简述激光专业技术的发展史与应用前沿
激光技术简介及发展历程介绍

激光技术简介及发展历程介绍世界上第一台激光器诞生于1960年,我国于1961年研制出第一台激光器,40多年来,激光技术与应用发展迅猛,已与多个学科相结合形成多个应用技术领域,比如光电技术,激光医疗与光子生物学,激光加工技术,激光检测与计量技术,激光全息技术,激光光谱分析技术,非线性光学,超快激光学,激光化学,量子光学,激光雷达,激光制导,激光分离同位素,激光可控核聚变,激光武器等等。
这些交叉技术与新的学科的出现,大大地推动了传统产业和新兴产业的发展。
一、激光技术应用简介激光加工技术是利用激光束与物质相互作用的特性对材料(包括金属与非金属)进行切割、焊接、表面处理、打孔、微加工以及做为光源,识别物体等的一门技术,传统应用最大的领域为激光加工技术。
激光技术是涉及到光、机、电、材料及检测等多门学科的一门综合技术,传统上看,它的研究范围一般可分为:1.冠钧激光加工系统。
包括激光器、导光系统、加工机床、控制系统及检测系统。
2.冠钧激光加工工艺。
包括切割、焊接、表面处理、打孔、打标、划线、微调等各种加工工艺。
激光焊接:汽车车身厚薄板、汽车零件、锂电池、心脏起搏器、密封继电器等密封器件以及各种不允许焊接污染和变形的器件。
目前使用的激光器有YAG激光器,CO2激光器和半导体泵浦激光器。
激光切割:汽车行业、计算机、电气机壳、木刀模业、各种金属零件和特殊材料的切割、圆形锯片、压克力、弹簧垫片、2mm以下的电子机件用铜板、一些金属网板、钢管、镀锡铁板、镀亚铅钢板、磷青铜、电木板、薄铝合金、石英玻璃、硅橡胶、1mm以下氧化铝陶瓷片、航天工业使用的钛合金等等。
使用激光器有YAG激光器和CO2激光器。
激光打标:在各种材料和几乎所有行业均得到广泛应用,目前使用的激光器有YAG激光器、CO2激光器和半导体泵浦激光器。
激光打孔:激光打孔主要应用在航空航天、汽车制造、电子仪表、化工等行业。
激光打孔的迅速发展,主要体现在打孔用YAG激光器的平均输出功率已由5年前的400w提高到了800w至1000w。
激光技术的发展和应用简介

激光技术的发展和应用简介学院机电工程学院专业班级测控三班姓名学号摘要:激光是20世纪以来,继原子能、计算机、半导体之后,人类的又一重大发明,被称为“最快的刀”、“最准的尺”、“最亮的光”和“奇异的激光”。
它的亮度约为太阳光的100亿倍。
本文简要的介绍了一下激光的起源和激光在中国的发展史,并在此基础上从工业、医疗、信息等几个主要领域简单介绍了激光技术的重要应用及其发展前景。
关键词:激光,发展,激光应用,激光技术一.激光的起源激光的理论基础起源于大物理学家‘爱因斯坦’,1917年爱因斯坦提出了一套全新的技术理论‘受激辐射’。
这一理论是说在组成物质的原子中,有不同数量的粒子(电子)分布在不同的能级上,在高能级上的粒子受到某种光子的激发,会从高能级跳到(跃迁)到低能级上,这时将会辐射出与激发它的光相同性质的光,而且在某种状态下,能出现一个弱光激发出一个强光的现象。
这就叫做“受激辐射的光放大”,简称激光。
1958年,美国科学家肖洛和汤斯发现了一种神奇的现象:当他们将钠光灯泡所发射的光照在一种稀土晶体上时,晶体的分子会发出鲜艳的、始终会聚在一起的强光。
根据这一现象,他们提出了"激光原理",即物质在受到与其分子固有振荡频率相同的能量激励时,都会产生这种不发散的强光--激光。
他们为此发表了重要论文。
肖洛和汤斯的研究成果发表之后,各国科学家纷纷提出各种实验方案,但都未获成功。
1960年5月15日,美国加利福尼亚州休斯实验室的科学家梅曼宣布获得了波长为微米的激光,这是人类有史以来获得的第一束激光,梅曼因而也成为世界上第一个将激光引入实用领域的科学家。
