混凝土结构钢筋腐蚀的影响因素及防护
浅析钢筋混凝土中钢筋的腐蚀与防腐措施

浅析钢筋混凝土中钢筋的腐蚀与防腐措施关键信息项:1、钢筋腐蚀的原因化学因素物理因素环境因素2、钢筋腐蚀的危害结构强度降低安全性下降维修成本增加3、防腐措施材料选择表面处理防护涂层电化学保护4、监测与维护方法定期检测及时维修11 钢筋腐蚀的原因111 化学因素钢筋混凝土中的钢筋腐蚀主要由化学作用引起。
其中,氯离子的侵蚀是常见的化学因素之一。
氯离子可以通过多种途径进入混凝土内部,如使用含氯的外加剂、海水中的氯离子渗透等。
一旦氯离子到达钢筋表面,并达到一定浓度,就会破坏钢筋表面的钝化膜,引发钢筋腐蚀。
此外,混凝土中的碱性物质(如氢氧化钙)与空气中的二氧化碳发生碳化反应,降低混凝土的 pH 值,使钢筋失去碱性环境的保护,也会导致钢筋腐蚀。
112 物理因素物理因素对钢筋腐蚀也有重要影响。
例如,混凝土的开裂和孔隙率增加会使有害物质更容易渗透到钢筋表面。
温度变化引起的混凝土膨胀和收缩,以及外部荷载作用导致的混凝土微裂缝,都为腐蚀介质提供了通道。
同时,钢筋在混凝土中的位置和分布不均匀,也可能导致局部腐蚀加剧。
113 环境因素环境条件是导致钢筋腐蚀的外在因素。
处于潮湿、酸雨频繁、海洋等恶劣环境中的钢筋混凝土结构,更容易受到腐蚀的侵害。
湿度较高的环境会加速腐蚀介质的传输,而酸性环境会直接破坏混凝土的结构,加快钢筋的腐蚀速度。
12 钢筋腐蚀的危害121 结构强度降低钢筋腐蚀会导致其截面积减小,力学性能下降。
随着腐蚀的进行,钢筋的抗拉强度、屈服强度等关键指标逐渐降低,从而削弱了钢筋对混凝土结构的承载能力。
这可能导致结构在正常使用荷载下出现变形、裂缝甚至破坏,严重影响结构的安全性和稳定性。
122 安全性下降由于钢筋腐蚀引起的结构损伤往往是隐蔽的,难以在早期被发现。
一旦腐蚀发展到一定程度,结构的整体性和可靠性会受到极大威胁。
在地震、风灾等自然灾害作用下,腐蚀后的结构更容易发生倒塌等严重事故,危及人们的生命财产安全。
123 维修成本增加为了修复因钢筋腐蚀而受损的结构,需要投入大量的资金和人力进行维修和加固。
建筑类毕业论文设计混凝土结构钢筋腐蚀的影响因素及防护论文

混凝土结构钢筋腐蚀的影响因素及防护摘要:钢筋混凝土结构从出现到21世纪,经历了比较久的发展时期,并且依旧占据着建筑结构中最重要的一部分。
然而,近年来的工程实际情况表明,在役钢筋混凝土结构因为耐久性问题而引起破坏的现象越来越严重,因此,有必要对钢筋锈蚀对混凝土结构耐久性的影响做研究。
尤其是混凝土中影响钢筋锈蚀的因素和针对这些因素所采取的措施。
关键词:混凝土结构;耐久性;钢筋锈蚀;预防措施Factors Influencing The Corrosion ofSteel In Concrete And Its ProtectionAbstract:From being create to twenty-first century,Reinforced concrete structure experienced a period of development for a long time, and still plays the most important part of the building structure. However, the actual situation of the project shows that in recent years, the