主动配电网文献综述-初稿
面向智能电网中的主动配电网关键技术发展综述

面向智能电网中的主动配电网关键技术发展综述摘要:在我国快速发展过程中,经济在迅猛发展,社会在不断进步,主动配电网是在分布式电源发展的环境下使配电网更安全、可靠、经济运行的一个重要方案,是智能电网中的重要一环,国内外学者都提出了很多关键技术.从主动配电网规划接入、主动配电网的控制、故障恢复和负荷管控四方面展开阐述了主动配电网关键技术的研究现状,然后比较了其优缺点,最后介绍了应用展望.关键词:主动配电网;智能电网;分布式电源;协调规划;可再生能源引言近年来全球能源危机和环境污染问题凸显,研究可再生能源的呼声日渐高涨。
微电网为可再生能源(风电、光伏)并网发电及其消纳利用提供了可行技术途径。
微电网在有效整合可再生能源发电后,作为智能子系统接入主动配电网中,增强了主动配电网的互动性、可控性和可靠性,进而提升电力系统的综合能效。
因此主动配电网中多微网调度研究日益受到人们的关注和重视。
目前,国内外学者已开展了大量有关多微网调度方面的相关研究,但大多数研究微电网的模型并未考虑微电网之间的联系,仅关注和考虑微电网与主网的能量交互。
1主动配电网主动配电网的主要优势就是对分布式能源的渗透和运用,其改变了传统配电网单一的电力分配结构,通过技术的手段实现了配电网二元向三元结构的转换,其在一定程度上解决了电源和负荷之间的不稳定性,极大地提高配电网三个主体之间的协调性。
主动配电网的出现,解决了日益增长的电力资源利用和负荷增长对电网的需求。
另外,随着人类生长环境的不断改变和恶化,社会是否能可持续发展受到了一定的威胁,为了解决人类与自然环境之间的矛盾关系,在各行各业都开始通过技术改进以适应当前环境现状,争取最大力度降低环境污染,减少对资源的浪费,而主动配电网技术的出现具有一定的必然性,其以新型的技术创新优势、以对新能源的开发利用、减少环境污染等特点赢得世界各国研究利用的高潮,其所形成的低碳经济链是具有的最大优势。
2面向智能电网中的主动配电网关键技术发展综述2.1考虑需求侧响应的技术现除了供给侧供电以外,大量的电能需求侧安装分布式电源具备了自我供电的能力,需求侧资源的参与与调节,对提高可再生能源的利用率、源荷供需平衡以及削峰填谷起到积极作用.主动配电网若能将需求侧资源充分利用和调度,就能使供电侧与需求侧响应协调并建成灵活运行的主动配电网.设目标函数为需求侧用电效用值最大,使用benders分解法计算模型进行整数规划,建立了居民电力调控模型,就需求侧不同电气设备的不同需求提出了用电模式的控制方法.除了上述模型以外,区块链技术和分布式电源结合.区块链的特征可以概括为:去中心分布化的、按照合约执行的、去信任的、数据可靠并能追溯的,分布式电力系统构造需要区块链这样的去中心化特征的技术支撑.区块链去除中心主导节点,而是通过共识机制令每个节点的地位相同并能集体自动维护,分布式电源系统的每个需求侧及各个节点,满足自动控制调度需求,达到源网荷协调;分布式电源中的区块链系统将所有历史数据分配给所有节点,数据以时序链接并只有有权限的节点可查阅.2.2多源供电网络自愈恢复考虑多源供电对馈线故障定位、隔离和恢复的影响因素,在多能互补条件下充分发掘并利用故障后分布式发电及储能装置对网络自愈的电能支撑作用,分析可行的孤岛自治恢复策略;通过故障后分布式电源本地自组网持续供电尽可能减少系统负荷损失;实现主动配电网环境下集中式与智能分布式一体化协同的多级快速恢复供电,提高主动配电网的供电可靠性。
主动配电网综合规划综述

主动配电网综合规划综述发表时间:2020-08-25T03:03:57.070Z 来源:《中国电业》(发电)》2020年第10期作者:周志明[导读] 主动配电网是智能配电网的一种发展趋势,作为其关键技术的主动配电网综合规划得到了越来越多国内外学者的研究。
四川省机场集团有限公司四川省成都市 610202摘要:主动配电网是智能配电网的一种发展趋势,作为其关键技术的主动配电网综合规划得到了越来越多国内外学者的研究。