1960年7月7日,梅曼研制成功世界上第一台激光器,梅曼的方案是,利用一个高强闪光灯管,来刺激在红宝石色水晶里的铬原子,从而产生一条相当集中的纤细红色光柱,当它射向某一点时,可使其达到比太阳表面还高的温度。
二.中国激光技术的发展“激光”一词是“LASER”的意译。
激光制造技术的发展和应用

激光制造技术的发展和应用激光,作为一种广泛应用于通讯、医疗、制造等领域的高能光束,其应用范围越来越广泛。
其中,激光制造技术作为激光应用领域中的重要组成部分,其发展和应用对于推动整个行业的发展和创新至关重要。
一、激光制造技术的发展历程激光制造技术的发展经历了探索、研究、应用的过程。
早在1960年代,在激光出现不久之后,使用激光来进行切割和焊接就已经被提出。
随着工业化的进程,激光制造技术在汽车、航空、航天、电子、光电、信息等领域得到了广泛应用。
在20世纪80年代,随着高功率、高精度、高效率的激光设备的应用,激光制造技术在汽车制造、飞机制造、舰船制造、电子工业、信息技术等领域得到了广泛的应用,随着人们对于激光制造技术的研究逐渐深入,越来越多的新型激光加工设备被应用。
如:激光切割机、激光打标机、激光雕刻机、激光熔敷机等。
二、激光制造技术的应用领域1、机械制造激光制造技术可以为机械加工提供非接触式的方法,因此在机械制造中得到了广泛的应用。
可应用在金属切割、钻孔、线切割等领域,通过激光的精准和高速加工,不仅可以提高加工质量,而且可以节省大量加工时间,从而降低生产成本。
2、材料加工不论是金属材料,还是非金属材料,激光制造技术都可以应用到。
例如:激光热加工可以解决许多传统加工难以实现的问题,如加工深孔、薄壁结构和硬质材料等。
同时,激光加工可以大大提高材料处理的精度和效率,这对于电子工程、热处理、表面处理等方面都具有重要意义。
3、光学领域由于激光加工的高速度、高精度和高质量,所以在光学制造领域也得到了广泛应用。
例如:激光刻蚀可以在光学材料上制作出复杂而精细的光学器件、透镜等。
这对于光学仪器、传感器、激光器等设备的改进和创新有着非常重要的意义。
三、未来展望随着科技的不断发展和创新,激光技术的应用将更广泛、更高效。
目前,相关机构正在不断研发创新的激光制造技术,以满足日益增长的市场需求。
未来的激光制造技术将会变得更加精湛,例如激光生物打印技术、高速低损伤激光切割技术、 3D激光加工技术等等,这将为我们带来更广阔的应用前景。
激光医疗技术的发展与应用研究

激光医疗技术的发展与应用研究近年来,随着医学技术的不断进步,激光医疗技术已经逐渐成为医疗领域的重要手段之一。
激光医疗技术利用激光的特殊性质和作用原理,对疾病进行治疗和干预。
本文将介绍激光医疗技术的发展历程、主要应用领域以及目前的研究进展。
激光技术最早应用于医疗领域是在20世纪60年代。
那时,人们发现激光可以用于治疗各种疾病,包括皮肤病、眼科疾病和肿瘤等。
随着技术的不断进步和发展,激光医疗技术得到了广泛应用,并取得了显著的疗效。
激光医疗技术的主要应用领域之一是皮肤病治疗。
激光可以用于去除色素沉着、治疗血管扩张、消除皱纹、去除不良纹身等,且具有创伤小、恢复快、效果显著等特点。
另外,激光也广泛应用于眼科疾病的治疗,如白内障、近视、远视等。
对于白内障患者而言,激光手术已经成为一种较为普遍的治疗选择,通过激光照射可以清除患者眼中产生的模糊物质,恢复患者的视力。
另一个重要的应用领域是肿瘤治疗。
激光可以通过选择性热损伤的原理,作用于肿瘤细胞,达到治疗效果。
例如,激光可以在外科手术中用于肿瘤切除,通过精确的控制激光的能量和照射范围,可以最大程度地保护正常组织,达到彻底切除肿瘤的目的。
此外,激光还可以用于肿瘤的热疗,通过激光的照射将肿瘤组织的温度升高到高于正常组织的温度,从而杀死肿瘤细胞。
近年来,随着生物医学工程学科的发展,激光医疗技术也得到了进一步的突破和应用。
例如,激光在神经外科手术中的应用越来越广泛。