damage caused by durability problems in existing reinforced concrete structure is more and more serious, which is leaded by the orrosion of steel bar give a large part. Therefore, it is necessary to do research on the influence of reinforcement corrosion on the durability of concrete structures. Especially the influence factors of steel corrosion in concrete and the measures taken in response to these factors.Keywords:reinforced concrete structure;durability;corrosion;prevention measures0 引言最开始人们认为,钢筋混凝土结构很好地结合了钢筋与混凝土材料的优点,可模性好、可塑性强、整体性好、耐久性好、后期维护费用较低以及易于就地取材等诸多优点使得当今世界上的建筑大多选择采用钢筋混凝土结构。
混凝土中钢筋腐蚀防护技术及实例分析

混凝土中钢筋腐蚀防护技术及实例分析一、背景介绍混凝土作为一种常见的建筑材料,在建筑工程中被广泛应用。
但是,在长期的使用过程中,混凝土中的钢筋很容易发生腐蚀,导致混凝土的强度降低、裂缝增加,严重影响建筑物的使用寿命和安全性。
因此,针对混凝土中钢筋腐蚀的问题,开展防护措施是十分必要的。
二、钢筋腐蚀的原因1.水泥碱性混凝土中的水泥具有强碱性,当钢筋暴露在混凝土中时,水泥的碱性会破坏钢筋表面的保护层,使其失去防腐能力,从而导致钢筋腐蚀。
2.氯离子侵蚀氯离子是混凝土中重要的化学成分之一,但是过多的氯离子会加速混凝土中钢筋的腐蚀。
当混凝土中的氯离子浓度达到一定程度时,就会造成钢筋表面的保护层被破坏,从而引起钢筋腐蚀。
3.混凝土中的电化学反应混凝土中的电化学反应也是导致钢筋腐蚀的一个原因。
当混凝土中的水分进入钢筋表面的保护层时,就会引起电化学反应,从而使得钢筋表面的保护层被破坏,导致钢筋腐蚀。
三、混凝土中钢筋腐蚀防护技术1.使用防腐涂料防腐涂料是一种常用的防腐材料,可以有效地保护钢筋不被腐蚀。
在混凝土中使用防腐涂料的方法是,在混凝土浇筑前将钢筋表面涂上防腐涂料,使其形成一层防腐保护层。
2.采用不锈钢钢筋不锈钢钢筋具有很好的抗腐蚀性能,可以有效地防止钢筋腐蚀。
在混凝土中使用不锈钢钢筋的方法是,将不锈钢钢筋代替普通钢筋使用,在混凝土中起到支撑作用。
3.使用防腐混凝土防腐混凝土是一种添加了特殊防腐剂的混凝土,可以有效地防止钢筋腐蚀。
在混凝土中使用防腐混凝土的方法是,在混凝土浇筑前,将特殊防腐剂加入混凝土中,使混凝土具有防腐蚀的能力。
四、实例分析以某高层建筑的混凝土结构为例,该建筑的主体结构使用了普通钢筋混凝土。
由于建筑所处的区域气候潮湿,加之建筑本身的使用年限较长,钢筋腐蚀的问题日益凸显,严重影响了建筑的使用寿命和安全性。
为了解决这个问题,施工方采用了以下措施:1.使用防腐涂料在混凝土浇筑前,先将钢筋表面涂上一层防腐涂料,形成一层防腐保护层。
混凝土钢筋腐蚀的原理与防护方法