本文对主动配电网的综合规划问题进行综述,对其研究现状做了概括和分析。
总结了研究较多的DG优化配置方法,将其归类为动态规划方法、解析方法、启发式方法、进化方法和物理方法;介绍了主动配电网的储能和主动管理模型。
最后概括了对主动配电网综合规划应考虑的因素,并提出了自己对其的一点想法。
关键词:主动配电网;综合规划;DG优化配置;储能;主动管理主动配电网的综合规划相比于保守的传统配电网规划而言,不仅要考虑传统配电网规划的内容,还要考虑DG的引入对配电网的影响以及配电网的灵活控制和主动管理特性,因此会使其具有很大的不确定性,尤其是由可再生能源的间歇性引起的不确定性。
考虑DG引入配电网后对其产生的影响,国内外学者进行了评估分析,以求得DG配置最优化。
DG优化配置的重要内容是DG安装位置的选取、额定容量的确定。
DG合理的安装位置和额定容量必须满足分销网络和供电可靠等多因素的限制,因此考虑将其转化为多目标优化问题进行求解。
有研究表明:DG不同的安装位置和容量,将会影响系统短路电流的大小、配电网的电压分布、电压稳定性等。
合理的安装位置可以有效改善配电网电压分布、减小系统网损、提高系统负荷率。
反之,如果配置不合理,将会适得其反,影响配电网的安全稳定运行。
为此,总结分析了研究较多的DG优化配置方法,并将其归类为动态规划方法、解析方法、启发式方法、进化方法和物理方法等,以便进行分析和探究。
动态规划方法。
有学者提出基于分时段负荷模型的动态规划方法,该方法考虑负荷的变化特征,用以最大限度地降低线损和提升配电网的供电可靠性。
主动配电网背景下无功电压控制方法综述

主动配电网背景下无功电压控制方法综述一、本文概述Overview of this article随着能源结构的转型和可再生能源的大规模接入,主动配电网(Active Distribution Network, ADN)已成为未来电网发展的重要方向。
主动配电网通过集成分布式能源、储能系统、柔性负荷等多种资源,实现了对配电网的主动管理和优化运行。
在这一背景下,无功电压控制作为保障配电网安全、稳定、经济运行的重要手段,受到了广泛关注。
With the transformation of energy structure and the large-scale integration of renewable energy, Active Distribution Network (ADN) has become an important direction for the development of future power grids. The active distribution network achieves active management and optimized operation of the distribution network by integrating various resources such as distributed energy, energy storage systems, and flexible loads. In this context, reactive power and voltage control, as an important means to ensure the safety, stability,and economic operation of distribution networks, has received widespread attention.本文旨在对主动配电网背景下的无功电压控制方法进行综述,分析现有控制策略的优势与不足,探讨未来研究方向。
主动式配电网精选文档

主动式配电网精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-主动式配电网主动配电网“主动”在哪儿?配电网有“主动”和“被动”之分吗?答案是肯定的。
来看一个主动的案例。