通过激光照射可以精确切除脑肿瘤,尤其对于深部肿瘤的切除效果更佳。
此外,激光在生物组织成像中也有很大的应用前景。
激光的照射可以促使组织发出特定的信号,通过对这些信号的检测和分析,可以及时发现和诊断一些疾病,如血管异常或肿瘤。
虽然激光医疗技术在多个领域取得了显著的成果,但仍然存在一些挑战和难题需要解决。
首先,激光治疗需要高度专业的医疗团队和设备,这对医疗资源的需求较高。
其次,激光治疗的长期疗效和副作用仍然需要进一步研究和观察。
激光科学的发展与应用

激光科学的发展与应用激光科学是一门涵盖物理、光学、电子技术、计算机技术等多个领域的综合性学科。
自激光被发明以来,它对现代科技的发展和生产制造的进步都产生了深远的影响。
本文将介绍一下激光科学的发展历程、基本原理及其在医学、工业、军事等方面的应用。
发展历程首先,让我们回顾一下激光的发明过程。
1960年,美国科学家泰奇硕·汉斯为了防止核武器的制造而攻击单个原子,就想到了一种不用强电场和高能粒子,而是只用光就可以实现的办法。
他利用如今人们已经十分熟悉的激光谐振腔原理,研制出了世界上第一台激光,激光束是由镜片反射反射而成的,它的能量级别达到了之前任何单一能源都无法比拟的高度。
马上,人们开始尝试运用激光,发现激光发光的特点,光束非常准直、稳定,激光功率高,可以控制光束大小,方向和强度,因此有很多的应用。
激光技术在科技界的广泛应用,也迅速促进了激光技术的发展。
它已经发展成了一项重要的学科。
基本概念和原理激光是一种特殊的光源,它是由由电子跃迁产生作用的啁啾效应,在光稳态里得到一个亚光速度集中聚焦的光场。
和普通的光线不同的是,激光每一个光子带有非常稳定的能量和相位特性,这种特性使得激光成为一个理想的数控高精度加工工具。
一个完整的激光系统由光源、光线传输、加工头和控制单元四大部分构成。
其中关键部位包括激光介质、光路设计、光束平整度、功率控制技术等等。
应用医学方面激光在医学领域的应用非常广泛。
激光手术技术可以用于熟练解决许多手术中的细节问题,且手术疼痛和严重感染率更低。
例如,大多数医生使用激光技术治疗患有近视、肝硬化、动脉瘤和糖尿病视网膜病等疾病的患者。
对于某些疾病的诊断,激光技术也可以扮演一个重要的角色。
例如,对于肿瘤的早期诊断,激光技术可以通过光散射信号检测出比较特殊的散射信号,以此作为肿瘤的依据。
工业方面在制造业中,激光技术被广泛应用于自动售货机、手机组装机器人、二维码标识及注塑机。
特别是在制造企业中,它已经在3D打印、氧化铝钻孔技术、张力测量等方面找到了应用。
激光技术的发展和应用

激光技术的发展和应用激光技术是一种高度精密的技术,具有广泛的应用。
激光技术从诞生到现在的几十年里,经历了千辛万苦,得到了长足的发展和进步。
现在,它被广泛用于各种领域,包括科学研究、医疗、生产和安全等。
激光技术成为现代科学研究的重要工具。
激光技术的方法可以用于制造微型结构,开发新型产品,并提高生产效率。
激光器在材料研究、光学、气象学、建筑和农业等行业得到了广泛的应用。
而且激光器在医疗行业中,例如治疗白内障和癌症,也有非常明显的优点。
在航空、天文、卫星、导弹和热成像等领域,在观察、探测、测试和传达方面也有了广泛的应用。
在安全领域,激光技术可以用于保障物品和人员的安全,例如保障飞机、火车、车辆的刹车系统,以及在机场、车站、银行和公共场所使用的检测设备。
此外,激光器可以帮助优化制造业,提高汽车生产效率,提高太阳能电池板的效率和用途,当然它也可以用于军事领域。
在这个现代科技时代,激光技术的使用是无比广泛和深入,可以说是人类发展史上重要的里程碑之一。
激光器的工作原理是利用激光、光子和放射性元素的相互作用获得的。
然后,这些成分被放入一个包含激光室、反射器、波导、透镜和其他装置的装置中。
通过激光输出装置输出高浓度、单色、长寿命激光光束。
激光输出装置通常被称为激光头。