混凝土钢筋腐蚀的原理与防护方法一、前言混凝土钢筋腐蚀是一种广泛存在于工程实践中的问题,它严重影响了混凝土结构的安全和使用寿命。
本文将从混凝土钢筋腐蚀的原理入手,详细介绍腐蚀的机理和影响因素,以及目前常用的防护方法。
希望本文能够为广大工程师和研究人员提供一些有用的参考。
二、混凝土钢筋腐蚀的原理混凝土钢筋腐蚀是指混凝土中的钢筋在一定条件下受到电化学腐蚀作用而发生破坏。
其主要原理是钢筋与混凝土中的氧、水、盐等发生化学反应,导致钢筋表面形成氧化铁锈膜,进而引起钢筋的腐蚀。
1. 钢筋表面形成氧化铁锈膜钢筋表面形成氧化铁锈膜是混凝土钢筋腐蚀的第一步。
这个过程是钢筋表面与混凝土中的氧、水、盐等发生化学反应的结果。
当混凝土结构中的钢筋暴露在空气和水的环境中时,钢筋表面的铁离子会与水和氧气反应,形成铁氢氧化物。
这种氢氧化物在空气中继续氧化,形成铁(III)氧化物,也就是我们常说的铁锈。
铁锈的形成为后续的钢筋腐蚀提供了条件。
2. 钢筋腐蚀的电化学反应钢筋表面形成氧化铁锈膜后,接下来就是钢筋的腐蚀。
钢筋的腐蚀是一种电化学反应,它需要三个要素:金属、电解质和氧气。
钢筋表面的铁离子在电解质溶液中会被氧化成离子,离子会向阳极移动,同时电解质中的氢离子会向阴极移动。
阴极和阳极之间的电荷差异会形成电流,从而导致钢筋的腐蚀。
3. 钢筋腐蚀的产物钢筋腐蚀的产物主要有两种:氢气和氧化铁。
钢筋表面的铁离子在电解质中被氧化成氢离子和氧化铁,其中氢离子会向阴极移动,形成气泡,即氢气。
氧化铁会在钢筋表面形成一层铁锈,这层铁锈会不断增厚,最终导致混凝土结构的破坏。
三、混凝土钢筋腐蚀的影响因素混凝土钢筋腐蚀的发生受到多种因素的影响,主要包括以下几个方面:1. 水泥质量水泥质量是影响混凝土钢筋腐蚀的重要因素之一。
水泥中的氧化铁含量会影响混凝土中的氧化铁含量,进而影响钢筋的腐蚀。
氧化铁含量越高,混凝土中的氧化铁含量就越高,钢筋的腐蚀也就越严重。
2. 氯离子含量氯离子是导致混凝土钢筋腐蚀的重要原因之一。
混凝土中钢筋锈蚀的原因及危害和预防措施

混凝土中钢筋锈蚀的原因及危害和预防措施1.碳化:碳化是钢筋在碳酸盐离子的作用下发生的一种腐蚀现象。
当混凝土表面被碳酸气体侵蚀时,混凝土中的碳酸盐会与钢筋表面的氧化物反应生成可溶于水的碳酸亚铁,导致钢筋锈蚀。
2.氯离子侵入:氯离子是混凝土中最常见的腐蚀源之一、氯离子可通过氯化盐、海水等方式进入混凝土中,进而使混凝土中钢筋发生腐蚀。
氯化物进入混凝土后会与钢筋表面的氧化物反应生成可溶于水的氯化亚铁,引起钢筋锈蚀。
3.氧解作用:钢筋表面产生氧化膜可以保护钢筋不受腐蚀,但若混凝土内部存在大量的氧分子,容易进一步氧化钢筋表面,导致钢筋锈蚀。
因此,混凝土中氧分子含量的增加会加速钢筋的氧化过程。
1.强度减弱:钢筋锈蚀后物理性能下降,削弱了钢筋的受力能力,影响混凝土结构的整体强度和承载能力。
2.腐蚀膨胀:钢筋锈蚀会引起钢筋表面体积增大,产生较大的腐蚀膨胀力,导致混凝土产生开裂或脱落。
3.破坏结构:钢筋的锈蚀不仅可能损坏混凝土本身,还会导致结构失去稳定性,增加结构崩溃的风险。
4.影响美观:钢筋锈蚀会使混凝土表面出现锈迹,影响建筑物的美观度。
针对混凝土中钢筋锈蚀的危害,我们可以采取以下预防措施:1.控制混凝土材料质量:选择合适的水泥、骨料等混凝土材料,确保混凝土的密实性和均匀性,减少表面孔隙的形成,降低钢筋暴露和腐蚀的风险。
2.正确设计:在混凝土结构设计时,根据环境条件和使用要求,合理选择混凝土覆盖层的厚度,保证钢筋能够得到有效的保护。
