陶瓷基复合材料简介
陶瓷基复合材料

陶瓷基复合材料陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。
陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。
这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。
而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。
纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。
陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。
其最高使用温度主要取决于基体特征。
陶瓷基复合材料已实用化或即将实用化的领域有刀具、滑动构件、发动机制件、能源构件等。
法国已将长纤维增强碳化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意的使用效果。
工制备艺浆体浸渍-热压法适用于长纤维。
首先把纤维编织成所需形状,然后用陶瓷泥浆浸渍,干燥后进行烧结。
优点是加热温度较晶体陶瓷低,层板的堆垛次序可任意排列,纤维分布均匀,气孔率低,获得的强度较高。
缺点则是不能制造大尺寸的制品,所得制品的致密度较低,此外零件的形状不宜太复杂,基体材料必须是低熔点或低软化点陶瓷。
晶须与颗粒增韧陶瓷基复合材料的加工与制备晶须与颗粒的尺寸均很小,只是几何形状上有些区别,用它们进行增韧的陶瓷基复合材料的制造工艺是基本相同的。
基本上是采用粉末冶金方法。
制备工艺比长纤维复合材料简便很多。
所用设备也不复杂设备。
过程简单。
混合均匀,热压烧结即可制得高性能的复合材料制造工艺也可大致分为配料-成型-烧结-精加工等步骤。
直接氧化沉积法方法:将纤维预制体置于熔融金属上面,添加有镁、硅添加剂的熔融金属铝,在氧化气氛中,不断地浸渍预制体,在浸渍过程中,熔融金属或其蒸汽与气相氧化剂反应生成氧化物。
随着时间的延长,边浸渍边氧化,最终可制得纤维增强CMC。
优点:纤维几乎无损伤、纤维分布均匀、CMC性能优异,工艺简单、效率高成本低先驱体热解法方法:将单独合成的先驱体,通过加温调节其粘度,在高压-真空联合作用下使其浸入并充满多向纤维编织坯件的空隙,在高温下使先驱体热解。
陶瓷基复合材料(CMC)

陶瓷基复合材料(CMC)第四节陶瓷基复合材料(CMC)1.1概述⼯程中陶瓷以特种陶瓷应⽤为主,特种陶瓷由于具有优良的综合机械性能、耐磨性好、硬度⾼以及耐腐蚀件好等特点,已⼴泛⽤于制做剪⼑、⽹球拍及⼯业上的切削⼑具、耐磨件、发动机部件、热交换器、轴承等。
陶瓷最⼤的缺点是脆性⼤、抗热震性能差。
与⾦属基和聚合物基复合材料有有所不同的,是制备陶瓷基复合材料的主要⽬的之⼀就是提⾼陶瓷的韧性。
特别是纤维增强陶瓷复合材料在断裂前吸收了⼤量的断裂能量,使韧性得以⼤幅度提⾼。
表6—1列出了由颗粒、纤维及晶须增强陶瓷复合材料的断裂韧性和临界裂纹尺⼨⼤⼩的⽐较。
很明显连续纤维的增韧效果最佳,其次为品须、相变增韧和颗粒增韧。
⽆论是纤维、晶须还是颗粒增韧均使断裂韧性较整体陶瓷的有较⼤提⾼,⽽且也使临界裂纹尺⼨增⼤。
陶瓷基复合材料的基体为陶瓷,这是⼀种包括范围很⼴的材料,属于⽆机化合物纳构远⽐⾦属与合⾦复杂得多。
使⽤最多的是碳化硅、氮化硅、氧化铝等,它们普遍具有耐⾼温、耐腐蚀、⾼强度、重量轻和价格低等优点。
