信息论基础 第三章 数据压缩与信源编码I-文档资料

合集下载

信息论基础 第三章 数据压缩与信源编码III-PPT课件

信息论基础 第三章 数据压缩与信源编码III-PPT课件

举例
信源符号ai
a1 a2 a3 a4
变长码与定长码
信源符号出现的
概率p(ai)
码1
码表 码2
p(a1)
00
0
p(a2)
01
01
p(a3)
10
001
p(a4)
11
111

异 码
码的不同属性
信源符号 信源符号 码1
码2
码3码;非 译码;
惟一可 非即时
译码
码4

是即时 码
a1
½0
0
1
1
a2
¼ 11
10 10 01
a3
1/8 00 00 100 001
a4
1/8 11 01 1000 0001
[例]
信源消息 出现概率 码 1 码 2 码 3 码 4
x1
1/2 0 0 1 1
x2
1/4 11 10 10 01
x3
1/8 00 00 100 001
x4
1/8 11 01 1000 0001
信源编码的方法
信源编码有定长和变长两种方法。
定长编码:码字长度K是固定的,相应的编码定理
称为定长信源编码定理,是寻求最小K值的编码方法。
变长编码:K是变值,相应的编码定理称为变长编
码定理。这里的K值最小意味着数学期望最小。
定长编码定理
定长编码定理:一个熵为H(X)的离散无记忆信源
X1X2…Xl…XL,若对信源长为L的符号序列进行定长 编码,设码字是从m个字母的码符号集中,选取K个 码元组成Y1Y2…Yk…YK。对于任意ε>0,δ>0只要满足
信息论基础

第三章 数据压缩和信源编码

第三章 数据压缩和信源编码

信源编码
信源编码: 以提高通信有效性为目的,针对信源的编码.能更加有 效地传输、存储信息。 在不失真或允许一定失真条件下,如何用尽可能 少的符号来传送信源信息,以便提高信息传输率。通 常通过压缩信源的冗余度来实现。 采用的一般方法是压缩每个信源符号的平均比特 数或信源的码率。即同样多的信息用较少的码率传送 ,使单位时间内传送的平均信息量增加,从而提高通信 的有效性。
10:20 18
4.非奇异码
从信源消息到码字的映射是一一对应的,每一个不同的信源消 息都用不同的码字对其编码。非奇异码码中所有码字互不相同.
5.奇异码 从信源消息到码字的映射不是一一对应的。奇异码不具备惟 一可译性。 6.原码C的N次扩展码 原码的N次扩展码是将信源作N次扩展得到的新信源符号序列 u(N)=u1 …uN = (u11 u12 … u1L) … (uN1 uN2 … uNL),
10:20
5
信源编码
• 信源编码的基本途径是什么?
信源编码的基本途径有两个,一是使序列中的 各个符号尽可能地互相独立,即解除相关性; 二是使编码中各个符号出现的概率尽可能地相 等,即概率均匀化。
• 信源编码的基础是什么? 信源编码的基础是:两个编码定理,即 无失真编码定理和限失真编码定理。
10:20 6
A
1 0 1
中间节点—码字的一部分 终端节点—码字1101
1
1 2 2 0 1 2
0 1 0 1
二进制码树 节数—码长
10:20
01 2
0
1
2
三进制码树
32
码 树
0 1 一阶节点
0
00
1
0 1 0
0 1
1 0 1
二阶节点

第三章 信息论基础知识(Part2)

第三章 信息论基础知识(Part2)

信息论基础知识主要内容:信源的数学模型 信源编码定理 信源编码算法 信道容量 通信的容限第 1 页 2011-2-21引言一、信息论的研究范畴 信息论是研究信息的基本性质及度量方法,研究信息的获取、传输、存储和处理的一般规律的科学。

狭义信息论:通信的数学理论,主要研究信息的度量方 法,各种信源、信道的描述和信源、信道的编码定理。

实用信息论:信息传输和处理问题,也就是狭义信息 论方法在调制解调、编码译码以及检测理论等领域的应用。

广义信息论,包括信息论在自然和社会中的新的应用, 如模式识别、机器翻译、自学习自组织系统、心理学、生物 学、经济学、社会学等一切与信息问题有关的领域。

第 2 页 2011-2-21二、信息论回答的问题通信信道中,信息能够可靠传 输的最高速率是多少?噪声信道编码定理 噪声信道编码定理信息进行压缩后,依然可以从已压 缩信息中以无差错或低差错恢复的 最低速率是多少?香农信源编码理论 香农信源编码理论最佳系统的复杂度是多少?第 3 页2011-2-21三、香农的贡献香农(Claude Elwood Shannon,1916~2001年), 美国数学家,信息论的创始人。