3.防水措施:采取有效的防水措施,减少混凝土暴露在潮湿环境中的时间和程度,降低钢筋腐蚀的可能性。
4.防止氯离子侵入:加强混凝土中氯离子的阻隔,可以采用减少混凝土中的氯离子含量、加入阻隔氯化物的抗腐蚀剂或使用防腐蚀涂层等方法。
5.确保质量检测:对于混凝土的施工过程,进行质量检测,及时了解混凝土结构中的钢筋腐蚀情况,以便于及时采取措施修复和预防。
总之,混凝土中钢筋锈蚀会对建筑物的使用寿命和结构稳定性造成重大影响,因此,在混凝土的设计、施工和维护过程中应采取有效的预防措施,以延长建筑物的使用寿命和保障建筑结构的安全性。
混凝土的结构腐蚀与防护设计

混凝土的结构腐蚀与防护设计混凝土是一种广泛应用于建筑和基础设施工程中的材料,具有强度高、耐久性好的特点。
然而,由于外界环境的影响以及使用过程中的各种因素,混凝土结构也存在着腐蚀的风险。
本文将探讨混凝土的结构腐蚀原因、常见的腐蚀类型以及有效的防护设计方法。
一、混凝土结构腐蚀的原因混凝土结构腐蚀主要是由于外界环境的侵蚀和内部因素的作用导致的。
以下是一些常见的原因:1. 酸碱侵蚀:大气中的酸雨以及土壤中的酸碱性物质会腐蚀混凝土结构表面,导致其失去保护层。
2. 氯离子渗透:在海洋工程或者盐湖地区,氯离子容易通过混凝土渗透至钢筋表面,形成钢筋锈蚀,从而引起混凝土的结构腐蚀。
3. 冻融循环:在寒冷地区,湿度高的条件下,冻融循环会造成混凝土内的水膨胀和收缩,最终导致混凝土结构的开裂和破坏。
4. 碱骑建筑废弃物:有些建筑废弃物中含有碱性物质,如果未经妥善处理就接触到混凝土结构中,会引起混凝土碱骑反应,导致结构损坏。
5. 金属腐蚀:如钢筋内的锈蚀会产生体积膨胀,导致混凝土的开裂与结构损坏。
二、混凝土结构腐蚀的类型混凝土结构腐蚀可分为表面腐蚀和内部腐蚀两种类型。
1. 表面腐蚀:表面腐蚀主要是由于酸碱侵蚀或大气中的氧化物进入混凝土,破坏混凝土保护层,导致表面起砂、剥落或结构开裂。
2. 内部腐蚀:内部腐蚀主要包括钢筋锈蚀和碱骑反应。
钢筋锈蚀是由于氯离子、二氧化碳等渗透到混凝土中,导致钢筋锈蚀并引起混凝土开裂和脱落。
碱骑反应是由于碱性物质与混凝土中的硅酸盐反应产生胶凝胶,导致混凝土体积膨胀,造成结构开裂。
三、混凝土结构腐蚀的防护设计为了延长混凝土结构的使用寿命,减少腐蚀风险,需要采取一系列的防护措施。
以下是一些常见的防护设计方法:1. 表面涂层:涂抹腐蚀特性良好的涂料或防水剂可在一定程度上防止酸碱侵蚀和氧化物的渗透,保护混凝土表面。
2. 添加防腐剂:在混凝土配制过程中添加适量的防腐剂,可减少腐蚀因素对混凝土的侵蚀作用。
3. 加固钢筋:采用不锈钢或镀锌钢筋替代普通钢筋,可有效防止锈蚀引起的混凝土破坏。
混凝土中钢筋腐蚀的原因及防治

混凝土中钢筋腐蚀的原因及防治混凝土是一种广泛应用于建筑、道路、桥梁等领域的材料。
作为一种复合材料,混凝土由水泥、骨料、沙子和水混合而成。
它的强度和耐久性取决于水泥的质量和其与骨料的粘附性。
钢筋是混凝土的主要加强材料,能够增加混凝土的承载力和抗拉强度。
但是,由于钢筋暴露在混凝土表面,容易受到氧气、水和二氧化碳等环境因素的影响,导致钢筋腐蚀。
钢筋腐蚀不仅会降低混凝土的承载力和抗拉强度,而且会破坏混凝土的整体结构,从而影响建筑物的安全性和使用寿命。
因此,钢筋腐蚀的防治问题十分重要。
一、钢筋腐蚀的原因1. 钢筋表面暴露混凝土结构中的钢筋暴露在混凝土表面,容易受到环境因素的影响,如氧气、水和二氧化碳等,导致钢筋腐蚀。