陶瓷材料中的化学键往注是介于离⼦键与共价键之间的混合键。
陶瓷基复合材料中的增强体通常也称为增韧体。
从⼏何尺⼨上可分为纤维(长、短纤维)、晶须和颗粒三类。
碳纤维是⽤来制造陶瓷基复合材料最常⽤的纤维之⼀。
碳纤维主要⽤在把强度、刚度、重量和抗化学性作为设计参数的构件,在1500霓的温度下,碳纤维仍能保持其性能不变,但对碳纤维必须进⾏有效的保护以防⽌它在空⽓中或氧化性⽓氛中被腐蚀,只有这样才能充分发挥它的优良性能。
其它常⽤纤维是玻璃纤维和硼纤维。
陶瓷材料中另⼀种增强体为晶须。
晶须为具有⼀定长径⽐(直径o 3。
1ym,长30—lMy”)的⼩单晶体。
从结构上看,晶须的特点是没有微裂纹、位偌、孔洞和表⾯损伤等⼀类缺陷,⽽这些缺陷正是⼤块晶体中⼤量存在且促使强度下降的主要原因。
在某些情况下,晶须的拉伸强度可达o.1Z(Z为杨⽒模量),这已⾮常接近⼗理论上的理想拉伸强度o.2Z。
陶瓷基复合材料介绍

陶瓷基复合材料介绍一、材料定义与特性陶瓷基复合材料(Ceramic Matrix Composites,简称CMC)是一种以陶瓷为基体,复合增强体材料的高性能复合材料。
它具有高强度、高硬度、耐高温、抗氧化、耐腐蚀等优异性能,被广泛应用于航空航天、汽车、能源、化工等领域。
二、基体与增强体材料陶瓷基体的主要类型包括氧化铝、氮化硅、碳化硅、氮化硼等,它们具有高熔点、高硬度、耐腐蚀等特性。
增强体材料主要包括纤维、晶须、颗粒等,它们可以显著提高陶瓷基体的强度和韧性。
三、制备工艺与技术陶瓷基复合材料的制备工艺主要包括:热压烧结法、液相浸渍法、化学气相沉积法、粉末冶金法等。
其中,热压烧结法和液相浸渍法是最常用的制备工艺。
四、增强纤维与基体的界面增强纤维与基体的界面是影响陶瓷基复合材料性能的关键因素之一。
为了提高材料的性能,需要优化纤维与基体的界面特性,包括润湿性、粘结性、化学稳定性等。
五、材料的应用领域陶瓷基复合材料具有广泛的应用领域,主要包括:航空航天领域的发动机部件、机载设备;能源领域的燃气轮机叶片、核反应堆部件;汽车领域的刹车片、发动机部件;化工领域的耐腐蚀设备、管道等。
六、发展现状与趋势随着科技的不断进步,陶瓷基复合材料的研究和应用不断深入。
目前,国内外研究者正在致力于开发低成本、高性能的陶瓷基复合材料,并探索其在更多领域的应用。
同时,研究者还在研究如何更好地控制材料的微观结构和性能,以提高材料的综合性能。
七、挑战与机遇尽管陶瓷基复合材料具有许多优异的性能,但它们的制备工艺复杂、成本高,且存在易脆性等挑战。
然而,随着科技的不断进步和新材料的发展,陶瓷基复合材料的成本逐渐降低,应用领域也在不断扩大。
同时,随着环保意识的提高和能源需求的增加,陶瓷基复合材料在能源和环保领域的应用前景广阔。
因此,陶瓷基复合材料在未来仍具有巨大的发展潜力。
陶瓷基复合材料

陶瓷基复合材料引言。
陶瓷基复合材料是一种由陶瓷基体和其他增强材料组成的复合材料。
它具有优异的耐磨、耐腐蚀、高强度和高温稳定性等特点,因此被广泛应用于航空航天、汽车制造、化工等领域。
本文将介绍陶瓷基复合材料的组成、性能和应用,并对其未来发展进行展望。
一、陶瓷基复合材料的组成。
陶瓷基复合材料通常由陶瓷基体和增强材料组成。
陶瓷基体可以是氧化铝、碳化硅、氮化硅等陶瓷材料,而增强材料则可以是碳纤维、玻璃纤维、陶瓷颗粒等。
这些材料通过复合加工技术,如热压、注射成型等,将陶瓷基体与增强材料紧密结合,形成具有优异性能的复合材料。
