第4节 分离与操作条件选择
分析化学:第五节 分离条件的选择

b.柱选择项及其影响因素:
影响峰的间距 主要受固定相性质,以及柱温影响
因为 R 1 所以 1 ,R
1 R 0 ,无法分离
微小变化对R 的影响都很大 1.1 1.2 R 一倍
柱效项
柱容量项
柱选择项
n理
L H理
H AB/uCu
K2
k2
t
' R2
K1
k1
t
' R1
前提——定义式基础上,相邻两组分的n一致(假设)
a.柱效项及其影响因素:
影响色谱峰的宽窄 主要取决于色谱柱性能及载气流速
因为 R n
所以 n R
已知 n L 或n 1 所以 L 或H n ,R H
L2
✓ 注:根据R>1.5选择L,一般较短(0.6~6m) 不可以无限延长柱子
练习
例:两组分在1 m长柱子上的分离度为0.75,问使用 多长柱子可以使它们完全分离?
解: R n R L
R1 L1
R2
L2
0.75 1 1.5 L2
L2 4m
2.柱温的选择
B 2Dg
1
T
C DL
选择流速和载气应同时考虑对柱效和分析时间的影响
uop H min uop B C H min A 2 BC
分离是主要矛盾 u uop 分析时间是主要矛盾 u uop u uop 选N 2气 B u u uop 选H 2气 C u
选择载气应与检测器匹配 • TCD→选H2,He(u 大,粘度小) • FID→选N2(u 小,粘度大)
1 k k 时 对R的影响,
中药化学第四章中药化学成分的分离技术

K=CU/CL CU:上层浓度,CL:下层浓度。 若有两种成份时(A,B),则A,B各有其分
配系数KA,KB,则两者差别越大,分离效果越 好。
如,KA=10说明振摇一次平衡后,A则有90 %以上溶于上层溶液中。
而KB=0.l时,振摇一次平衡后,B则有90% 以上溶于下层中,过样A和B两成份就有较大程 度分离,连续分离萃取几次,就可能达到A,B 的全部分离。
仪器装置
该装置有3个部分组成。 输液部分。包括微型泵、移动相溶剂储槽和试样
液注射器。 萃取部分。由300~500根内径约2 mm、长度为
20~40 cm的萃取管连接而成。 收集检出部分。包括检出器及分步自动收集仪。
适用范围
目前DCCC法广泛用于皂苷、生物碱、酸性成分、蛋 白质、糖类等天然产物的分离和精制,特别是用于 皂苷类的分离,并取得良好效果。
三、铅盐沉淀法
原理 此法是利用中性醋酸铅和碱式醋酸铅在水和 稀醇溶液中能与许多天然药物化学成分生成 难溶性的铅盐或铅络合物沉淀的性质,使有 效成分和杂质分离。此法既可使杂质生成铅 盐沉淀除去,又可以使有效成分生成铅盐沉 淀。
铅盐沉淀法适用范围
中性醋酸盐(Pb(Ac)2)可用于沉淀天然药物成 分中的有机酸、蛋白质、氨基酸、黏液质、 鞣质、树脂、酸性皂苷、部分黄酮苷、蒽醌 苷、香豆素苷和某些色素等具有羧基、邻二 酚羟基的酸性或酚性物质。
氯仿:乙醚 由 某些苷类,如强心苷
乙酸乙酯
小 某些苷类,如黄酮苷
正丁醇
到 某些苷类,如皂苷,黄酮苷
丙酮、乙醇 大 极性很大的苷、糖类、氨基酸、某些生物
碱盐
水
蛋白质、黏液质、果胶、糖类、无机盐
(强亲水性)
二、适用范围
此法是早年研究天然药物有效成分的一种最重要的 方法,主要用于分离提纯含有极性不同的各种化 学成分的中药提取液。目前仍是最常用的方法,
气液分离

第四章气液分离知识点概述:本章主要讲述油气分离方式和操作条件的选择、油气两相分离器、油气水三相分离器等方面的知识。
通过本章的学习,使学员能了解分离方式的选择对油田生产的影响,掌握分离器的结构、原理和设计方法,并且也应该对特殊场合应用的分离器有一个粗略的了解,了解其应用特点。
本章的重点为多级分离与一级分离的比较、两相分离器的工艺计算(包括油滴的沉降速度计算、气体的允许流速和液体停留时间确定等)以及油气水三相分离器中液相停留时间的确定和其界面控制方法等部分的知识。