炎炎夏日的一个上午,某大城市中,随着大批空调逐步开启,用电负荷直线攀升,逼近电网所能承受的最高值。
主动配电网主动作为,果断发出“精确制导”的指令,让部分客户家中的空调停运。
几分钟后,负荷曲线趋于平缓,电网风险化解……根据用户何时洗衣服、开空调等用电行为习惯,供电企业事先准备好网络和负荷,为用户提供定制电力服务。
用户则可以随时查询到实时电价,以调整用电行为节省电费,还可以查询选用周边的分布式电源,实现一定区域内的电力资源最优分配。
这不是电影里的场景。
在不久的将来,随着“主动配电网运行关键技术研究及示范”863课题研究成功,这样的场景就将成为现实。
为什么要进行这项课题研究它有何特点对供电企业和客户来说,它能带来哪些好处为此,某报记者进行了详细调查。
为什么要研究主动配电网分布式电源大量进入配电网,到一定程度,传统配电网将面临“电流倒送”危险提及主动配电网的研究,有必要先认识一下配电网的概念和分布式电源的特点。
配电网,指的是在电力网中起分配电能作用的网络。
打个形象的比喻,如果把电网主网比作人体的“主动脉”,那么,配电网就是四通八达的“毛细血管”,用户则处于这些毛细血管的最末端。
电由大型发电厂发出,流经主网,通过配电网送到用户,就如血从心脏流出,流经主动脉,通过毛细血管输送至全身一样。
电流自上而下流动,就如同大河衍变成小河,再从小河衍变成小溪。
在传统的配电网中,线路选型、设备选型、相应的继电保护、潮流控制、计量,考虑的都是单方向流动的特点。
分布式电源的出现,使得用户可以不再被动地接受电网输送的“血液”补给,而是具有了“造血”的能力。
但随着分布式电源不断增多,“造血”的量不断增加,其分散性、不稳定性、间歇性的特点,则使得这些新造“血液”不能平缓、定量、持续地输入“毛细血管”。
供配电毕业设计文献综述范文

供配电毕业设计文献综述范文
供配电毕业设计文献综述范文应由本人根据自身实际情况书写,以下仅供参考,请您根据自身实际情况撰写。
随着社会的发展和人们生活水平的提高,供配电系统在人们生活中扮演着越来越重要的角色。
供配电系统是电力系统的重要组成部分,它负责将电能从发电厂输送到各个用户,为人们的生产和生活提供必要的能源。
因此,供配电系统的设计和运行对于保证电力系统的稳定性和安全性具有重要意义。
在供配电系统的设计中,需要考虑多种因素,如负荷分布、电源容量、线路容量、变压器容量等。
这些因素对于供配电系统的稳定性和安全性都有重要影响。
因此,在进行供配电系统的设计时,需要综合考虑这些因素,以制定出最优的设计方案。
近年来,随着技术的发展和进步,越来越多的新技术被应用到供配电系统中。
例如,智能电网、分布式电源、储能技术等。
这些技术的应用可以大大提高供配电系统的稳定性和可靠性,减少能源浪费和环境污染。
此外,随着人们对于环境保护的重视程度不断提高,越来越多的研究关注到了供配电系统中的节能减排问题。
例如,通过优化供配电系统的运行方式,降低线损和变压器损耗,提高电力设备的运行效率等措施,可以有效地减少能源浪费和环境污染。
综上所述,供配电系统的设计和运行是一项复杂的工程,需要考虑多种因素和技术。
未来的研究应该关注如何将新技术应用到供配电系统中,以提高系统的稳定性和可靠性,同时关注节能减排问题,为环境保护做出更大的贡献。
配电网的主动管理现状和未来发展趋势综述

配电网的主动管理现状和未来发展趋势综述摘要随着智能配电网技术的发展,分布式能源的广泛使用,新型负荷(例如电动汽车)的应用,配电网正从被动配电网向主动配电网发展。
包括可再生分布式电源在内的分布式电源的并网,使得配电网的潮流从单向流动变为双向流动。
电动汽车的应用给配电网带来了更大的挑战。
因此,对主动配电网的管理必须通过新兴的控制、监测、保护和通信技术来实现,用最佳的方式协助配电网运营商管理。
这篇文章综述了主动配电网最新的进展情况,并确定新兴技术和支持配电网主动管理的未来发展趋势。
关键词:主动管理,分布式电源,配电网,智能配电网,智能电网引言为了安全和可持续能源的发展,智能电网已被广泛认为未来电力生产的基础设施。