二、陶瓷基复合材料的性能。
1. 耐磨性,陶瓷基复合材料具有优异的耐磨性,可以在高速、高负荷条件下保持较长的使用寿命,因此被广泛应用于机械设备的零部件制造。
2. 耐腐蚀性,由于陶瓷基复合材料具有优异的化学稳定性,可以在酸、碱等腐蚀性介质中长期稳定运行,因此在化工领域得到广泛应用。
3. 高强度,陶瓷基复合材料在高温、高压条件下依然保持优异的强度和刚性,因此被广泛应用于航空航天领域。
4. 高温稳定性,陶瓷基复合材料在高温条件下依然保持稳定的性能,因此被广泛应用于发动机、燃气轮机等高温设备的制造。
三、陶瓷基复合材料的应用。
1. 航空航天领域,陶瓷基复合材料被广泛应用于航空发动机、航天器外壳等高温、高压零部件的制造。
2. 汽车制造领域,陶瓷基复合材料被应用于汽车刹车片、离合器片等零部件的制造,以提高其耐磨性和耐高温性能。
3. 化工领域,陶瓷基复合材料被应用于化工设备的制造,以提高其耐腐蚀性和耐高温性能。
四、陶瓷基复合材料的发展展望。
随着科学技术的不断进步,陶瓷基复合材料将会在性能和应用范围上得到进一步提升。
未来,我们可以期待陶瓷基复合材料在新能源领域、生物医药领域等新兴领域的广泛应用,为人类社会的发展做出更大的贡献。
结论。
陶瓷基复合材料具有优异的耐磨、耐腐蚀、高强度和高温稳定性等特点,因此在航空航天、汽车制造、化工等领域得到广泛应用。
陶瓷基复合材料

陶瓷基复合材料
陶瓷基复合材料是一种由陶瓷基体和增强相组成的新型材料。
陶瓷基复合材料具有优异的耐高温、耐磨损、耐腐蚀性能,因此在航空航天、汽车制造、机械制造等领域有着广泛的应用。
本文将从材料特性、制备工艺、应用领域等方面对陶瓷基复合材料进行介绍。
首先,陶瓷基复合材料的材料特性是其具有的重要特点之一。
陶瓷基复合材料具有高温强度高、热震稳定性好、耐磨损、耐腐蚀等优异性能。
这些特性使得陶瓷基复合材料在高温、高压、腐蚀等恶劣环境下能够发挥出色的性能,因此在航空航天领域得到了广泛的应用。
其次,陶瓷基复合材料的制备工艺是影响其性能的重要因素之一。
陶瓷基复合材料的制备工艺包括原料的选择、配比、成型、烧结等多个环节。
其中,原料的选择和配比直接影响着复合材料的成分和性能,而成型和烧结工艺则决定了复合材料的内部结构和组织。
因此,制备工艺的优化对于提高陶瓷基复合材料的性能具有重要意义。
最后,陶瓷基复合材料在航空航天、汽车制造、机械制造等领域有着广泛的应用。
在航空航天领域,陶瓷基复合材料被用于制造发动机涡轮叶片、导向器、复合材料轴承等部件,以提高其耐高温、耐磨损、耐腐蚀等性能。
在汽车制造领域,陶瓷基复合材料被用于制造发动机零部件、刹车盘、离合器等,以提高汽车的性能和安全性。
在机械制造领域,陶瓷基复合材料被用于制造轴承、密封件、刀具等,以提高机械设备的使用寿命和性能。
总之,陶瓷基复合材料具有优异的性能和广泛的应用前景。
随着科学技术的不断进步,陶瓷基复合材料将在更多领域得到应用,并为人类社会的发展做出更大的贡献。
陶瓷基复合材料

图10-4 液态浸渍法制备 陶瓷基复合材料示意图
5、直接氧化法(图10-5)
按部件形状制备增强体预制 体,将隔板放在其表面上以 阻止基体材料的生长。 熔化的金属在氧气的作用下 发生直接氧化反应形成所需 的反应产物。 由于在氧化产物中的空隙管 道的液吸作用 ,熔化金属 会连续不断地供给到生长前 沿。 Al + 空气 → Al2O3 Al + 氮气 → AlN
2)FCVI法