创造性的采用概率论的方法来研究通信中的问题,并且对 信息给予了科学的定量描述,第一次提出了信息熵的概念。

1948年,《通信的数学理论》(A mathematical theory of communication ) 以及1949年,《噪声下的通信》标志了信息论的创立。

1949年,《保密通信的信息理论》,用信息论的观点对信息保密问题做了 全面的论述,奠定了密码学的基础。

1959年,《保真度准则下的离散信源编码定理》,它是数据压缩的数学基 础,为信源编码的研究奠定了基础。

1961年发表“双路通信信道”,开拓了多用户信息理论(网络信息论)的研 究;第 4 页 2011-2-21四、信息论发展历史1924年 奈奎斯特(Nyquist,H.)总结了信号带宽和信息速率之 间的关系。

(完整版)信息论基础与编码课后题答案(第三章)

(完整版)信息论基础与编码课后题答案(第三章)

3-1 设有一离散无记忆信源,其概率空间为,信源发出符号通过12()0.60.4X x x P x ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦一干扰信道,接收符号为,信道传递矩阵为,求:12{,}Y y y =51661344P ⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦(1) 信源中事件和分别含有的自信息量;X 1x 2x (2) 收到消息(j =1,2)后,获得的关于(i =1,2)的信息量;j y i x (3) 信源和信宿的信息熵;X Y (4) 信道疑义度和噪声熵;(/)H X Y (/)H Y X (5) 接收到消息后获得的平均互信息量。

Y (;)I X Y 解:(1)12()0.737,() 1.322I x bit I x bit==(2),,,11(;)0.474I x y bit =12(;) 1.263I x y bit =-21(;) 1.263I x y bit =-22(;)0.907I x y bit=(3)()(0.6,0.4)0.971/H X H bit symbol==()(0.6,0.4)0.971/H Y H bit symbol==(4)()(0.5,0.1,0.1,0.3) 1.685/H XY H bit symbol==(/) 1.6850.9710.714/H X Y bit symbol =-=(/)0.714/H Y X bit symbol=(5)(;)0.9710.7140.257/I X Y bit symbol=-=3-2 设有扰离散信道的输入端是以等概率出现的A 、B 、C 、D 四个字母。

该信道的正确传输概率为0.5,错误传输概率平均分布在其他三个字母上。

验证在该信道上每个字母传输的平均信息量为0.21比特。

证明:信道传输矩阵为:,信源信宿概率分布为:,11112666111162661111662611116662P ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦1111()(){,,,}4444P X P Y ==H(Y/X)=1.79(bit/符号),I(X;Y)=H(Y)- H(Y/X)=2-1.79=0.21(bit/符号)3-3 已知信源包含两种消息:,且,信道是有扰的,X 12,x x 12()() 1/2P x P x ==信宿收到的消息集合包含。

信息论与编码第三版 第3章

信息论与编码第三版 第3章

(2)增强通信的可靠性: 综上所述,提高抗干扰能力往往是以降低信息传输效率为代价
信息论与编码
信源编码的概念:对信源的原始符号按一定的数学规则进行变换的一种
代码。
信源编码包括两个功能:
(1)将信源符号变换成适合信道传输的符号; {b1, b2,…, bD}是适合 编码输出码字cm = cm1 cm2 … {a1, a2, …, (2)压缩信源冗余度,提高传输效率。 ak}为信 信道传输的D个符号, cmn, c mk∈{b1, b2,…, bD}, 源符号集,序列中 用作信源编码器的 k = 1, 2 , …, n ,n表示码字 每一个符号uml都取 信源编码模型: 编码符号。 长度,简称码长。 自信源符号集。
1 1 1 n 2 2 2 3 4 4 2.75 (码元/符号) 4 8 16
RD
H X n
2.75 1 (比特/码元时间) 2.75
信息论与编码
§3.2 等长码及等长编码定理
一.等长编码定理
考虑对一简单信源S进行等长编码,信源符号集有K个符号,码符号集 含D个符号,码字长度记为n。对信源作等长无差错编码,要得到惟一可译 码,必须满足下式:
扩展信源
信源编码器
信道符号(码符号)集{b1,b2,...bD}
信源符号集{a1,a2,...ak}
原码的N次扩展码是将信源作N次扩展得到的新信源符号序列u(N) =u1 …uN = (u11 u12 … u1L) … (uN1 uN2 … uNL),对应码符号序列c(N) =c1 …cN = (c11 c12 … c1n) … (cN1 cN2 … cNn) ,记集合C (N) = {c1(N), c2(N), …},C (N) 即原码C的N次扩展码。