配电网已成为电网中占据很大比例的基础设施。
在未来智能电网中,配电网会占据更重要的地位,且应当优先发展。
这是因为配电网是大多数终端用户、分布式电源以及电动汽车的接入点。
在美国,配电网为大约1.6亿用户提供服务。
越来越多DG和EV的接入、智能配电网技术的应用(例如高级计量架构(AMI)和智能家电(SAs))都促使配电网从被动向主动发展。
下一代配电网应该是高效、全系统最优化、高可靠性、坚强、且能够有效管理大规模接入的EV、DG及其他可控负荷的网络。
为了迎接新的挑战,下一代的配电网需要主动配电网管理。
各种配电网管理技术,例如配电自动化,AMI,故障定位,自动重构,以及V AR控制,已经在研究中,而且一些技术已经成功应用与当今的配电网中。
配电网最优化规划的各个方面也处于研究中,包括电容器和其他无功补偿设备、分段重合、以及分布式能源的最优调度。
此外,先进的新型DG技术,新型的功率电变换系统(PFC),例如能调节有功和无功的固态变压器(SST),智能家电和其他可控负荷的广泛使用,家庭和办公网络的智能化,都使得在下一代配电网中,ADN的应用成为可能。
本文综述了最新的进展并确定支持DN的发展的新兴技术。
第二部分给出ADN的构架的概述。
主动配电网技术研究现状综述

主动配电网技术研究现状综述刘东;张弘;王建春【摘要】主动配电网作为解决大规模分布式能源接入及配网优化运行问题的有效解决方案,是智能配电网的发展趋势,引发了国内外学者广泛而深入的研究.本文从主动配电网规划技术、主动配电网运行控制技术、主动配电网供电恢复技术与主动配电网负荷管理技术等相关重点领域出发分析了主动配电网关键技术的研究现状,并阐述了国内外主动配电网示范工程试点情况.【期刊名称】《江苏电机工程》【年(卷),期】2017(036)004【总页数】7页(P2-7,20)【关键词】主动配电网;可再生能源;示范工程;综述【作者】刘东;张弘;王建春【作者单位】上海交通大学电子信息与电气工程学院,上海 200240;上海交通大学电子信息与电气工程学院,上海 200240;国网淮安供电公司,江苏淮安 223001【正文语种】中文【中图分类】TM72由于分布式能源(distribution energy resource, DER)的大量接入,配电网产生了功率倒送、弃风弃光等现象,为电网稳定运行带来很大影响同时降低了新能源的效益与价值。
主动配电网(active distribution network, ADN)是为解决分布式能源接入配电网问题而提出的方案,利用先进的电力电子技术、通信和自动控制技术,具有协调控制各种类型分布式能源的能力。
它可以实现配电网系统中双向潮流的控制,使新能源所发电量得到高效的利用,从根本上解决大量分布式能源接入配电网的问题,是未来智能配电网的发展趋势[1,2]。
主动配电网由分布式电源(distributed generation, DG)、各类负荷以及大量监控装置等构成,通常包含光伏、风电等可再生能源的发电装置,以及为有效平抑间歇式能源的出力波动而配置的储能设备。
对比传统配电网,主动配电网是可控的,在实时获取全网运行状态的情况下,综合利用各种可控DG(如储能设备)、灵活的网络结构(开关)以及电压调节设备(如无功补偿装置),通过主站管理系统的控制调度实现配电网在正常工况下的电网安全稳定经济运行和故障情况下的隔离恢复。
配电网供电能力研究综述

配电网供电能力研究综述摘要:伴随着人们生活水平的提高,社会对于电力的需求也在持续增加,电力系统不但完善,覆盖范围也越来越广。
本文对配电网供电能力进行了分析探讨,仅供参考。
关键词:配电网;供电;能力一、配电网供电可靠性的影响因素1、电压因素在影响配电网供电可靠性的因素中,铁磁谐振过电压是其中一个十分重要的因素。
铁磁谐振过电压出现的原因在于,变压器和配电互感器等原件内部都有铁芯,这些铁芯磁化特征表现为非线性变化,导致回路中电感参数也存在同样的变化。
当达到特定的谐振条件下,就会产生铁磁谐振,进而造成配电网供电故障的发生。
