基于51单片机的看门狗程序
“看门狗”技术在单片机应用系统中的应用

“看门狗”技术在单片机应用系统中的应用[摘要] 在单片机应用系统中,系统往往受到外界干扰而影响工作可靠性。
“看门狗”是提高系统可靠性的非常重要的技术,因为它既可以由硬件实现,又可以由软件实现。
本文主要从硬件看门狗和软件看门狗两个方面阐明其工作原理并给出应用实例。
[关键词] 单片机应用系统;硬件看门狗;软件看门狗[Abstract] This paper introduces MCU application system can acquire noises from environment an d influnce it’s reliability during the practical work, the methods to involve noises can from hardware and software 。
Watch-dog is a importent technology in system reliability,because it can be achived from not only hadware but also software.It priefly explains the watch-dog’s principle and application through hardware watch-dog and software watch-dog and gives some examples in practical application.[Keywords] MCU application system hardware watch-dog software watch-dog1.概述单片机应用系统是由单片机系统配以相应的软件组成的用于完成某种控制功能的系统。
在实际工作中,单片机应用系统会受到外界干扰而影响其可靠性,减小干扰提高可靠性在单片机应用系统中十分重要,相应的措施有硬件措施和软件措施,因为看门狗既可以通过硬件来实现也可以通过软件来实现,所以它是解决系统抗干扰的非常重要的技术。
C51单片机看门狗电路及程序设计方案

C51单片机看门狗电路及程序设计案院系:信息工程学院年级:2010级电子一班禹豪电子一班训虎电子二班邓启新一、引言在由单片机构成的微型计算机系统中,程序的正常运行常常会因为来自外界的电磁场干扰等原因而被打断,从而造成程序的跑飞,而陷入死循环。
由此导致单片机控制的系统无法继续工作,造成整个系统的陷入停滞状态,发生不可预料的后果,所以出于对单片机运行状态进行实时监测的考虑,便产生了一种专门用于监测单片机程序运行状态的芯片或程序,俗称"看门狗"(watchdog)(1)看门狗电路基本原理看门狗电路的应用,使单片机可以在无人状态下实现连续工作,其工作原理是:看门狗芯片和单片机的一个I/O引脚相连**,该I/O引脚通过程序控制它定时地往看门狗的这个引脚上送入高电平(或低电平),这一程序语句是分散地放在单片机其他控制语句中间的,一旦单片机由于干扰造成程序跑飞后而陷入某一程序段进入死循环状态时,写看门狗引脚的程序便不能被执行,这个时候,看门狗电路就会由于得不到单片机送来的信号,便在它和单片机复位引脚相连的引脚上送出一个复位信号,使单片机发生复位,即程序从程序存储器的起始位置开始执行,这样便实现了单片机的自动复位。
*此处设计原理实际上为下文中硬件看门狗设计思路。
(2)看门狗电路一般设计式“看门狗”电路一般分为硬件看门狗与软件看门狗两种设计式。
硬件看门狗是利用了一个定时器,来监控主程序的运行,也就是说在主程序的运行过程中,我们要在定时时间到之前对定时器进行复位。
如果出现死循环,或者说PC指针不能回来,那么定时时间到后就会使单片机复位。
常用的WDT芯片如MAX813,5045,IMP 813等,价格4~10元不等.软件看门狗技术的原理和硬件看门狗类似,只不过是用软件的法实现(即利用单片机部定时器资源,通过编程模拟硬件看门狗工作式),以51系列为例:因在51单片机中有两个定时器,在利用部定时器资源来对主程序的运行进行监控时。
基于51单片机和CC1101的无线温度监控系统设计