数字通信中的信源编码和信道编码【精选文档】

数字通信中的信源编码和信道编码【精选文档】

数字通信中的信源编码和信道编码摘要:如今社会已经步入信息时代,在各种信息技术中,信息的传输及通信起着支撑作用.而对于信息的传输,数字通信已经成为重要的手段。

本论文根据当今现代通信技术的发展,对信源编码和信道编码进行了概述性的介绍。

关键词:数字通信;通信系统;信源编码;信道编码Abstract:Now it is an information society。

In the all of information technologies,transmission and communication of information take an important effect。

For the transmission of information,Digital communication has been an important means。

In this thesis we will present an overview of source coding and channel coding depending on the development of today’s communica tion technologies.Key Words:digital communication; communication system; source coding; channel coding1.前言通常所谓的“编码”包括信源编码和信道编码。

编码是数字通信的必要手段。

使用数字信号进行传输有许多优点, 如不易受噪声干扰,容易进行各种复杂处理,便于存贮,易集成化等。

编码的目的就是为了优化通信系统.一般通信系统的性能指标主要是有效性和可靠性.所谓优化,就是使这些指标达到最佳。

除了经济性外,这些指标正是信息论研究的对象.按照不同的编码目的,编码可主要分为信源编码和信道编码。

在本文中对此做一个简单的介绍.2.数字通信系统通信的任务是由一整套技术设备和传输媒介所构成的总体—-通信系统来完成的.电子通信根据信道上传输信号的种类可分为模拟通信和数字通信.最简单的数字通信系统模型由信源、信道和信宿三个基本部分组成.实际的数字通信系统模型要比简单的数字通信系统模型复杂得多。

信息论中的压缩算法与信源编码技术

信息论中的压缩算法与信源编码技术

信息论中的压缩算法与信源编码技术信息论是计算机科学中一门非常重要的学科,它是研究信息的量度、传输和处理等方面的学问。

与之相关的压缩算法和信源编码技术,在提高信息传输效率和数据存储能力方面都起到了重要的作用。

本文将从基本概念出发,逐步介绍信息论中的压缩算法与信源编码技术。

一、信息论基本概念信息论中的信息量是用“比特”来衡量的。

比特是计算机基础中非常常见的术语,它来自于二进制系统的数字“0”和“1”。

在计算机的存储器、通信网络、显示器等方面,都可以看到比特的身影。

一个比特可以表示两个不同的状态,如开关状态的“开/关”或者逻辑电平的“高/低”。

这两种状态可以分别用数字“0”和“1”来表示。

在信息论中,信息量是用比特数(bit)来衡量的。

一个比特可以表示两种选项中的一种,所以一个比特只能表示“是”或“否”、“真”或“假”这样的两种情况。

但是,当一个系统有多于两个状态时,用比特来衡量信息量就不太方便了。

例如,要描述两个人之间的关系,两个状态已经无法表示,我们需要多个比特来表示信息量。

当我们想知道一个字母的出现概率时,比特显然也是不够的。

在这种情况下,我们需要使用“信息熵”来描述。

信息熵通常用H来表示,它是指在一个信息源中可能出现的各种符号的概率的负对数的加权平均值。

具体地说,信息熵的公式为:H(S) = -Σp(x)×log p(x)其中,S表示一个符号集, x表示S中的每个符号,p(x)表示符号x在各次独立的实验中出现的概率。