在纤维预制件内施加一个温 度梯度,同时还施加一个反 向的气体压力梯度,迫使反 应气体强行通过预制件。 在低温区,由于温度低而不 发生反应,当反应气体到达 温度较高的区域后发生分解 并沉积,在纤维上和纤维之 间形成基体材料。 在此过程中,沉积界面不断 由预制件的顶部高温区向低 温区推移。由于温度梯度和 压力梯度的存在,避免了沉 积物将空隙过早的封闭,提 高了沉积速率(图10-9)。
图10-5 直接氧化法制备 陶瓷基复合材料示意图
6、溶胶 – 凝胶(Sol – Gel)法(图10- 6)
溶胶(Sol)是由于化学反应沉积而产生的微小颗粒(直径<100nm)的 悬浮液;凝胶(Gel )是水分减少的溶胶,即比溶胶粘度大的胶体。 Sol – Gel法 是指金属有机或无机化合物经溶液、溶胶、凝胶等过程 而固化,再经热处理生成氧化物或其它化合物固体的方法。该方法可控 制材料的微观结构,使均匀性达到微米、纳米甚至分子量级水平。 Sol – Gel法制备SiO2陶瓷原理如下: Si(OR)4 + 4H2O → Si(OH)4+ 4ROH Si(OH)4 → SiO2 + 2H2O 使用这种方法,可将各种增强剂加入 基体溶胶中搅拌均匀,当基体溶胶形成凝 胶后,这些增强组元稳定、均匀分布在基 体中,经过干燥或一定温度热处理,然后 压制烧结形成相应的复合材料。
陶瓷基复合材料

陶瓷基复合材料陶瓷基复合材料是一种由陶瓷基体和其他添加剂组成的复合材料。
其综合性能优异,因此在航空航天、电子器件、能源领域等多个领域得到广泛应用。
本文将介绍陶瓷基复合材料的制备方法、性能及应用,并对其未来发展进行展望。
一、制备方法陶瓷基复合材料的制备方法多种多样,主要包括烧结法、溶胶-凝胶法、机械合金化法等。
首先,烧结法是最常用的制备陶瓷基复合材料的方法之一。
该方法将陶瓷粉末与其他添加剂混合,并通过高温下的烧结过程将其烧结成坚固的材料。
这种方法制备的复合材料具有较高的结晶度和致密性。
其次,溶胶-凝胶法是一种制备陶瓷基复合材料的新方法。
该方法通过将金属盐、有机物等混合,形成胶体溶胶,然后通过热处理使其成为凝胶,并进一步高温热处理得到致密材料。
这种方法制备的复合材料具有较高的纯度和均匀性。
最后,机械合金化法是一种通过粉末冶金技术制备陶瓷基复合材料的方法。
该方法将陶瓷颗粒与添加剂一起经过球磨、混合等机械处理,使其均匀分散,并通过热处理得到复合材料。
这种方法制备的复合材料具有较高的强度和断裂韧性。
二、性能陶瓷基复合材料具有一系列优异的性能,主要包括高温稳定性、硬度高、抗腐蚀性好等。
首先,陶瓷基复合材料具有较好的高温稳定性。
由于陶瓷基复合材料的陶瓷基体具有较高的熔点和热稳定性,因此能够在高温环境下保持较好的性能,不易发生烧结变形等问题。
其次,陶瓷基复合材料具有较高的硬度。
陶瓷基体的硬度往往比金属基体或聚合物基体要高,因此陶瓷基复合材料在硬度方面具有优势。
这使得该材料在需要高硬度的应用中表现出色,如切割工具、磨料等领域。
再次,陶瓷基复合材料具有良好的抗腐蚀性。
由于陶瓷基体的本身特性,该材料在酸碱等腐蚀性环境中有很好的稳定性,不易受到腐蚀侵蚀。
这使得陶瓷基复合材料在化工、生物医药等领域得到广泛应用。
三、应用陶瓷基复合材料在很多领域都有广泛的应用。
下面将介绍几个典型的应用领域。
首先,陶瓷基复合材料在航空航天领域具有重要应用。
陶瓷基复合材料及其应用

界面相设计
优化界面相的组成和结构,提高 陶瓷基复合材料的力学性能和热 稳定性。
发展历程
起步阶段
20世纪50年代,陶瓷基复合材料开始研究和发 展。
突破阶段
