兴市中考数学试卷解析【答案】C二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市2018年中考数学试题【答案】2018【解析】分析:观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;详解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2018年中考数学试题【答案】1125.若a-=,则a2+值为_______________________.【来源】湖北省黄冈市2018年中考数学试题【答案】8【解析】分析:根据完全平方公式进行变形即可求出答案.详解:∵a-=,∴(a-)2=6,∴a2-2+=6,∴a2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市2018年中考数学试题【答案】27.计算的结果等于__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市2018年中考数学试题【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市2018年中考数学试题【答案】x2﹣130.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2018年中考数学试题【答案】403532.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】1三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市2018年中考数学试题【答案】2ab﹣1,=1.【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市2018年中考数学试卷【答案】(1)5-;(2)m2+1235.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2018年中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)37.计算或化简.(1);(2).【来源】江苏省扬州市2018年中考数学试题【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省2018年中考数学试题【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.39.计算:(1)(2)【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1);(2)40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2018年中考数学试卷【答案】略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22.(本小题满分 12 分)
如图,AB 为⊙O 的直径,点 C 在⊙O 上, AD CD 于点 D,且 AC 平分 DAB ,求
证: (1)直线 DC 是⊙O 的切线; (2) AC2 2ADgAO .
数学试卷 第 4 页(共 6 页)
毕业学校_____________ 姓名________________ 考生号________________
()
数学试卷 第 2 页(共 6 页)
36 A.
2
33 B.
2
C.6
D.3
12.如果规定[x]表示不大于 x 的最大整数,例如[2.3] 2 ,那么函数 y x-[x] 的图象为
()
A
B
C
D
第Ⅱ卷(选择题 共 114)
二、填空题(本大题共 8 小题,每小题 5 分,共 40 分.把答案填写在题中的横线上)
.
三、解答题(本大题共 6 小题,共 74 分.解答应写出文字说明、证明过程或演算步骤)
21.(本小题满分 10 分)
先 化 简 , 再 求 值 :(xy2 x2 y)
x
x2 2xy y2
x2 y x2 y2
,其中
x 0 -( 1 )1 2
,
y 2sin45 8 .
(2)求 y 关于 x 的函数解析式,请判断此函数图象的形状,并在图②中画出此函数
的图象;
(3)请类比圆的定义(图可以看成是到定点的距离等于定长的所有点的集合),给(2)
中所得函数图象进行定义:此函数图象可以看成是到
的距离等于到
的距离的所有点的集合.
(4)当⊙P 的半径为 1 时,若⊙P 与以上(2)中所得函数图象相交于点 C、D,其
象限的概率是
.
17.若关于
x、y
的二元一次方程组
3x 2x
my ny
5 6
的解是
x y
1 2
,则关于
a、b
的二元一次
方程组
3(a 2(a
b) b)
m(a b) n(a b)
5, 6
的解是
数学试卷
. 第 3 页(共 6 页)
18.若点
A( - 2,
()
①二次函数的最大值为 a b c ; ② a-b c<0 ; ③ b2-4ac<0 ; ④当 y>0 时, -1<x<3 ,其中正确的个数是
()
A.1
B.2
C.3
D.4
11.如图, AOB 60 ,点 P 是 AOB 内的定点且 OP 3 ,若点 M、N 分别是射线
OA、OB 上异于点 O 的动点,则 △PMN 周长的最小值是
()
A
B
C
D
效
6.在平面直角坐标系中,线段 AB 两个端点的坐标分别为 A(6,8), B(10,2),若以原点 O
数学试卷 第 1 页(共 6 页)
为位似中心,在第一象限内将线段 AB 缩短为原来的 1 后得到线段 CD,则点 A 的对 2
应点 C 的坐标为
()
A(. 5,1)
B(. 4,3)
C(. 3,5)
(2)若点 E、F 分别为 AB、CA 延长线上的点,且 DE DF ,那么 BE AF 吗?请
利用图②说明理由.
效 数学试卷 第 5 页(共 6 页)
26.(本小题满分 14 分) 如图①,在平面直角坐标系中,圆心 为P(x,y)的动圆经过点 A(1,2)且与 x 轴相切于
点 B.
(1)当 x 2 时,求⊙P 的半径;
13.在 △ABC 中,若 A 30 , B 50 ,则 C
.