2. 碱性环境混凝土结构中的水泥是一种碱性物质,其pH值约为12-13。
当钢筋暴露在混凝土中时,其表面会形成一层氧化皮,保护钢筋不受腐蚀。
但是,当混凝土结构中的水泥碱性环境失去平衡时,如钙离子、氯离子等离子体进入混凝土结构中,就会导致钢筋表面的氧化皮破坏,加速钢筋腐蚀的进程。
3. 氯离子侵入混凝土结构中的钢筋暴露在环境中,容易受到氯离子的侵入,特别是在海岸地区和受潮地区。
氯离子进入钢筋表面后,会与钢筋表面的氧化皮和水发生化学反应,破坏钢筋的表面保护层,加速钢筋腐蚀的进程。
4. 氧化物影响混凝土结构中的钢筋暴露在环境中,容易受到氧气的影响。
氧气会使钢筋表面的氧化皮脱落,破坏钢筋的表面保护层,加速钢筋腐蚀的进程。
二、钢筋腐蚀的防治1. 加强混凝土表面保护混凝土结构中的钢筋暴露在混凝土表面,容易受到环境因素的影响,形成腐蚀。
因此,加强混凝土表面的保护措施是防治钢筋腐蚀的关键。
常见的保护措施包括:(1)使用高质量的水泥和骨料,增加混凝土的强度和耐久性。
(2)使用碱性防腐剂,增加混凝土表面的pH值,形成钢筋表面的保护层。
(3)混凝土表面喷涂防腐涂料,形成一层保护层,防止钢筋受到环境因素的影响。
(4)混凝土中加入适量的氯化钙等添加剂,增加混凝土的抗氯离子渗透性,减少氯离子的侵入。
混凝土中钢筋腐蚀的原理及防护

混凝土中钢筋腐蚀的原理及防护一、混凝土中钢筋腐蚀的原理1.1 钢筋腐蚀的原因混凝土中钢筋腐蚀是由外部环境因素和内部混凝土性质共同作用引起的。
外部环境因素主要包括大气中的氧气和二氧化碳、氯离子、硫酸盐离子、硝酸盐离子等。
内部混凝土性质主要包括混凝土的碱度、渗透性、孔隙度等。
1.2 钢筋腐蚀的过程当混凝土中的钢筋暴露在外部环境中时,钢筋表面会形成一层铁氧化物,这层氧化物在大气中含氧量高的情况下会持续增厚,同时混凝土内的氯离子、硫酸盐离子、硝酸盐离子等也会通过渗透进入钢筋表面,破坏钢筋表面的氧化物层,导致钢筋表面发生腐蚀反应。
1.3 钢筋腐蚀的影响钢筋腐蚀会导致混凝土结构的强度、刚度、耐久性下降,进而引起混凝土结构的开裂、脱落、变形等问题,严重时甚至会引起结构的倒塌。
二、防护措施2.1 钢筋表面防腐通过对钢筋表面进行防腐处理可以抑制钢筋腐蚀的发生。
常用的钢筋表面防腐方法有镀锌、喷涂防腐漆、涂刷防腐剂等。
其中,镀锌是一种常用的防腐方法,它可以在钢筋表面形成一层锌层,避免钢筋直接与外部环境接触。
2.2 混凝土结构防护混凝土结构的防护措施包括提高混凝土的抗渗透性、提高混凝土的碱度、减少混凝土内的孔隙度等。
其中,提高混凝土的抗渗透性可以减少外部环境因素对钢筋的侵蚀,提高混凝土的碱度可以使钢筋表面形成一层碱性保护层,减少混凝土内的孔隙度可以减少外部环境因素的侵蚀。
2.3 混凝土结构维修当混凝土结构出现腐蚀问题时,需要对其进行维修。
常用的维修方法有钢板加固、钢筋加固、喷涂混凝土等。
其中,钢板加固和钢筋加固可以增加混凝土结构的承载能力,喷涂混凝土可以修补混凝土结构表面的损坏。
三、结论综上所述,混凝土中钢筋腐蚀是由外部环境因素和内部混凝土性质共同作用引起的,钢筋腐蚀会导致混凝土结构的强度、刚度、耐久性下降,进而引起混凝土结构的开裂、脱落、变形等问题。
为了保证混凝土结构的稳定性和安全性,需要采取钢筋表面防腐、混凝土结构防护、混凝土结构维修等措施。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