信息熵的单位是比特(bit)。

越低的信息熵意味着信息源中包含的信息越少,信息的压缩率也就越高。

二、压缩算法压缩算法主要用于数据的压缩和解压缩。

其中,压缩是指减少数据文件的大小,解压缩则是指将压缩后的数据文件还原为原始数据文件。

数据压缩算法大致可分为两类:无损压缩和有损压缩。

无损压缩算法是指在压缩过程中保持数据的完整性,原始数据经过压缩后可以完全还原。

而有损压缩算法则是为了得到更高的压缩率,而在压缩过程中舍弃一些数据,所以解压后的数据不是完全一样的。

信息论与编码课件第三章

信息论与编码课件第三章
入侵检测技术
利用信息论中的信号分析原理,检 测网络中的异常流量和行为,及时 发现和防范网络攻击。
THANKS FOR WATCHING
感谢您的观看
解码卷积码的方法包括最大似然解码、维特比解 码等,其中维特比解码算法具有较低的复杂度。
03 第三章 加密编码
加密编码的基本概念
加密编码是信息隐藏的一种形式, 通过将信息转化为难以理解的形 式,保护信息的机密性和完整性。
加密编码的基本要素包括明文、 密文、加密算法和解密算法。
加密编码的目标是确保只有授权 用户能够解密和读取密文,而未 经授权的用户无法获取明文信息。
离散无记忆信源的熵计算公式为$H(X) = - sum p(x) log_2 p(x)$,其中 $p(x)$表示输出符号$x$的概率。
离散无记忆信源的熵
离散无记忆信源的熵是用来度量其信 息量的一个重要参数,它表示在给定 概率分布下,输出符号所包含的平均 信息量。
离散有记忆信源的熵
离散有记忆信源的定义
信息论与编码课件第三章
contents
目录
• 第三章 信源编码 • 第三章 信道编码 • 第三章 加密编码 • 第三章 信息论与编码的应用
01 第三章 信源编码
信源编码的基本概念
01
信源编码的定义
信源编码是对信源输出的符号序列进行变换,使其满足某种特定规则的
过程。
02
信源编码的目的
信源编码的主要目的是在保证通信质量的前提下,尽可能地压缩信源输
对称密钥密码体制
对称密钥密码体制是指加密和 解密使用相同密钥的密码体制。
对称密钥密码体制的优点是加 密和解密速度快,适合于大量 数据的加密。
常见的对称密钥密码体制包括 AES(高级加密标准)和DES (数据加密标准)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019/5/14
12
2.费诺编码方法
编码过程如下:
(1) 将信源消息符号按其出现的概率大小依次排列: p(x1)≥p(x2)≥…≥p(xn)
(2) 将依次排列的信源符号按概率值分为两大组,使两个组的概率 之和近于相同,并对各组赋予一个二进制码元“0”和“1”
(3) 将每一大组的信源符号进一步再分成两组,使划分后的两个组 的概率之和近于相同,并又赋予两个组一个二进制符号“0”和 “1”
显然费诺要比香农的平均码长小 消息的传输速率大,说明编码效率高。
2019/5/14
14
2.费诺编码方法
费诺编码过程
2019/5/14
15
3.哈夫曼编码方法
编码过程如下:
(1) 将n p(x1)≥p(x2)≥…≥p(xn)
(2) 取两个概率最小的字母分别配以0和1两码元,并将这 两个概率相加作为一个新字母的概率,与未分配的二进符
(3) 对重排后的两个概率最小符号重复步骤(2) (4) 不断继续上述过程,直到最后两个符号配以0和1为止。
(5) 从最后一级开始,向前返回得到各个信源符号所对应 的码元序列,即相应的码字。
(4)
(5) 信源符号所对应的码字即为费诺码
2019/5/14
13
2.费诺编码方法
例 3 对例1的信源进行费诺编码,过程见下 页表
平均码长为:
7
K p(ai)Ki 2.74码 元 /符 号
i1
平均信息传输率为:
R = H (X )2.610.953bit/码 元 K 2.74
2019/5/14
R = H (X )2.610.831 bit/码 元 K 3.14
10
1.香农编码方法
香农码实用性如何?
例2 设信源有3个符号,概率分布为(0.10.5, 0.4,
0.1)
根据香农编码方法求出各个符号的码长分 别为:?