14.若分式 x2 9 的值为 0,则 x 的值为
.
x3
15.在 △ABC 中, C 90 ,若 tanA 1 ,则 sinB
.
2
16.若从 -1,1,2 这三个数中,任取两个分别作为点 M 的横、纵坐标,则点 M 在第二
在
此
23.(本小题满分 12 分)
如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果
不考虑空气阻力,小球的飞行高度 y(单位:m )与飞行时间 x(单位:s)之间具有 函数关系 y 5x2 20x ,请根据要求解答下列问题:
(1)在飞行过程中,当小球的飞行高度为15 m 时,飞行时间是多少?
绝密★启用前
在
山东省滨州市 2018 年初中学业水平考试
数学
本试卷满分 150 分,考试时间 120 分钟. 此
第Ⅰ卷(选择题 共 36 分)
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只 有一项是符合题目要求的)
卷
1.在直角三角形中,若勾为 3,股为 4,则弦为
毕业学校_____________ 姓名________________ 考生号________________
------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- ---
中交点 D(m,n)在点 C 的右侧,请利用图②,求 cosAPD 的大小.
数学试卷 第 6 页(共 6 页)
36
125π B.
36
25π C.
18
36π D.
5
9.如果一组数据 6、7、x、9、5 的平均数是 2x,那么这组数据的方差为
()
A.4
B.3
C.2
D.1
10.如图,若二次函数 y ax2 bx (c a 0)图象的对称轴为 x 1 ,与 y 轴交于点 C,与
x 轴交于点 A、点 B(-1,0),则
------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- ---
y1)、 B(-1,
y2)、C(1,
y3)都在反比例函数
y
k
2
2k x
3 (k
为常数)的图
象上,则 y1 、 y2 、 y3 的大小关系为
.
19.如图,在矩形 ABCD 中,AB 2 ,BC 4 ,点 E、F 分别在 BC、CD 上,若 AE 5 ,
EAF 45,则 AF 的长为
(2)在飞行过程中,小球从飞出到落地所用时间是多少?
卷
(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?
上 24.(本小题满分 13 分)
如图,在平面直角坐标系中,点 O 为坐标原点,菱形 OABC 的顶点 A 在 x 轴的正半
轴上,顶点 C 的坐标为(1,3).
(1)求图象过点 B 的反比例函数的解析式;
B. 3 4 D. 3 4 180
题
4.下列运算:① a2 • a3 a6 ,②(a3)2 a6 ,③ a5 a5 a ,④(ab)3 a3b3 ,其中结果正
确的个数为
()
A.1
B.2
C.3
D.4
无
5.把不等式组
x 1≥3 2x 6>
4
中每个不等式的解集在同一条数轴上表示出来,正确的为
D(. 1,5)
7.下列命题,其中是真命题的为
ห้องสมุดไป่ตู้
()
A.一组对边平行,另一组对边相等的四边形是平行四边形
B.对角线互相垂直的四边形是菱形
C.对角线相等的四边形是矩形
D.一组邻边相等的矩形是正方形
8.已知半径为 5 的⊙O 是 △ABC 的外接圆,若 ABC 25 ,则劣弧 »AB 的长为
()
25π A.
(2)求图象过点 A,B 的一次函数的解析式;
答
(3)在第一象限内,当以上所求一次函数的图象在所求反比例函数的图象下方时,
请直接写出自变量 x 的取值范围.
题
25.(本小题满分 13 分)
无
已知,在 △ABC 中, A 90 , AB AC ,点 D 为 BC 的中点.
(1)如图①,若点 E、F 分别为 AB、AC 上的点,且 DE DF ,求证: BE AF ;
()
A.5
B.6
C.7
D.8
2.若数轴上点 A、B 分别表示数 2、﹣2,则 A、B 两点之间的距离可表示为
()
上
A. 2 (-2)
B. 2 (2)
C. (-2) 2
3.如图,直线 AB∥CD ,则下列结论正确的是
D. (2) 2 ()
答
A. 1 2 C. 1 3 180
.
20.观察下列各式:
11
1
1+ 12
+
22
=1+ 1
2
1+
1 22
+
1 32
=1+
2
1
3
1+
1 32
+
1 42
=1+
1 3
4
,
…… 请利用你所发现的规律,
计算
11 1+ 12 + 22 +