基于51单片机和CC1101无线温度监控系统设计前言目前,科学技术的发展日新月异,单片机等大规模集成电路的进步与发展,温度监控技术的应用越来越广泛。
在传统微机化的温度监控系统中,均是以有线方式来实现温度监控。
传统的温度监控系统,其突出的问题是由于有线通信,线缆传输连线麻烦,需要特制接口,颇为不便,且实用性不强,成本高,造成系统的普及性降低,同时也带来了制作繁琐,外围电路复杂的缺点。
近年来,随着各种单片机及无线收发芯片的出现与推广,使得基于CC1101的无线温度监控系统的实现成为可能。
温度是工业、农业生产中常见的和最基本的参数之一,在生产过程中常需对温度进行检测和监控,采用微型机进行温度检测、数字显示、信息存储及实时控制,对于提高生产效率和产品质量、节约能源等都有重要的作用。
伴随工业科技、农业科技的发展,温度测量需求越来越多,也越来越重要。
但是在一些特定环境温度监测环境范围大,测点距离远,布线很不方便。
这时就要采用无线方式对温度数据进行采集。
利用无线技术实现数据传输比使用传统的有线电缆有不可比拟的优点,如可移动性、方便灵活性等多方面都更能满足人们的实际需要。
实现无线数据传输的方法多种多样,使用高频无线电技术、激光技术、红外技术等等均能满足无线传输要求。
本设计是以宏晶科技推出的STC89C52RC单片机作为控制核心,提出以DS18B20的单线分布式温度采集与控制系统,通过CC1101无线收发模块收发信息。
监控点将接收到主控点的信息后,经过一些处理,然后相应的监控点将采集并发送数据给主控点。
主控点通过串口将收到的温度信息回馈到上位机(PC机),从而远程实现对整个系统的检测与控制。
一.总体方案设计温度监控系统有着共同的特点:测量点多、环境复杂、布线分散、现场离监控室远等。
若采用一般温度传感器采集温度信号,则需要设计信号调理电路、A/D 转换及相应的接口电路,才能把传感器输出的模拟信号转换成数字信号送到计算机去处理。
单片机看门狗的描述

单片机看门狗的描述下面是关于STC89C5XX-51 单片机看门狗的描述WDT_CONTR 位置0xE1; [-] [-] [EN_WDT] [CLR_WDT] [IDLE_WDT] [PS2] [PS1] [PS0]EN_WDT: 看门狗允许位,置1 启动看门狗,看门狗不能自动启动,需要设置该位后启动,一旦启动不能关闭(只能系统重新上电和看门狗复位可以关闭)CLR_WDT: 看门狗计数器清零位,置1 清零看门狗计数器,当计数器开始重新计数,硬件清零该位。
IDLE_WDT: 单片机IDLE 模式看门狗允许位,当IDLE_WDT=1 时,单片机在IDLE 模式(空闲模式)依然启用看门狗PS2~PS0: 看门狗定时器预分频器,下表中Prescale 表示预分频数PS2 PS1 PS0 Prescale0 0 0 20 0 1 40 1 0 80 1 1 161 0 0 321 0 1 641 1 0 1281 1 1256看门狗溢出时间:(N*Prescale*32768)/晶振频率,其中N 表示指令周期数N=12 表示12 时钟周期模式;N=6 表示6 时钟周期模式。
如N=12,晶振频率为12MHz,PS2~PS0 为100 时,溢出时间=(12*32*32768)/12=1048576us,差不多是1s。
例如:给WDT_CONTR 写入0 乘以34,即是激活看门狗,同时预分频数设为32。
喂狗过程也是一样的。
顺便说一下ATMEL-51 单片机的看门狗下面是关于ATMEL-51 单片机看门狗的描述【看门狗计数器】(watchdog timer)是一个14 位的计数器,它以机器周期(晶振频率/12)增加,当计数值计满(16383/0 乘以3FFF)了就使单片机软复位;当启动了【看门狗计数器】之后,我们需要在它计数没有满之前复位计数器强制。
单片机看门狗(Watchdog)的工作原理及其应用

单片机看门狗(Watchdog)的工作原理及其应用2010年05月16日星期日 23:00在由单片机构成的微型计算机系统中,由于单片机的工作常常会受到来自外界电磁场的干扰,造成程序的跑飞,而陷入死循环。
程序的正常运行被打断,由单片机控制的系统无法继续工作,会造成整个系统的陷入停滞状态,发生不可预料的后果。
所以,出于对单片机运行状态进行实时监测的考虑,便产生了一种专门用于监测单片机程序运行状态的芯片,俗称"看门狗"(watchdog)。
看门狗电路的应用,使单片机可以在无人状态下实现连续工作,其工作原理是:看门狗芯片和单片机的一个I/O引脚相连,该I/O引脚通过程序控制它定时地往看门狗的这个引脚上送入高电平(或低电平),这一程序语句是分散地放在单片机其他控制语句中间的,一旦单片机由于干扰造成程序跑飞后而陷入某一程序段进入死循环状态时,写看门狗引脚的程序便不能被执行。
这个时候,看门狗电路就会由于得不到单片机送来的信号。
便在它和单片机复位引脚相连的引脚上送出一个复位信号。
使单片机发生复位,即程序从程序存储器的起始位置开始执行,这样便实现了单片机的自动复位。
看门狗,又叫 watchdog timer,是一个定时器电路。
一般有一个输入,叫喂狗(kicking the dog or service the dog),一个输出到MCU的RST端,MCU 正常工作的时候,每隔一端时间输出一个信号到喂狗端,给 WDT 清零。
如果超过规定的时间不喂狗,(一般在程序跑飞时),WDT 定时超过,就会给出一个复位信号到MCU,是MCU复位,防止MCU死机。
看门狗的作用就是防止程序发生死循环,或者说程序跑飞。
工作原理:在系统运行以后也就启动了看门狗的计数器,看门狗就开始自动计数,如果到了一定的时间还不去清看门狗,那么看门狗计数器就会溢出从而引起看门狗中断,造成系统复位。
所以,在使用有看门狗的芯片时要注意清看门狗。
单片机看门狗程序