激光头可以通过调节在激光腔中反射的光线的多个参数(如输入和输出功率、激光频率、波长和腔体结构)来产生各种类型的激光光束。
目前,激光器的能量输出量最高可达数百兆焦耳,频率范围也从红外线扩展到紫外线和真空紫外线。
同时,激光器结构的研究也在不断创新进步中。
Lambda-type激光器、光纤激光器、磁共振激光器和光学激光器等在不断推陈出新,带动着激光技术的发展进步。
这一专业领域的技术深度、创新意识和实际应用价值,使我们对激光科学和技术更加的肯定和尊崇。
在未来,随着激光技术的广泛使用和不断发展,它将继续对世界产生重大的影响,促进科技的进步和创新。
同时,随着激光技术的计算机化和智能化,它已经成为未来设计和制造的重要工具、空间探测和导航的基础,也将带动世界各行各业的发展。
激光技术的发展与应用

激光技术的发展与应用激光技术是一种强大的工具,被广泛应用于科学、医学、工业和军事领域,它的独特性质使得它成为了现代技术中不可或缺的一部分。
本文将会讨论激光技术的发展历程,以及它在不同领域中的应用。
激光技术的发展历程激光技术最早由美国物理学家泰奇·豪斯(Theodore Maiman)于1960年发明,他使用了一种半导体材料来制造激光器,并建造了世界上第一台完全工作的激光器。
这被认为是激光技术的诞生。
近年来,激光技术得到了极大的发展,不仅材料和电子元件得到了改进,激光器的类型与功能也得到了改进。
随着技术的进步,激光技术已经成为了许多行业中必不可少的工具。
激光技术的应用1. 科学领域激光技术在科学领域中具有广泛的应用,比如光学测量和精密加工。
在这方面,激光技术的应用使得科学家们能够实现最小尺寸范围的研究,也能够对材料进行微小的锯切并研磨,或者在不损害其它部分的情况下将它们限制在某个特定的区域内。
2. 医学领域激光技术在医学领域中也有着广泛的应用,比如激光手术。
激光手术是一种微创手术,它通过激光光束使组织破裂,从而达到治疗效果,这种技术使得手术切口更小、更干净,并且患者恢复速度更快。
激光还可以用于治疗近视、激光去毛和激光焊接等操作。
3. 工业领域激光技术在工业领域中也有着广泛的应用,比如激光切割。
激光切割不但可以进行常规的金属切割,还可以进行复杂的雕刻和拼贴操作,这种方法对于需要精确准确的雕刻和拼贴的行业如电子产业和汽车制造业非常重要。
4. 军事领域激光技术在军事领域中也有着重要的应用,比如制导武器和激光测距。
激光制导武器是利用激光束对目标进行跟踪并指引武器击中目标,这种技术对于高精度的精确打击非常重要。
结论总之,激光技术的应用范围非常广泛,包括科学、医学、工业和军事领域。
虽然激光技术还有很多不足,但它已经成为了当今现代技术中的重要组成部分,并将在未来的发展中扮演更为重要的角色。
激光技术发展趋势及未来应用方向

激光技术发展趋势及未来应用方向在过去几十年中,激光技术已经成为科学和工业领域中不可或缺的工具。
从初始的实验室研究到如今的各行各业的应用,激光技术的发展一直在持续前进。
本文将探讨激光技术的发展趋势及未来应用方向。
随着技术的不断进步,激光技术正不断扩展其应用领域。
激光技术在医疗领域的应用已经取得了巨大的成功。
例如,激光手术可以在微创手术中取代传统的切割工具,减少创伤和出血。
激光还可以用于激光疗法,用于治疗癌症和其他疾病。
此外,激光还可以用于眼科手术,如激光近视手术和激光白内障手术。
随着医疗技术的进一步发展,激光技术将继续在医疗领域发挥重要作用。
除医疗领域外,激光技术在制造业中也扮演着重要的角色。
激光切割、焊接和打孔等技术已经成为现代制造业中常见的工艺。
由于激光技术具有高精度、高效率和无接触的特点,它在制造业中的应用前景非常广阔。
未来,随着激光技术的进一步改进和创新,它有望在3D打印、光学制造和纳米技术等领域发挥更大的作用。
另一个激光技术的未来应用方向是通信和信息技术领域。