知识点1:烟的粒径小于1μm,雾的粒径1~100μm,雨的粒径100~4 000μm。
不同粒径的油滴,应有不同的有效分离方法,重力沉降:分离50μm以上的油滴;离心分离:2~1000 μm;碰撞分离:5μm以上油滴;布织物:0.5~50μm;空气过滤器:2~50μm的尘埃。
知识2:综合型卧式三相分离器的结构下图为综合型卧式三相分离器。
下表是综合型卧式三相分离器主要内部构件及其作用特点。
综合型卧式三相分离器主要特点是增加内部构件并将其有效组合,提高分离器对油气水的综合处理能力。
1-入口;2-水平分流器;3-稳流装置;4-加热器;5-防涡罩;6-污水出口;7-平行捕雾板;8-安全阀接口;9-气液隔板;10-溢流板;11-天然气出口;12-出油阀;13-挡沫板知识3:几种高效三相分离器高效型三相分离器是将机械、热、电和化学等各种油气水分离工艺技术融合应用在一个容器,通过精选和合理布设分离器内部分离元件,达到油气水高效分离的目的。
其优点是成撬组装,极大地减少现场安装的工作量和所需的安装空间,具有较大的机动性以适应油田生产情况变化的需要,使流程简化,方便操作管理,这些对海上油田显得尤为重要。
1、HNS三相分离器图2-2-12为HNS型高效三相分离器简图。
其内部结构进行了优化设计,有优良的分离元件,为油气水分离提供良好的内部环境,避免存在明显的短路流和返混现象,保证介质流动特性接近塞状流。
第十八章气相色谱法(83)

30
组分与固定相间作用力:静电力:永久偶极,极性分子 与极性固定液;诱导力:具有永久偶极的极型分子使其它分 子产生偶极距,分离非极性和可极化的组分,如苯和环己烷 偶极距为零,但苯的共轭体系易极化。色散力:非极性分子 中,正负电荷瞬间相对位移,非极性固定液分离非极性组 分;氢键力:含有易产生氢键的基团的固定液分离含有电负 性强的元素的化合物;分子间特殊作用力:形成弱配位键。
按沸点顺序,沸点低者先出 柱。相同沸点的极性组分先 出。
中等极性
中等极性 诱导力和色散力 按沸点顺序。相同沸点的极 性组分后出柱。
极性
极性
能形成氢键的 试样
氢键型
静电力 氢键力
按极性顺序出柱。非极性组 分先出柱。
按形成氢键的能力大小分布均匀;表面吸附性很弱;热稳 定性、化学稳定性好;粒度均匀,有一定的机械强度。 种类和性能:硅藻土型载体: — 红色载体 含氧化铁,常与非极性固定液配伍。 — 白色载体 加碳酸钠作助熔剂,与极性固定液配伍。
21
三、气相色谱分离条件选择 1.分离度(resolution)
当峰宽测定困难时:
近似为: R=1.5时,两峰分离程度为99.7%。
22
2. R与n,r1/2,k的关系:
R定量描述了相邻两组分在色谱柱中的分离情况,概括 了影响色谱热力学和动力学因素。两组分保留时间的差值取 决于色谱分离的热力学性质,色谱峰的宽窄取决于动力学因 素,可作为评价柱总分离效能的指标。
20ml/min ~60ml/min,一般由实验确定。
25
中药化学 第五章 色谱分离技术-吸附色谱、聚酰胺

(二)吸附柱色谱操作技术
操作步骤
色谱柱的选择 内径与柱长比:1:10~1:20
装柱 上样 洗脱检查
1、装柱
干法装柱:直接用小漏斗将吸附剂均匀装入柱内的方法。 湿法装柱:将吸附剂装入盛有洗脱液的柱内,或将吸附剂 与洗脱液混合成混悬液再装入柱中,吸附剂慢慢沉降。
二、吸附色谱基本构成要素
吸附剂(固定相) 展开剂(流动相、移动相) 被分离的成分
(一)吸附剂
1、基本要求 一般来说,吸附剂要有较大的表面积和适宜
的活性,与移动相溶剂及被分离各成分不起化学 反应、颗粒均匀,并且在所用各种溶剂中不溶解。
2、种类 极性吸附剂:氧化铝、硅胶、聚酰胺、氧化镁、 硅酸镁、碳酸钙和硅藻土等。 非极性吸附剂:活性炭
2、种类 亲脂性有机溶剂:石油醚、环己烷、四氯化碳、苯、 甲苯、乙醚、氯仿、乙酸乙酯、正丁醇等。 亲水性有机溶剂:丙酮、乙醇、甲醇等。 极性吸附能力的大小与选择展开剂的极性 和被分离成分的极性大小有关。