门狗”WDT的功能;此单片机看门狗由51hei独家提供LISTP=18F458INCLUDE”
P18F458.INC”
DEYHEQU0X20DEYLEQUDEYH+1
ORG0X00GOTOMAINORG0X30
;*************初始化子程序*****************INITIALCLRFTRISD;D口
;************单片机看门狗主程序
****************************MAINNOPCALLINITIAL;系统初始化
MOVLW0X00MOVWFPORTD;D口送00H,发光二极管亮
CALLDELAYMOVLW0XFFMOVWFPORTD;D口送FFH,发光二极管灭
LOOPGOTOLOOP;死循环,等待看门狗复位END
/*主程序*/main(){initial();/*初始化,设定看门狗的相关寄存器*/PORTD=
0X00;/*D口送00H,发光二极管亮*/DELAY();/*给予一定时间的延时*/PORTD
=0XFF;/*D口送FFH,发光二极管灭*/while(1){;}/*死循环,等待看门狗溢出
复位*/}
-------------------汇编语言版本的单片机看门狗程序----------------;此程序实现”看
单片机看门狗程序
/*此程序实现单片机”看门狗”WDT的功能*/
#include”p18f458.h”
unsignedlongi;
/*系统初始化子程序*/voidinitial(){TRISD = 0X00;/*D口设为输出*/}
/*延时子程序*/voue;}
C51单片机看门狗电路及程序设计方案解读

C51单片机看门狗电路及程序设计方案院系:信息工程学院年级:2010级电子一班刘禹豪电子一班赵训虎电子二班邓启新一、引言在由单片机构成的微型计算机系统中,程序的正常运行常常会因为来自外界的电磁场干扰等原因而被打断,从而造成程序的跑飞,而陷入死循环。
由此导致单片机控制的系统无法继续工作,造成整个系统的陷入停滞状态,发生不可预料的后果,所以出于对单片机运行状态进行实时监测的考虑,便产生了一种专门用于监测单片机程序运行状态的芯片或程序,俗称"看门狗"(watchdog)(1)看门狗电路基本原理看门狗电路的应用,使单片机可以在无人状态下实现连续工作,其工作原理是:看门狗芯片和单片机的一个I/O引脚相连**,该I/O引脚通过程序控制它定时地往看门狗的这个引脚上送入高电平(或低电平),这一程序语句是分散地放在单片机其他控制语句中间的,一旦单片机由于干扰造成程序跑飞后而陷入某一程序段进入死循环状态时,写看门狗引脚的程序便不能被执行,这个时候,看门狗电路就会由于得不到单片机送来的信号,便在它和单片机复位引脚相连的引脚上送出一个复位信号,使单片机发生复位,即程序从程序存储器的起始位置开始执行,这样便实现了单片机的自动复位。
(2)看门狗电路一般设计方式“看门狗”电路一般分为硬件看门狗与软件看门狗两种设计方式。
硬件看门狗是利用了一个定时器,来监控主程序的运行,也就是说在主程序的运行过程中,我们要在定时时间到之前对定时器进行复位。
如果出现死循环,或者说PC指针不能回来,那么定时时间到后就会使单片机复位。
常用的WDT芯片如MAX813,5045,IMP 813等,价格4~10元不等.软件看门狗技术的原理和硬件看门狗类似,只不过是用软件的方法实现(即利用单片机*此处设计原理实际上为下文中硬件看门狗设计思路。
内部定时器资源,通过编程模拟硬件看门狗工作方式),以51系列为例:因在51单片机中有两个定时器,在利用内部定时器资源来对主程序的运行进行监控时。
单片机应用系统中的_看门狗_电路及低成本实现