激光技术已经成为光纤通信中的核心技术。
激光器的高功率和高频率特性使得光信号能够长距离传输,并且具有较高的传输速度和低的能量损耗。
激光通信技术的不断改进将带来更高的数据传输速度和更稳定可靠的通信网络。
此外,激光技术在能源领域也有着广泛的应用前景。
激光技术可以用于太阳能光伏电池的制造,提高太阳能的转换效率。
激光还可以用于核聚变研究,帮助实现可控核聚变反应,为未来的清洁能源提供可能性。
激光还可以用于地下能源勘探和矿产资源开发,提高勘探和开采效率,减少环境破坏。
激光技术的发展趋势也包括对激光器本身的改进。
高功率激光器的研发一直是激光技术的重要方向。
高功率激光器可以用于材料加工、激光武器和科学实验等领域,但目前还面临着能量损耗、散热和成本等问题。
随着材料科学和激光技术的进步,预计高功率激光器将变得更加高效、稳定和可靠。
另外,激光技术的微型化和便携化也是未来的趋势之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1957年,王大珩等在长春建立了我国第一所光学专业研究所——中国科学院(长春)光学精密仪器机械研究所(简称“光机所”)。在老一辈专家带领下,一批青年科技工作者迅速成长,邓锡铭是其中的突出代表。早在1958年美国物理学家肖洛、汤斯关于激光原理的著名论文发 表不久,他便积极倡导开展这项新技术研究,在短时间内凝聚了富有创新精神的中青年研究队伍,提出了大量提高光源亮度、单位色性、相干性的设想和实验方案。1960年世界第一台激光器问世。1961年夏,在王之江主持下,我国第一台红宝石激光器研制成功。此后短短几年内,激光技术迅速发展,产生了一批先进成果。各种类型的固体、气体、半导体和化学激光器相继研制成功。
激光是20世纪以来,继原子能、计算机、半导体之后,人类的又一重大发明,被称为“最快的刀”、“最准的尺”、“最亮的光”和“奇异的激光”。它的亮度约为太阳光的100亿倍。
激光的原理早在 1917年已被著名的美国物理学家爱因斯坦发现,但直到 1960 年激光才被首次成功制造。激光是在有理论准备和生产实践迫切需要的背景下应运而生的,它一问世,就获得了异乎寻常的飞快发展,激光的发展不仅使古老的光学科学和光学技术获得了新生,而且导致整个一门新兴产业的出现。激光可使人们有效地利用前所未有的先进方法和手段,去获得空前的效益和成果,从而促进了生产力的发展。
4.2激光器的特点
4.3国内外前沿
4.3.1国外:世界上最大的激光器
4.3.2国内:矢量漩涡光束激光器研究取得突破
参考文献
第1章引言
激光的最初的中文名叫做“镭射”、“莱塞”,是它的英文名称LASER的音译,是取自英文Light AmplificationbyStimulated Emission of Radiation的各单词头一个字母组成的缩写词。意思是“通过受激发射光扩大”。激光的英文全名已经完全表达了制造激光的主要过程。1964年按照我国著名科学家钱学森建议将“光受激发射”改称“激光”。
第2章激光概念的提出与激光器的问世
2.1自发辐射
自发辐射是原子在真空场作用下发生的跃迁。空间中即使没有人为施加的辐射场,也会自发地存在零点场,即辐射场模n=0的真空场。在这种辐射场的作用下,原子就会自发地从上能级跃迁到下能级,同时向辐射场发射一个能量为hν的光子 。
自发辐射是不受外界辐射场影响的自发过程,各个原子在自发跃迁过程中是彼此无关的,不同原子产生的自发辐射光在频率、相位、偏振方向及传播方向都有一定的任意性。
从此,世界激光研究大戏正式拉开序幕。
第3章国内激光技术的发展
3.1第一次听到“激光”