一般来说,当选用常用的硅胶或氧化铝这类极性 吸附剂时,展开剂的极性越大,解吸附能力越强, 否则越弱。
色谱分离技术按色谱原理分吸附色谱分配色谱离子交换色谱凝胶色谱色谱分离技术按操作形式分平面色谱tlcpc柱色谱毛细管电泳色谱色谱分离技术按流动相分液相色谱hplc气相色谱gc超临界流体色谱sfc二分类由于色谱法具有强大的分离能力众多的分离模式和灵活的检测手段因而被广泛用于化工医药生化和环境保护等领域尤其对中药化学成分的分离精制定性和定量检测等方面行之有效
影响聚酰胺吸附能力的主要因素如下:
1. 形成氢键的能力与溶剂有关。一般聚酰胺在水中 与化合物形成氢键的能力最强,在有机溶剂中较弱, 在碱性溶剂中最弱。因此溶剂对聚酰胺的洗脱能力 的次序为: 水〈甲醇或乙醇〈丙酮〈稀氢氧化钠溶液或稀氨水 〈甲酰胺或二甲基甲酰胺。
第4节 影响分离的因素与操作条件的选择

12:59:18
请选择内容
第一节 高效液相色谱的特点与仪器
feature and instrument of HPLC
第二节 基本原理与主要分离类型
basic principle and main separating types
第三节 固定相与流动相
stationary phase and mobile phase
12:59:18
结束
液相色谱中,不可能通过
增加柱温来改善传质。恒温 改变淋洗液组成、极性是
改善分离的最直接的因素。
12:59:18
2.流速 2.流速
流速大于0.5 cm/s时, H~u 曲线是一段斜率不大的直线。 降低流速,柱效提高不是很大。 但在实际操作中,流量仍是一 个调整分离度和出峰时间的重 要可选择参数。
3.固定相及分离柱 3.固定相及分离柱
12:59:18
2. 液相制备色谱的方法
收集组分时,通常有以下情况: (1)可获得良好分离,主峰 使用制备柱,超载提高效率; (2)两主成分之间的小组分; 超载,分离切分使待分离组分成 为主成分(富集)后,再次分离 制备。
12:59:18
3. 制备型液相色谱
制备型液相色谱:结构与分析型一样,但泵流量大、进 制备型液相色谱 样量大、采用制备柱;柱后馏分收集器。 制备柱:内径20~50mm,柱长50cm。 制备柱
气相色谱中的固定液原则上都可以用于液相色谱,其 选用原则与气相色谱一样。但在高效液相色谱中,分离柱 的制备是一项技术要求非常高的工作,一般很少自行制备。
12:59:18
二、分离类型选择
choice of separation types
12:59:18
三、 HPLC的应用 HPLC的
乙烯丙烯精馏塔设计
第四节裂解气深冷分离流程一、深冷分离流程二、脱甲烷塔及操作条件三、乙烯塔和丙烯塔(一)乙烯塔馏分经过加氢脱炔之后,进入乙烯塔进行精馏,塔顶得到乙烯产品,塔底产品为乙烷。
C2乙烯塔的重要性:乙烯的纯度要求要达到聚合级,冷量消耗大,乙烯塔在深冷分离装置中是一个比较关键的塔。
(乙烯塔是出乙烯产品的精馏塔)1.操作条件表1-33 乙烯塔操作条件表1-33(P76)是乙烯塔的操作条件。
从表中可以看出,乙烯塔的操作条件大体上可以分成两类:一类是低压法,塔的操作温度比较低;另一类是高压法,塔的操作温度比较高。
从图1-38(P77)可以看出:随着操作压力的增加,乙烯和乙烷的相对挥发度将减小;随着操作温度的增加,乙烯和乙烷的相对挥发度也减小。
由此可见,操作压力对相对挥发度有较大的影响,一般可以采取降低操作压力的办法来增大相对挥发度,从而使精馏塔的塔板数和回流比降低。
见图1-39。
操作压力降低以后,精馏塔的操作温度也降低,因而需要制冷剂的温度级位低,对精馏塔的材质有比较高的要求,从这些方面来看,操作压力低是不利的,还是高一些好。
操作压力的选择还要考虑乙烯的输送压力。
此外,压力的确定还要与整个流程相适应。
综上所述,乙烯塔操作压力的确定可有下列因素来决定:制冷的能量消耗、设备投资、产品乙烯的输送压力以及脱甲烷塔的操作压力等因素来决定的。