郑州大学土木工程学院硕士研究生课程论文课程名称《工程结构耐久性》学时36学分 2姓名主讲教师指导教师培养类型:□科学学位☑专业学位□工程硕士□高校教师年级12级学号供职单位无联系电话Email提交日期2013.5.29混凝土结构钢筋腐蚀的影响因素及防护姓名:郑萌立学号:201222212462 郑州大学土木工程学院摘要:钢筋混凝土结构从出现到21世纪,经历了比较久的发展时期,并且依旧占据着建筑结构中最重要的一部分。
然而,近年来的工程实际情况表明,在役钢筋混凝土结构因为耐久性问题而引起破坏的现象越来越严重,因此,有必要对钢筋锈蚀对混凝土结构耐久性的影响做研究。
尤其是混凝土中影响钢筋锈蚀的因素和针对这些因素所采取的措施。
关键词:混凝土结构;耐久性;钢筋锈蚀;预防措施Factors Influencing The Corrosion of Steel In Concrete And Its ProtectionName:ZHENG Meng-li ID:201222212462 School of Civil Engineering of Zhengzhou UniversityAbstract:From being create to twenty-first century,Reinforced concrete structure experienced a period of development for a long time, and still plays the most important part of the building structure. However, the actual situation of the project shows that in recent years, the damage caused by durability problems in existing reinforced concrete structure is more and more serious, which is leaded by the orrosion of steel bar give a large part. Therefore, it is necessary to do research on the influence of reinforcement corrosion on the durability of concrete structures. Especially the influence factors of steel corrosion in concrete and the measures taken in response to these factors.Keywords:reinforced concrete structure;durability;corrosion;prevention measures0 引言最开始人们认为,钢筋混凝土结构很好地结合了钢筋与混凝土材料的优点,可模性好、可塑性强、整体性好、耐久性好、后期维护费用较低以及易于就地取材等诸多优点使得当今世界上的建筑大多选择采用钢筋混凝土结构。
但随着时间的推后和累积,钢筋混凝土结构远远没有人们当初想象的那样耐久,其良好性能会在使用期内由于诸多因素的影响而逐渐退化从而引起世界上对耐久性问题的关注。
特别是由于混凝土中钢筋的腐蚀引起的混凝土可靠性的降低[1]。