“激光”一词是“LASER”的意译。LASER原是LightAmplification byStimulatedEmissionof Radiห้องสมุดไป่ตู้ion取字头组合而成的专门名词,在我国曾被翻译成“莱塞”、“光激射器” 、“光受激辐射放大器”等。1964年,钱学森院士提议取名为“激光”,既反映了“受激辐射”的科学内涵,又表明它是一种很强烈的新光源,贴切、传神而又简洁,得到我国科学界的一致认同并沿用至今。
简述激光技术的发展史与应用前沿
———————————————————————————————— 作者:
———————————————————————————————— 日期:
ﻩ
本科生课程作业(论文)
简述激光技术发展史与应用技术前沿
姓名:李兵
学院:应用数理学院
学号:
2015年9月13日
简述激光技术发展史与应用技术的普及
1952年帕塞尔及其合作者实现了粒子数反转,观察到了负吸收现象。第二年,韦伯产生了利用受激辐射诱发原子或分子,从而放大电磁波的思想,进而提出了微波辐射器的原理。
1957年斯科威尔实现了固体顺磁微波激射器。既然微波可以激发受激辐射,那么红外乃至可见光等也应该可以。
1958年ArthurL. Schawlow和CharlesH. Townes发表了著名的“红外与光学激射器”一文,1959年汤斯提出了建造红宝石激光器的建议。
摘要
20世纪以来物理学的基础研究不断推进科技的发展。直至21世纪,我们无时无刻不享用着新技术给我们生活带来的便利。而在各个领域均大规模投入使用的激光技术已经说明现代电子技术的先进性。本文将结合课上所学内容,着重介绍激光技术概念的提出及激光器问世过程;从国内与国外的角度对比主流技术区别,同时简要介绍激光技术的应用。
2.3以梅曼的红宝石激光器为开端
受激辐射提出后,陆续有科学家进行研究。
如1916-1930年间拉登堡及其合作者对氖的色散的研究并于1933年绘制出色散系数随放电带电流密度变化的曲线。
1940年,法布里坎特首先注意到了负吸收现象。这一阶段发展并不迅速。
1947年,也就是第二次世界大战之后,兰姆和雷瑟夫指出通过粒子数反转可以受激辐射,从此激光理论的研究开始突破。
通俗的说,自发辐射就是在没有任何外界作用下,激发态原子自发地从高能级(激发态)向低能级(基态)跃迁,同时辐射出一个光子的过程。
2.2Laser概念的问世
2.2.1受激辐射
它基于伟大的科学家爱因斯坦在1916年提出了的一套全新的理论。这一理论是说在组成物质的原子中,有不同数量的粒子(电子)分布在不同的能级上,在高能级上的粒子受到某种光子的激发,会从高能级跳到(跃迁)到低能级上,这时将会辐射出与激发它的光相同性质的光,而且在某种状态下,能出现一个弱光激发出一个强光的现象,即一个光子变成两个光子,这就叫做“受激辐射的光放大”(LightAmplificationby StimulatedEmission of Radition),简称激光(laser)。激光主要有四大特性:激光高亮度、高方向性、高单色性和高相干性(单色性与相干性意义相同)。
关键词:光的产生;Laser;梅曼;国内;应用普及
目录
第1章 引言
第2章激光概念的提出与激光器的问世
2.1自发辐射
2.2Laser概念的问世
2.2.1受激辐射
2.3以梅曼的红宝石激光器为开端
第3章国内激光技术的发展
3.1第一次听到“激光”
3.2早期激光技术的发展
第4章激光技术的应用
4.1激光器的构成
在全世界顶尖的实验室都争取第一个发明激光器的情况下,梅曼从ArthurL. Schawlow和Charles H.Townes两位学者的研究中得到启发,在1960年5月15日,成功制成了世界上第一台可操作的波长为0.6943微米的红宝石激光器。他将直径1cm、长2cm的红宝石两端先镀上银膜,在其一端开个小孔让激光输出,将红宝石晶体放在螺旋氙闪光灯中,然后将他们放进高反射的圆筒内,创造出了相干脉冲激光光束,这一成果后来震惊了全世界。这是人类有史以来获得的第一束激光,梅曼因而也成为世界上第一个将激光引入实用领域的科学家。