20世纪70年代,随着碳纤维的发展,陶瓷基复 合材料在力学性能方面取得了重大突破。
应用阶段
20世纪80年代以后,陶瓷基复合材料在航空航天、汽车等领域得到广泛应用。
陶瓷基复合材料及其 应用
• 陶瓷基复合材料简介 • 陶瓷基复合材料的种类 • 陶瓷基复合材料的应用领域 • 陶瓷基复合材料的挑战与前景 • 案例分析
目录
01
陶瓷基复合材料简介
定义与特性
定义
陶瓷基复合材料是以陶瓷为基体,与 各种增强材料复合而成的一种力学性 能优异、具有特殊功能的新型复合材 料。
02
陶瓷基复合材料的种类
氧化铝基复合材料
总结词
氧化铝基复合材料是以氧化铝为基体 ,与其他陶瓷或金属材料复合而成的 一种高性能复合材料。
详细描述
氧化铝基复合材料具有高强度、高硬 度、耐磨、耐高温和抗氧化等优异性 能,广泛应用于航空航天、汽车、能 源和化工等领域。
碳化硅基复合材料
总结词
碳化硅基复合材料是以碳化硅为基体,与其他陶瓷或金属材料复合而成的一种 高性能复合材料。
其他陶瓷基复合材料
总结词
除了上述几种常见的陶瓷基复合材料外,还有许多其他种类的陶瓷基复合材料, 如氮化硼基复合材料、碳化钛基复合材料等。
详细描述
这些陶瓷基复合材料也具有优异的力学性能和化学稳定性,在各种领域都有广泛 的应用前景。
03
陶瓷基复合材料的应用领域
航空航天
航空发动机部件
陶航空发动机的燃烧室、涡轮叶片等 关键部件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
刀不能砍、剁、砸、撬等。
14
4、陶瓷基复合材料的应用
家居送礼必备良品 高 端 大 气 上 档 次
低 调 奢 华 有 内 涵
15
4、陶瓷基复合材料的应用
(1)机械与汽车工业: 可用于制作机械加工刀具、滑动构件、模具、耐磨轴
承、喷嘴等; 汽车零部件方面,如火花塞、密封装置、吸气/排气
阀、涡轮转子等。
19
4、陶瓷基复合材料的应用
(2)航空航天与燃气轮机: 可用于涡轮机燃烧室覆壁、涡轮盘、导向叶片和螺栓
等,可以减小质量,提高燃烧效率,减少有害气体排放, 节省冷却系统。
20
4、陶瓷基复合材料的应用
在航空航天领域,用陶瓷基复合材料制作的导弹的 头锥、火箭的喷管、航天飞机的结构件、绝热瓦、外部 燃料箱等也具有良好的效果。
各种无机非金属化合物为原料制成,具有
独特的力学、电学、磁学、光学、化学等
性能,主要用于化工、冶金、机械、电子、
能源和一些新技术中。
结构陶瓷
特种陶瓷 功能陶瓷
china
ceremic
6
1、陶瓷简介
陶瓷材料具有高强度、高硬度、低密度、耐高 温、耐磨损、耐腐蚀等优良的性能,但其脆性大的 弱点限制了它的广泛应用,陶瓷的韧化问题成为了 人们研究的重点。
如铝锂硅酸盐玻璃陶瓷、镁铝硅酸盐玻璃陶瓷等。
(5)其他陶瓷基体: 如硼化物陶瓷、硅化物陶瓷等。
10
3、陶瓷基复合材料的增强体
由于陶瓷基体中加入的增强体主要增强陶瓷的韧性, 所以陶瓷基复合材料中的增强体通常也称为增韧体。 从几何尺寸上增强体可分为纤维(长、短纤维)、晶须和 颗粒三类。
(1)长纤维: 在陶瓷基复合材料中使用得较为普遍的是碳纤维、玻
ห้องสมุดไป่ตู้China
4
1、陶瓷简介
陶瓷
(按物理 性能分类)
陶器:结构疏松,具有一定吸水率, 不透明
瓷器:结构致密,基本不吸水,有 一定透光性
炻器:介于两者之间
5
1、陶瓷简介
陶瓷
(按概念和 用途分类)
传统陶瓷:用粘土、长石、石英等天然原 料制成,主要用作建筑、卫生、以及工业 用陶瓷.