随着腐蚀的加剧将导致混凝土保护层开裂、钢筋与混凝土间粘结力破坏、钢筋受力截面减小、结构强度降低等一系列不良后果。
据统计全世界每年因混凝土结构耐久性问题造成的社会经济损失十分巨大。
美国目前整个混凝土工程的价值约为60000亿美元,每年用于维修或重建的费用竟高达3000亿美元;英国建筑工业年成交额为500亿英磅,而因腐蚀损坏,钢筋混凝土结构的年维修费用高达515亿英磅,已成为英国的一个沉重的财政负担。
我国的混凝土结构耐久性问题同样不容忽视,20世纪70年代末,我国开始兴建大量立交桥,20世纪90年代时发现混凝土保护层剥落,钢筋锈蚀等严重损坏现象,急需进行维修、加固,甚至重建,造成社会财富的巨大浪费[2]。
我国由于社会、经济以及历史原因,对于混凝土耐久性的关注和研究起步较晚,在建设领域还贯穿着“重建设,轻耐久”的思想。
在美国,“立足前期措施、着眼长远效益”,美国经过正反两个方面的经验教训所得出的可贵结论已成为美国建设领域的重要思想。
美国正在强行实施基建工程管理中的“全寿命经济分析法”(LCCA) ,其基本思想是,在设计施工阶段,不论是事先采取防护措施还是以后“坏了再修”,都要做出经济预算和比较,承建者要对工程的“全寿命”负责到底,这样可避免“短期行为”给后人带来的麻烦与巨大经济损失。
推行“全寿命经济分析法”和倡导工程前期(设计、施工阶段)采取防钢筋腐蚀的措施,已经不是单纯的技术问题,其重大意义和长远经济效益是不可低估的[3]。
1 研究钢筋混凝土耐久性的意义钢筋混凝土结构的耐久性,是指钢筋混凝土结构在自然环境、使用环境及材料内部因素的共同作用下,在设计要求的目标使用期内,不需要花费大量资金加固处理而能够保持其安全、使用功能和外观要求的能力。
图1.1可直观的表述钢筋混凝土耐久性需要研究的内容[4]。
通过以上数据可知,每年由于混凝土结构中钢筋腐蚀造成的国民经济损失巨大,造成资源的极大浪费。
若能采取主动控制,事前控制大幅度提高钢筋混凝土的耐久性,能从根本上最大限度地减少经济损失,充分的合理利用好现有资源,对于保护环境和造福人类具有非常重大的现实意义。
2 混凝土中的钢筋锈蚀2.1 混凝土中钢筋锈蚀的机理混凝土结构中的钢筋锈蚀受许多因素影响,其中内外部因素有钢筋位置、钢筋直径、水泥品种、混凝土的密实度、保护层厚度及完好性、混凝土的液相组成(pH值及Cl-含量)等;外部因素有温度、湿度、周围介质的腐蚀性、周期性的冷热交替作用的。
其腐蚀的机理是相同的, 产生腐蚀的原因主要有电化学腐蚀和应力腐蚀两类。
2.1.1电化学腐蚀钢筋的电化学腐蚀通常有两种:一种是碳化作用;另一种是氯离子的侵蚀。
碳化作用是在有水或潮湿的环境中, 并有氧气存在的条件下才能发生。
其主要反应式如下:Fe → Fe2+ + 2e-O2 + 2H2O + 4e- → 4(OH)-2Fe + O2 + 2H2O → 2Fe(OH)24Fe(OH)2 + O2 + 2H2O → 4Fe(OH)3氯离子的侵蚀是在氯离子浓度达到一定值时,且处于潮湿、供氧充分的环境下发生。
其主要反应式如下:Fe →Fe2+ + 2e-Fe2+ + 2Cl- + 4H2O → FeCl2·4H2OFeCl2·4H2O → Fe(OH)2 + 2Cl- + 2H+ + 2H2O4Fe(OH)2 + O2 + 2H2O → 4Fe(OH)3Fe(OH)3即是铁锈, 铁锈的生成使其体积膨胀3倍, 有效钢筋面积急剧减小。
2.1.2应力腐蚀应力腐蚀是在一定的应力及侵蚀环境下引起钢材由韧变脆的一种腐蚀。