2、自然条件因素电力配电网对其周边环境的敏感性很强,它所处的地理位置雷雨季气候情况都会对其运行产生影响。
受线路运行要求及社会客观因素影响,配电网建设的地点基本处于相对偏僻的地方。
所以,当地的气候与地理环境出现改变之后,往往会对配电网的故障发生率产生影响,使其趋势有非线性的变化。
像线路的“树线”矛盾、恶劣天气、灾害性天气等自然因素都会影响到配电网可靠性。
3、配电网结构因素电源与用电负荷之间存在的连接关系是配电网结构的主要内容。
电力配电网结构具有多样化的形式,包含有环网结构、树干型、复合型辐射型以及网状结构等多种形式。
若配电网采用的是单回路树干型回路结构,则属于分支辐射型结构。
这种配网结构中有很多复合线存在与同一个回路的馈线中,离回路根部越近的点发生故障,给整个线路造成的影响就会越严重,所以该结构方式的可靠性非常低。
二、配电网供电能力研究综述1、电网规划我国电网发展水平不一致,表现为城市电网基础夯实而农村电网结构薄弱的局面。
而DG和EV等主动元素因物理条件而在不同地区电网接入,主要表现为农村电网可利用范围广、新建DG输电通道较容易,而城市电网相对成熟,新建DG场站投资昂贵,新建EV充电桩反而更能适应经济更为发达的城市电网需求。
对于供电能力研究而言,城市配电网规划应该面向如何充分利用大规模或者分散小容量EV接入,消除供电瓶颈,提高系统正常运行时的供电能力和故障时的转供能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主动配电网文献综述-初稿-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN主动配电网文献综述摘要:分布式电源( distributed generation, DG)和电动汽车的大量接入、智能家居的普及、需求侧响应的全面实施等显着增强了配电系统规划与运行的复杂性,同时,未来的配电网对规划与运行的优化策略提出了更高的要求。
作为未来配电网的一种发展模式,主动配电网( active distribution network, ADN)开始受到人们的关注。
本文主要探讨总结了主动配电网的国内外现状,主动配网网工作原理,主动配电网的运行方式、标准、对应的国内外指标及计算方法以及主动配电网的算法研究。
关键词:主动配电网,分布式发电,潮流算法,粒子群算法,混合算法0 引言近年来,全球范围内气候变暖及极端天气事件日益频发,严重威胁着人类社会的可持续发展。
根据国际发展援助研究协会(DARA)数据,在过去10 年间,气候变化每年平均造成超过万亿美元经济损失,约占全球GDP 的%。
到2030年,该比例预计达到%[1]。
在诸多因素中,人类过度排放温室气体被认为是导致全球气候变化的重要原因[1, 2]。
为应对上述挑战,英国政府于2003年首次提出了低碳经济(low-carbon economy)的发展理念:倡导通过技术创新、产业转型、新能源开发等多种手段提高能源供应多样性,降低对化石能源的依赖以减少碳排放,最终达到经济社会发展与生态环境保护双赢的理想目标[2]。
构建低碳经济模式,推进“经济-能源-环境”协调可持续发展此后逐渐成为世界各国的普遍共识。
我国在2009 年明确提出了“2020年非化石能源占一次能源总消费量的15%,单位GDP 的CO2 排放比2005 年下降40%~45%”的低碳发展战略目标[3],并在“十二五规划”中制订了“2015年非化石能源占一次能源消费比重达到%;单位GDP 能源消耗降低16%,单位GDP 二氧化碳排放降低17%”的阶段性任务。
以化石能源为主导的电源结构使得电力工业成为我国国民经济中最大的CO2 排放部门。
据权威统计,2012 年我国电力行业碳排放量达到亿吨,约占全国总碳排放量的50%[4],且近年来呈现加速增长趋势。
因此,推动电力工业低碳化成为我国实现上述节能减排与生态文明目标的必然选择。
发展低碳电力系统的根本任务是要形成稳定的低碳电能供应机制,其关键在于对可再生能源的有效开发与利用。