特种陶瓷:又称精细陶瓷、现代陶瓷,以
性等,其韧性是陶瓷中最高的,应用其耐磨损性能,可 以制作拉丝模、轴承、密封件、医用人造骨骼、汽车发 动机的塞顶、缸盖底板和汽缸内衬等
8
2、陶瓷基复合材料的基体
(2)氮化物陶瓷基体: 主要是氮与过渡族金属(如钛、钒、铌、锆、钽
和铪)的化合物,还有Si3N4中固溶有铝和氧但仍保持 Si3N4结构的氮化物陶瓷。
有Si3N4陶瓷、AlN陶瓷、BN陶瓷等。
(3)碳化物陶瓷基体: 是硅、钛及其他过渡族金属碳化物的总称。 如SiC陶瓷、ZrC陶瓷、WC陶瓷、TiC陶瓷等。
9
2、陶瓷基复合材料的基体
(4)玻璃和玻璃陶瓷基体: 玻璃基体:
高硅氧玻璃、硼硅玻璃、铝硅玻璃等。 玻璃陶瓷基体:
在一定条件下,玻璃可以出现结晶,并且在熔点时 由于原子有序排列,其体积会突然变小,形成结晶化的 玻璃,即玻璃陶瓷。
11
3、陶瓷基复合材料的增强体
短纤维: 长纤维增韧陶瓷基复合材料虽然性能优越,但它的制
备工艺复杂,而且纤维在基体中不易分布均匀。 因此,将长纤维剪短(小于3mm),再与集体粉末混
合,经过一定工艺,亦可实现增韧效果。
(2)晶须: 晶须是在人工条件下制造出的细小单晶,一般呈棒状,
其直径约为0.2~1μm,长度约为几十微米,由于其具有细小 组织结构、缺陷少,而具有很高的强度和模量。
璃纤维、硼纤维等;
按纤维排布方式的不同,又可将其分为单向长纤维增 强复合材料和多向长纤维增强复合材料。
单向长纤维增强复合材料的显著特点是它具有各向异 性,即沿纤维长度方向上的纵向性能要大大优于其横向性 能;另外,许多陶瓷构件则要求在二维及三维方向上均具 有优良的性能,这就要需要多向长纤维增强复合材料。
13
4、陶瓷基复合材料的应用
陶瓷刀具:
优点:
❖ 耐磨,高硬度,硬度为9,仅次于金刚石(10),只要不摔至 地面、不砍或剁等,正常使用的情况下永远都不需要磨刀;
❖ 轻薄锐利,无毛细孔,不会藏污纳垢,易清洗;
❖ 非金属铸造不会生锈,切食物无金属味残留等。
缺点:
❖ 韧度低,比较脆,高处摔落易崩口、缺角或断裂,所以陶瓷
21
4、陶瓷基复合材料的应用
22
4、陶瓷基复合材料的应用
GE公司将陶瓷基复合材料应用于飞机涡轮转子叶片, 使总重降低了约455kg,相当于发动机质量的6%。不但材 料本身比金属合金材料轻,而且还能减少冷却系统的重量, 大大节约了成本。
23
4、陶瓷基复合材料的应用
提高陶瓷韧性的途径主要有以下几个方面: (1)提高陶瓷致密度,减少表面裂纹; (2)细化晶粒; (3)加入具有增韧效果的成分,制成陶瓷基复合材料。
7
2、陶瓷基复合材料的基体
(1)氧化物陶瓷基体 (2)氮化物陶瓷基体 (3)碳化物陶瓷基体 (4)玻璃和玻璃陶瓷基体 (5)其他陶瓷基体
(1)氧化物陶瓷基体: 主要有Al2O3陶瓷、ZrO2陶瓷等。 例如ZrO2陶瓷具有高强度、高硬度和高耐化学腐蚀
16
4、陶瓷基复合材料的应用
SiC陶瓷件
陶瓷基复合材料制作的滑动构件
17
4、陶瓷基复合材料的应用
SiCw增韧的细颗粒Al2O3陶瓷复合材料已成功用于工业 生产制造切削刀具:
SiCw/Al2O3复合材料钻头
18
4、陶瓷基复合材料的应用
法国已将长纤维增强碳化硅复合材料应用于制作超高速 列车的制动器件,而且取得了传统的制动器件所无法比拟的 磨擦、磨损特性,实现了较好的应用效果。
常用的有SiC、Al2O3、Si3N4等陶瓷晶须。
12
3、陶瓷基复合材料的增强体
(3)颗粒: 从几何尺寸上看,颗粒在各个方向上的长度是大致
相同的,一般为几个微米。颗粒的增韧效果不如纤维和 晶须,但如果颗粒种类、粒径、含量及基体材料选择适 当,仍会有一定的韧化效果,同时还会带来高温性能的 改善。
常用的颗粒有SiC、Si3N4等。
陶瓷基复合材料简介
1
复合材料
(按基体类型分类)
聚合物基复合材料 金属基复合材料 陶瓷基复合材料 水泥基复合材料 碳基复合材料
2
1、陶瓷简介 2、陶瓷基复合材料的基体 3、陶瓷基复合材料的增强体 4、陶瓷基复合材料的应用 5、陶瓷基复合材料的前景展望
3
1、陶瓷简介
昌南 (景德镇)
china
chinaware