钢筋中应力的存在使钢筋表面产生微裂缝,腐蚀沿钢筋的裂缝逐渐深入,应力促进裂缝进一步发展。
在应力状态下的腐蚀试验表明,钢筋的强度越高、应力越大钢筋受腐蚀的速度越快,钢材的使用寿命越短。
2.2 各因素对混凝土中钢筋腐蚀的作用2.2.1 pH值以往研究证明[5],钢筋腐蚀速度与混凝土液相pH值密切关系。
当pH值大于10时,钢筋腐蚀速度很小;而当pH值小于4时,钢筋腐蚀速度急剧增加。
如图2.1所示。
图2.1 pH值对钢筋锈蚀速度的影响2.2.2 混凝土碳化钢筋混凝土施工完毕时,钢筋处在碱性环境中,在钢筋表面形成一层钝化膜,可以防止钢筋锈蚀。
但随着时间的推移,随着CO2等酸性气体的侵入,混凝土逐渐被碳化,导致钢筋周围混凝土碱性降低而趋于中性,钢筋表面的钝化膜就会受到破坏而失去对钢筋的保护作用。
钢筋直接与其他物质接触,很容易发生锈蚀[6]。
钢筋的锈蚀又会导致混凝土保护层开裂,结构耐久性降低等不良后果。
众所周知,温室效应已经严重影响了大气的结构,二氧化碳浓度升高,更加剧了混凝土的碳化。
2.2.2.1 混凝土的碳化机理混凝土碳化是一个化学腐蚀的过程,大气中的二氧化碳渗入到混凝土内部与水泥里水化产物发生一系列反应,最后生成碳酸盐和一些其他物质。
这是一个非常复杂的多相物理化学反应过程。
我们知道,在混凝土的硬化过程中,约占水泥用量的三分之一将生成氢氧化钙,也就是说,水化反应基本完成后,混凝土内部孔隙水溶液为饱和的氢氧化钙强碱性溶液,pH 值为12~13 左右。
然而,大气中的二氧化碳却每时每刻都在向混凝土的内部渗透,与混凝土中的氢氧化钙发生作用,继续生成碳酸盐或者其他一些物质。
虽然混凝土碳化之后由于生成了不溶或者难溶的碳酸盐,增加了混凝土的体积,也提高了混凝土的密实度,阻止氧气和二氧化碳继续渗入,貌似对混凝土的耐久性起到了良好的作用。
但是,混凝土碳化之后,其pH值大幅下降,却导致了混凝土中的钢筋脱钝。
混凝土的碳化的主要反应化学式如下:CO2 + H2O →H2CO3Ca(OH)2 + H2CO3→CaCO3 + 2H2O3CaO·2SiO2·3H2O + 3H2CO3→3CaCO3 + 2SiO2 + 6H2O2CaO·SiO2·4H2O + 2H2CO3→2CaCO3 + SiO2 + 6H2O2.2.2.2 混凝土碳化的影响因素混凝土碳化的影响因素主要有:水灰比;水泥品种与用量;骨料的品种及粒径;混凝土掺合料;外加剂;CO2浓度;相对湿度;温度;混凝土抗压强度;施工因素等多方面的影响。
其中,水灰比是影响混凝土碳化速率很大的一个因素,水灰比越大,孔隙率越高,CO2的扩散越容易,混凝土碳化速度越快。
山东建科院在济南、青岛、佛山进行了室外长期暴露试验及快速试验,得到碳化速度与水灰比的关系,并根据济南地区暴露试验给出了碳化速度系数与水灰比的表达式[7]:k=12.1w/c-3.2,式中, w /c—混凝土的水灰比。
增加水泥用量一方面可以改变混凝土的和易性,提高混凝土的密实性;另一方面还可以增加混凝土的碱性储备,使其抗碳化性能大增强,碳化速度系数随水泥用量的增大而减小。
水泥品种不同意味着其中所包含的熟料的化学成分和矿物成分以及水泥混合材料的品种和掺量有别,直接影响着水泥的活性和混凝土的碱度,对碳化速度系数有重要影响。
集料品种和级配不同,其内部孔隙结构差别很大,直接影响着混凝土的密实性。
混凝土施工对混凝土的质量有很大的影响,混凝土浇筑、振捣和养护不仅影响混凝土的强度,而且直接影响混凝土的密实度。