2.乙烯塔的改进由图1-40(P77)可以看出,精馏段靠近塔顶的塔板温度变化很小,而在提馏段各塔板的温度变化较大。
因此乙烯塔要求精馏段塔板数比较多,回流比也比较大。
乙烯塔的精馏段要求有较大的回流比,但是提馏段要求的回流比不大。
因此,近年来采用中间再沸器(或理解成中间换热器、中间加热器)的办法来回收冷量。
这种方法可以节省冷量约17%(占整个乙烯塔冷量的17%)。
这是乙烯塔的一个改进。
见图1-41(P78)。
例如,乙烯塔的操作压力为1.9MPa,塔底温度为-5℃,可以用丙烯蒸汽作为再沸器的热源,这样即可以将丙烯蒸汽冷凝成为丙烯液体,又可以回收了塔底的冷量。
萃取分离
2012级分析化学专业
第五节 超临界流体萃取
近年来超临界流体技术正在迅速向萃取分 离以外的领域发展,材料制备、化学反应 和环境保护等多项领域,非萃取应用研究 已得到越来越多的重视,成为新的研究和 开发的热点 。
2012级分析化学专业
第五节 超临界流体萃取
超临界流体萃取的特征(小结) 1、超临界流体的溶解能力随密度的增大而提高; 2、在接近临界处只要温度和压力有微小变化,超临界流体密 度和溶解能力都会有较大变化; 3、萃取完成后,超临界流体由于状态的改变,很容易从分离 成分中脱除,不给产品和食品原料造成污染,尤其适用于食 品和医药等行业; 4、以二氧化碳作为萃取剂,性能稳定,特别适用于具有热敏 性或易氧化的成分的分离; 5、该技术属于高压技术,需要相应的高压设备。
第四节 萃取分离技术与应用
1 萃取技术 1.1 单效萃取法 1.2 连续萃取法 1.3 逆流萃取法
2 应用示例 2.1 分离干扰物质 2.2 微量物质的分离 2.3 萃取光度测定
2012级分析化学专业
第四节 萃取分离技术与应用
1 萃取技术
1.1 单效萃取法:又称分批萃取法或 间接萃取法,它是分析中用的最多,也 是最简单的一种方法。单效萃取法除需 分液漏斗外,不需其他特殊仪器,操作 简单。
临界密度/g/cm3 0.203 0.220 O.228 0.232 0.227 0.460 0.525 O.326 0.236 0.451 0.578 0.558 0.302 0.292 0.272
2012级分析化学专业
第五节 超临界流体萃取
可以看出,能采用作超临界流体的溶剂不多。 二氧化碳超临界温度(Tc=31.1℃) 接近室温, 临界压力Pc=7.48MPa也较适中,临界密度 (ρ=0.460g/cm3) 较高。因此二氧化碳非常 适合作为超临界溶剂。
2021-2022学年高二化学人教版选修5学案:第一章 第四节 第1课时 有机化合物的分离、提纯
第四节争辩有机化合物的一般步骤和方法第1课时有机化合物的分别、提纯[学习目标定位]熟知蒸馏法、萃取法、重结晶法提纯有机物的原理,能够依据有机物的性质、特点选择其分别方法。
1.物质的分别是把混合物的各种成分物质分开的过程,分开以后的各物质应当尽量削减损失,而且是比较纯洁的。
(1)物理方法:过滤、重结晶、升华、蒸发、蒸馏、分馏、液化、分液、萃取、渗析、溶解、盐析、汽化、物理方法洗气等。
(2)化学方法:加热分解、氧化还原转化、生成沉淀、酸碱溶解或中和、络合、水解、化学方法洗气等。
(3)依据成分物质性质的差异,确定下列混合物的分别方法:①饱和食盐水和沙子过滤;②从KNO3、NaCl的混合溶液中获得KNO3结晶;③水和汽油的混合物分液;④从碘水中提取碘萃取。
2.物质的提纯是将某物质中的杂质,接受物理或化学方法除掉的过程。
它和分别的主要区分在于除掉后的杂质可以不进行恢复。
常用的方法有(1)将要除去的杂质变为被提纯物,这是提纯物质的最佳方案。
如除去Na2CO3中混有的NaHCO3,可将混合物加热使NaHCO3全部转化为Na2CO3。
(2)加入一种试剂将要除去的杂质变成沉淀,最终用过滤的方法除去沉淀。