对此,当前主要存在两种基本思路[4]:一是大力发展长距离、大容量、低损耗的跨区输电线路(如特高压输电)以实现可再生能源资源在更大区域范围内优化配置;二是从配用电环节入手,建立协调关联分布式可再生能源发电(Distributed Renewable Energy Generation, DREG)、配电网络与终端用电的集成供电系统,实现对可再生能源的就地消纳与利用。
较之前者,分布式配用电系统具有建设周期短、投资成本低、运行灵活的优点,且抗风险能力更强,因此近些年在国内外获得广泛关注[5-7]。
在传统配电网中,电力潮流一般由上端变电站单一流向负荷节点,其运行方式和规划准则相对简单。
然而,分布式能源(Distributed Energy Resource, DER)的规模化接入与应用将对系统潮流分布、电压水平、短路容量等原有电气特性造成显着影响。
而传统配电网在设计阶段并未考虑上述因素,因此难以满足低碳经济背景下高渗透率可再生能源发电接入与高效利用的要求。
在此背景下,国外学者在2008 年国际大电网会议(CIGRE)首次提出了主动配电网(Active Distribution Network, ADN)的概念[8],旨在解决配电侧兼容大规模间歇式可再生能源,提升绿色能源利用率以及一次能源结构等问题。
与主要关注用户侧的微电网(Micro-Grid, MG)不同,ADN 主要面向由电力企业管理的公共配电网。
它是智能配电网技术发展到高级阶段的产物,是一种兼容电网、分布式发电( Distributed Generation, DG)及需求侧管理等多类型技术的全新开放式配电系统体系结构。
ADN 的技术理念将系统运行中的信息价值及电网-用户之间的互动能力提升至一个新高度,强调在整个配电网层面内借助主动网络管理(Active Network Management, ANM)实现对各类可再生能源的主动消纳及多级协调利用,最终促进电能低碳化转变及电网资产利用效率的全方位提高[9, 10]。
相比管制背景下的传统配电网,ADN 无论在技术特性上,或是面临的外部市场环境方面,均有着自身鲜明的特点;而我国电力工业低碳化发展的要求又为ADN 的应用实施赋予了更多的内涵。
ADN应该发挥何种作用以支撑节能减排目标的实现对此,又需要采用怎样的科学规划方法才能确保企业投资经济效益与社会环境效益的相协调这是当前亟待回答的重要命题。
因此,研究与低碳经济相适应的ADN 规划方法与发展模式,无疑具有重要的理论、战略和现实意义。
本文将介绍主动配电网的国内外现状,主动配网网工作原理,主动配电网的运行方式、标准、对应的国内外指标及计算方法以及主动配电网的算法研究。
1 国内外技术现状主动配电网(AND)是近几年来才提出的新名词。
最早美国电力可靠性技术解决方案协会(CERTS)提出了“微网”的概念,微网是由微电源和负荷共同组成的系统,可同时提供电能和热量,其组成结构较ADN简单,也可以说是ADN的一种特殊形式。
国外技术现状目前对ADN的研究处于领先地位的主要有北美、欧盟和日本等。
美国CERTS己在美国电力公司Walnut的微网测试基地成功验证了微网的初步理论;欧盟推出了“Microgrids”和“More Microgrids”个主要项目,德国太阳能研究所建成的微网实验室规模最大,容量达到200kVA,该研究所还在其实验平台设计安装了简单的能量管理系统;日本常规能源较为匿乏,在可再生能源幵发和利用上投入较大,已在国内建立了多个微网项目,其微网实验系统的开发亦处于世界领先水平。
据统计,截至2013年,世界范围内共有包括美国、澳大利亚、日本、意大利、德国、英国等在内的11个国家和地区开展了24个具有创新性的ADN项目[11]。
其中,欧盟开展了ADINE、ADDERSS、GRID4EU等代表性的ADN示范项目:①ADINE项目主要以配电网络对高渗透率DG的开放兼容为目标,重点研究内容包括:智能配电自动化、ICT和ANM控制技术等,项目展示了可使DG接入更加方便的解决方案,提出了可适应大规模DG接入的系统保护配置、电压控制、故障穿越和防孤岛等策略。