码字分别为?
2019/5/14
11
1.香农编码方法
首先观察是否是非奇异码。若是奇异码,肯定不是唯一可 译码;
其次,计算是否满足Kraft不等式。若不满足一定不是唯一 可译码;
然后将码画成一棵树图,观察是否满足异前置码的树图的 构造,若满足则是唯一可译码。
或用Sardinas和Patterson设计的判断法:计算分组码中所 有可能的尾随后缀集合F,观察F中有没有包含任一码字,若 无则为唯一可译码;若有则一定不是唯一可译码。集合F的 构造:首先观察码C中最短的码字是否是其它码字的前缀。若是,将其所有
信息论基础
杜春娟 QQ:22282998 Tel:31889581
2019/5/14
1
第三章 数据压缩和信源编码
一.最佳编码 1. 香农码 2. 费诺码 3. 哈夫曼码
二.算术码 1. 香农-费诺码 2. 自适应算术码
三.其他无失真信源编码方法
2019/5/14
2
唯一可译码的判断法
01
10
10
10
100
a3
1/16 010
011
110
110
1100 101
a4
1/16 011
0111 1110 1110 1101 110
a5
1/16 100
01111 11110 1011 1110 111
a6
1/16 101
011111 111110 1101 1111 011
2019/5/14
(4) 将累加概率Pi
k 1
(2501)9制/5取/14码Pi字二。进数的小数点后K i位即为该消息符号的二进 7
1.香农编码方法
例1:设信源共7个符号消息,其概论和累加 概率如图所示。以i=4为例, -log0.17≤K4 ≤ -log0.17+1 2.56≤K4 ≤3.56 则K4=3 则累加概率P4=0.57, 变换为二进制为:0.1001…… 故第四个消息的编码码字为100
就可以得到这种码。这种编码方法称为香农编码。 编码方法如下:
(1) p(x1)≥p(x2)≥…≥p (xn)
(2) 确定满足下列不等式的整数码长K i
l o g 2 p ( x i) K i l o g 2 p ( x i) 1
(3) 为了编成唯一可译码,计算第i
i 1
pi p(k)
计算得码长分别为(1,2,4) 概率分布分别为(0,10,1110) 但实际上直观可看出(0,10,11)是更短
的码,也是惟一可译码
所以,由此可知,香农编码的冗余度稍大, 实际应用价值不强,但由于它是从编码定 理直接得来,具有理论意义
另外当 左边等号 成l o g 立2 p 时( x ,i) 编K 码i 效 率l o g 比2 p 较( x 高i) 1
2019/5/14
3
练习:有一信源,它有六个可能的输出,其概率分布如下表所示, 表中给出了对应的码A、B、C、D、E和F,
(1) 求这些码中哪些是唯一可译码;
(2) 求哪些码是即时码;
(3) 对所有唯一可译码求出其平均码长
消息 P(ai) A
B
C DE F
a1
1/2
000
0
0
0
0
0a2ຫໍສະໝຸດ 1/4001可能的尾随后缀排列出。而这些尾随后缀又可能是某些码字的前缀,再将由这 些尾随后缀产生的新的尾随后缀列出。然后再观察这些新的尾随后缀是否是某 些码字的前缀,再将产生的尾随后缀列出。这样,首先获得由最短的码字能引 起的所有尾随后缀。接着,按照上述将次短的码字…等等,所有码字可能产生 的尾随后缀全部列出。由此得到码C的所有可能的尾随后缀组成的集合F。
其他码字可类似求出,见下页图
2019/5/14
8
1.香农编码方法
香农编码过程
2019/5/14
9
1.香农编码方法
各码字之间至少有一位数字不同,故是唯 一可译码;
7个码字都不是延长码,故是即时码
这里L=1,m=2
平均码长为:
7
K p(ai)Ki 3.14码 元 /符 号
平均信息传输率为:i1
4
几种编码方法
1. 香农编码 2. 费诺编码 3. 哈夫曼编码
2019/5/14
5
最佳编码
最佳码: 定义:能载荷一定的信息量,且码字的 平均长度最短,可分离的变长码的码字 集合.
2019/5/14
6
1.香农编码方法
香农指出,选择每个码字的长度 K i满足下式 I (xi )≤ K i<I(xi)+1,
相关文档
最新文档