如食盐水中混有BaCl2,可加适量的Na2SO4,把Ba2+转化为BaSO4沉淀。
(3)加热或加入一种试剂使杂质变为气体逸出。
如食盐水中混有Na2CO3,可加盐酸使CO2-3变为CO2逸出。
探究点一含有杂质的工业乙醇的蒸馏1.蒸馏原理(1)蒸馏的原理是在确定温度和压强下加热液态混合物,沸点低的物质或组分首先汽化,将其蒸气导出后再进行冷凝,从而达到与沸点高的物质或组分相分别的目的。
(2)工业乙醇中含有水、甲醇等杂质,经蒸馏收集77~79 ℃的馏分。
2.仪器装置(1)仪器A的名称是温度计。
(2)仪器B的名称是蒸馏烧瓶。
(3)仪器C的名称是冷凝管。
(4)仪器D的名称是锥形瓶。
3.试验步骤在250 mL蒸馏烧瓶中加入100 mL工业乙醇,再在烧瓶中投入少量碎瓷片,安装好蒸馏装置,向冷凝器中通入冷却水,加热蒸馏。
第四章 固液分离设备
③甩干。
⑤甩干
④洗涤。
⑥停机,挖出滤饼。
2.2 自动下出料离心机 a. 结构:多一刮刀和固体出料口,见图4-36 b.优点:①能力强,滤饼干。 ②自动连续生产,劳动强度低。 c.缺点及适用范围: 价格贵,不适合滤饼太粘的料液。
d.操作过程:图4-37
2.3 自动卸料卧式离心机 a. 结构:见图4-38,4-39 b.优点:①占地面积小,可自动连续生产。 ②滤饼厚度均匀(不受重力影响)。 c.缺点及适用范围: 结构复杂,对转轴要求高;进料要均匀。 d.适用场合及操作过程:和立式相同。见图4-40
化工制药食品等行业的粉状粒状及纤维状物料的浓缩混合干燥及需低湿干燥的物料如生化制品等更适用于易氧化易挥发热敏性强烈刺激有毒性物料和不允许破坏结晶体的物料的干燥
第一节 过滤设备
概述
• 生物工业中,一般都需要从发酵液中除去菌体以得到 产品,或从培养基中除去未溶解的残余固体颗粒以便后 续加工,如啤酒生产中麦汁的过滤,啤酒酵母的过滤分 离。另外,在提取过程中,也经常遇到晶体与母液的分 离问题。它们都属于化工单元操作中的液一固分离过程。 • 微生物发酵的悬浮液中,固体粒子的性质差异很大, 且具有一定的可压缩性,使得分离较一般化工产品的分 离更加困难。通常分离前先对悬浮液进行预处理,改变 液体的物理性质,再选择适宜的分离手段和操作条件, 达到分离的目的。 • 液一固分离过程常采用沉降和过滤两种操作来完成。 沉降有重力沉降和离心沉降之分,过滤则有常压、加压、 真空及离心过滤不同形式。
(2)喷嘴排渣碟式分离机
连续操作。整体结构与人工排渣碟 式分离机相似,但转鼓内腔呈双锥形, 可对沉渣起压缩作用,提高沉渣浓度。 转鼓内直径最大 900毫米。转鼓周缘 有喷出浆状沉渣的喷嘴2~24个,喷嘴 孔径为0.5~3.2毫米。喷嘴的数目和 孔径根据悬浮液性质、浓缩程度和处 理量确定。通过喷嘴的沉渣流速很大, 喷嘴用耐磨材料如、和碳化硼 等制成。为提高排渣浓度,这种分离机还有将排出的沉渣部分送回转鼓内 再循环的结构。沉渣的固相浓度可比进料的固相浓度提高 5~20倍。这种分 离机的处理量最大达300米3/小时,适于处理固相颗粒直径为0.1~100微米、 固相浓度通常小于 10%(最大可至25%)的悬浮液。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.进样方式和进样量的选择
液体试样采用色谱微量进样器进样,规格有1μL,
5μL,10μL等。 进样量应控制在柱容量允许范围及检测器线性检测
范围之内。进样要求动作快、时间短。 气体试样应采气体进样阀进样。
2018/8/8
2.气化温度的选择
色谱仪进样口下端有一气化器,液体试样进样后
,在此瞬间气化;
1. 固定相的选择
气-液色谱,应根据“相似相溶”的原则
①分离非极性组分时,通常选用非极性固定相。各组分
按沸点顺序出峰,低沸点组分先出峰。
② 分离极性组分时,一般选用极性固定液。各组分按极
性大小顺序流出色谱柱,极性小的先出峰。
2018/8/8