②ADDRESS项目于2008年开始实施,历时4年,11个国家参与,重点研究智能配电网理念下以“主动需求(AD)”为核心的用户侧需求响应技术。
该项目建立了用于实时数据处理的大型、开放式电力通信网络,大规模实验并应用实时激励等需求侧管理技术,验证了AD对系统效益的积极作用。
③GRID4EU项目由6家欧盟国家配电系统运营商共同参与,预计2015年结束,总资金约5000万欧元。
项目主要涉及智能配电网的规划、运行及控制关键技术、标准制定,以及成本—效益分析等方面内容,相关成果要求在欧洲范围内具有可扩展性和可重复性。
国内技术现状我国对ADN的研究较其他国家相对落后,研究热点主要集中在DG本身的控制以及DG规划和运行等方面,对DG的并网技术标准和并网规程方面尚有欠缺,这极大地限制了分布式发电技术的应用和推广。
但是我国大力支持可再生能源的发展,在西部和沿海分别建立了光伏电站和风力发电场等,估计2020年将达到20GW~30GW[11]。
目前国内在密切跟踪主动配电网技术前沿的同时也在积极进行试点示范工程建设,2012年开展了863项目“主动配电网的间歇式能源消纳及优化技术研究与应用”研究,并在广东电网进行示范。
2014年起,“多源协同的主动配电网运行关键技术研究及示范”分别在北京、福建、贵州开展研究与示范建设。
2主动配电网工作原理根据CIGRE 的定义[12],ADN 是采用主动管理分布式电源、储能设备和客户双向负荷的模式,具有灵活拓扑结构的公用配电网,其基本构成模式如图1 所示。
图中,各类DG(如风电、光伏等)和储能单元通过电力电子元件转换成相应的交流或直流模式,再经过升压变压器并入系统;通信、自动化及其他相关电气设备以适当的连接方式实现与电力网的紧密集成;此外,用户侧配以智能电表为代表的先进计量装置(Advanced MeteringInfrastructure, AMI),用于实现对用电信息的实时采集及电网-用户之间的双向互操作。
图1 主动配电网的典型构成模式ADN 技术的“主动性”特征主要体现在系统运行控制方式上。
在传统配电网中,用电活动属于“被动”要素,即使系统中含有DG,也主要面向电能就地消纳,运行者通常不会对稳态运行的电气设备进行主动控制。
而在ADN 下,通过先进的ICT 及自动化技术,可以对区域内供应侧与需求侧资源实施主动管理,以实现系统特定运行目标(如网损、资产利用效率或绿色能源消纳等)的最优。
正是由于以上原因,ADN 在技术标准、管理模式、网络结构、潮流特性及模拟计算要求等诸多方面均与传统配电网存在显着差异,见表一[13]。
表一 AND与传统配电网的主要差异传统配电网AND技术标准单一的动态的管理模式集中式分散式网络结构固定的灵活的潮流特性单向的双向的传统配电网下缺少必要的技术与管理手段,不具备提供差异化供电服务的能力,因此相关技术标准单一;而ICT 等高级智能技术的引入使得ADN的运行状态灵活可变,能够满足定制电力要求,其对应的技术标准是动态多元的。
在管理模式上,基于智能通信平台, ADN 可实现对需求侧资源(Demand Side Resource, DSR)的整合及对系统资产的分散式管理。
此外,相对传统配电网,ADN 的网络结构更加灵活,具有有源、网状、并网方式可选等新特点,并由此造成系统潮流特性由单向固定向着双向不确定方向的巨大转变。
在模拟计算方面,传统配电网一般只需对典型系统断面进行确定性模拟即可满足规划或运行任务的基本要求,而ADN则需采取分布并行式的建模方法,细致考虑时间窗口内的各类不确定因素,实施精确化的运行模拟。
3 主动配电网的运行方式、标准、对应的国内外指标及计算方法集中式图2为集中式控制的示意图,由各测量点测得的电压、潮流和设备状态数据均上送到配电网中央控制器(distribution network central controller, DNCC),中央控制器通过对各个DG分配有功和无功指令以及对其他设备发送命令来协调控制配电网络中的所有设备,并能够将配电网的电压和频率保持在合理的范围内。