, 看 门 狗 电路 如 图 1 所 示. 图 中
! 63!
2008 年
商丘职业技术学院学报
74LS123 触发器的输入端接高电平 , 负脉冲触发 . 第一个触发器工作状态由单片机 P1 口的 P1 . 7 控制, 系统 开始工作时 , P1 . 7 向 2A 端输入一个负脉冲, 使 2Q 端产生一个正跳变, 但并不能触发第二个单稳态触发器 动作, 1Q 端仍为低电平. P1 . 7负触发脉冲的时间间隔取决于系统控制主程序运行周期 . 在单片机应用系统 应用程序设计中 , 软件流程要设计成循环结 构. 发出喂狗信号的指令包 含在主程序中, 使用 CLR P1 . 7和 SETB P1. 7 两条指令. 如果主程序运行周期小于单稳态触发器的暂态时间 , 则当单片机正常运行时 , 将不断 重新触发第二个单稳态触发器, 其输出端 2Q 端始终保持高电平, 1A 端保持高电平 , 第一个单稳态触发器就 不会产生动作. 如果单片机受到干扰 , 产生了死循环, 那么第二单稳态触发器的暂态时间内 , 就不会出现送 给 2A 端的负脉冲 , 第二个单稳态触发器脱离暂态 , 2Q 端回到低电平触发第一个单稳态触发器翻转到暂态 , 1Q 端产生脉冲信号, 使单片机可靠复位, 系统运行的可靠性大大提高.
[ 2 ] 374- 375
.
图 2 由计数器构成的 看门狗 电路
2 . 3 由门电路构成 看门狗 电路 在电路的设计中往往会有多余的门电路, 这时可以用作 看门狗 电路 , 既降低了成本, 又提高了电路的 可靠性 . 电路形式可以有很多种 , 特别在 89C1051 / 2051 的应用电路中, 利用其 P1 . 0 /P1. 1 口没有上拉电阻 的特点 , 可以用两个 CMOS 门电路 ( 本例中是六反相器 CD4069 中的两个空余反相器 ) 设计一个极简单的低 成本 看门狗 电路, 如图 3 . 由于需要的定时时间比较长 , 因此只能使用输入阻抗高的 CMOS 门电路, 当然也 ! 64!
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
{
while((ReadReg()&0x01)==1); //the device is busy
CS=0;
WriteByte(WREN); //when write the wren , the cs must have a high level
CS=1;
CS=0;
if(bRegion==0)
{ WriteByte(WRITE0);} //write the page addr
else
{WriteByte(WRITE1);}
WriteByte(cAddress);
WriteByte(cData);
SCK=0; //
CS=1;
}
uchar ReadEpm(uchar cAddress,bit bRegion)
{
uchar ucLoop;
for(ucLoop=0;ucLoop<8;ucLoop++)
{
if((ucData&0x80)==0) //the MSB send first
{SI=0;}
else
{SI=1;}
Hale Waihona Puke SCK=0;SCK=1;ucData<<=1;
}
}
uchar ReadReg() //read register
/*读入一个字节,cAddress为读入地址,bRegion为页*/
{
uchar cData;
while((ReadReg()&0x01)==1);//the device is busy
CS=0;
if(bRegion==0)
{WriteByte(READ0); }
else
{WriteByte(READ1);}
return 0;
CS=0;
WriteByte(WREN);//when write the WREN, the cs must have a high level
CS=1;
CS=0;
WriteByte(WRSR);
WriteByte(ucData);
CS=1;
return 1;
}
void WriteEpm(uchar cData,uchar cAddress,bit bRegion)
#define READ0 0x03 //
#define READ1 0x0b //
#define WRITE0 0x02 //
#define WRITE1 0x0a //
#define uchar unsigned char
uchar ReadByte() //read a byte from device
基于51单片机的看门狗程序
#include <reg51.h>
sbit CS= P2^7;
sbit SO= P2^6;
sbit SCK= P2^5;
sbit SI= P2^4;
#define WREN 0x06 //
#define WRDI 0x04 //
#define RDSR 0x05 //
#define WRSR 0x01 //
{
bit bData;
uchar ucLoop;
uchar ucData;
for(ucLoop=0;ucLoop<8;ucLoop++)
{
SCK=1;
SCK=0;
bData=SO;
ucData<<=1;
if(bData)
{ ucData|=0x01; }
}
return ucData;
}
void WriteByte(uchar ucData)//write a byte to device
WriteByte(cAddress);
cData=ReadByte();
CS=1;
return cData;
}
main()
{
WriteReg(0x00);//set the watchdog time as 1.4s
CS=1;
CS=0; //reset the watchdog
}
{
uchar ucData;
CS=0;
WriteByte(RDSR);
ucData=ReadByte();
CS=1;
return ucData;
}
uchar WriteReg(uchar ucData) //write register
{
uchar ucTemp;
ucTemp=ReadReg();
if((ucTemp&0x01)==1) //the device is busy