③分离非极性和极性的(或易被极化的)混合物,一般 选用极性固定液。此时,非极性组分先出峰,极性的(或易
第二 章 气相色谱分析法
gas chromatographic analysis, GC
一、色谱柱及使用条件的选 择
chromatographic columns and
choice of operating condition
二、载气种类和流速的选择
classification of carrier gas and choice of flow rate
2018/8/8
2. 载气流速的选择
由图可见存在最佳流速(uopt)。实际流速通常稍大于最 佳流速,以缩短分析时间。
B H A C u u dH B 2 C 0 du u B uopt C
2018/8/8
三、 其它操作条件的选择
choice of other operating condition
2018/8/8
程序升温
2018/8/8
二、 载气种类和流速的选择
classification of carrier gas and choice of flow rate
Байду номын сангаас
1. 载气种类的选择
载气种类的选择应考虑三个方面:载气对柱效的影响、 检测器要求及载气性质。 载气摩尔质量大,可抑制试样的纵向扩散,提高柱效。 载气流速较大时,传质阻力项起主要作用,采用较小摩尔质 量的载气(如H2,He),可减小传质阻力,提高柱效。 热导检测器需要使用热导系数较大的氢气有利于提高检 测灵敏度。在氢焰检测器中,氮气仍是首选目标。 在载气选择时,还应综合考虑载气的安全性、经济性及 来源是否广泛等因素。
第四节 分离操作条件的选择
choice of chromatographic operating condition
三、其它操作条件的选择
choice of other operating condition
2018/8/8
一、 色谱柱及使用条件的选择
chromatographic columns and choice of operating condition
2018/8/8
4.柱温的确定
首先应使柱温控制在固定液的最高使用温度(超过该温 度固定液易流失)和最低使用温度(低于此温度固定液以固 体形式存在)范围之内。 柱温升高,分离度下降,色谱峰变窄变高。柱温↑,被测 组分的挥发度↑,即被测组分在气相中的浓度↑,K↓,tR↓,低 沸点组份峰易产生重叠。 柱温↓,分离度↑,分析时间↑。对于难分离物质对,降低 柱温虽然可在一定程度内使分离得到改善,但是不可能使之 完全分离,这是由于两组分的相对保留值增大的同时,两组 分的峰宽也在增加,当后者的增加速度大于前者时,两峰的 交叠更为严重。 柱温一般选择在接近或略低于组分平均沸点时的温度。 组分复杂,沸程宽的试样,采用程序升温。
配比越低,担体上形成的液膜越薄,传质阻力
越小,柱效越高,分析速度也越快。
配比较低时,固定相的负载量低,允许的进样 量较小。分析工作中通常倾向于使用较低的配比。
2018/8/8
3.柱长和柱内径的选择
增加柱长对提高分离度有利(分离度R正比于柱 长L2),但组分的保留时间tR ↑ ,且柱阻力↑,不便 操作。 柱长的选用原则是在能满足分离目的的前提下 ,尽可能选用较短的柱,有利于缩短分析时间。 填充色谱柱的柱长通常为1~3米。 可根据要求的分离度通过计算确定合适的柱长 或实验确定。 柱内径一般为3~4厘米。
气化温度一般较柱温高30~70°C 防止气化温度太高造成试样分解。
2018/8/8
被极化的)组分后出峰。
④醇、胺、水等强极性和能形成氢键的化合物的分离,
通常选择极性或氢键性的固定液。
⑤组成复杂、较难分离的试样,通常使用特殊固定液,
或混合固定相。
2018/8/8
2. 固定液配比(涂渍量)的选择
配比:固定液在担体上的涂渍量,一般指的是
固定液与担体的百分比,配比通常在5%~25%之间。