物理化学第三章习题答案.
程兰征版物理化学习题解答3知识讲解

程兰征版物理化学习题解答3第三章 化学平衡1、气相反应:2SO 3(g)=2SO 2(g)+O 2(g)在1000K 时的平衡常数θc K =3.54×103,求该反应的θK (1000K)和θx K (1000K)。
解:第一问能做,第二问不能做(不知道系统总压)。
解答略。
2、氧化钴(CoO)能被氢或CO 还原为Co ,在721℃、101325Pa 时,以H 2还原,测得平衡气相中H 2的体积分数2H φ=0.025;以CO 还原,测得平衡气相中CO 的体积分数2H φ=0.0192。
求此温度下反应CO(g)+H 2O(g)=CO 2(g)+H 2(g) 的平衡常数θK 。
解:CoO(s) + H 2(g) = Co(s) + H 2O (1)0.025θp (1-0.025) θp390.025025.0-11==θK CoO(s) + CO(g) = Co(s) + CO 2 (2)0.0192θp (1-0.0192) θp510.01920192.0-12==θK (2)-(1)= CO(g)+H 2O(g)=CO 2(g)+H 2(g) ,所以θθθ123/K K K ==51/39=1.313、计算加热纯Ag 2O 开始分解的温度和分解温度。
(1)在101325Pa 的纯氧中;(2)在101325Pa 且2O φ=0.21的空气中。
已知反应2Ag 2O(s)=4Ag(s)+O 2(g)的)(T G m r θ∆=(58576-122T/K)J ·mol -1。
解:分解温度即标态下分解的温度。
令)(T G m r θ∆=(58576-122T/K)<0,得T >480K 开始分解温度即非标态下分解的温度。
令)(T G m r ∆=(58576-122T/K)+8.314×Tln0.21<0,得T >434K4、已知Ag 2O 及ZnO 在温度1000K 时的分解压分别为240及15.7kPa 。
大学物理化学 第三章 多组分系统热力学习指导及习题解答

RT Vm p A Bp
积分区间为 0 到 p,
RT
p
d ln
f=
(p RT
A Bp)dp
0
0p
RT p d ln( f )= (p A Bp)dp Ap 1 Bp2
0
p0
2
因为
lim ln( f ) 0 p0 p
则有
RT ln( f )=Ap 1 Bp2
为两相中物质的量浓度,K 为分配系数。
萃取量
W萃取
=W
1
KV1 KV2 V2
n
二、 疑难解析
1. 证明在很稀的稀溶液中,物质的量分数 xB 、质量摩尔浓度 mB 、物质的量浓度 cB 、质量分数 wB
之间的关系: xB
mBM A
MA
cB
MA MB
wB 。
证明:
xB
nA
nB nB
nB nA
)pdT
-S
l A,m
dT
RT xA
dxA
-S(mg A)dT
-
RT xA
dxA =
S(mg A)-S
l A,m
dT
Δvap Hm (A) T
dT
-
xA 1
dxA = xA
Tb Tb*
Δvap Hm (A) R
dT T2
若温度变化不大, ΔvapHm 可视为常数
- ln
xA =
Δvap Hm (A) R
真实溶液中溶剂的化学势 μA μ*A(T, p) RT ln γx xA =μ*A(T, p) RT ln aA,x
真实溶液中溶质 B μB μB* (T, p) RT ln γx xB =μ*A(T, p) RT ln aB,x
第五版物理化学第三章习题答案-图文

第五版物理化学第三章习题答案-图文以下是为大家整理的第五版物理化学第三章习题答案-图文的相关范文,本文关键词为第五,物理化学,第三章,习题,答案,图文,第三章,热力学,第,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在综合文库中查看更多范文。
第三章热力学第二定律3.1卡诺热机在(1)热机效率;(2)当向环境作功。
解:卡诺热机的效率为时,系统从高温热源吸收的热及向低温热源放出的热的高温热源和的低温热源间工作。
求根据定义3.2卡诺热机在(1)热机效率;(2)当从高温热源吸热解:(1)由卡诺循环的热机效率得出时,系统对环境作的功的高温热源和的低温热源间工作,求:及向低温热源放出的热(2)3.3卡诺热机在(1)热机效率;(2)当向低温热源放热解:(1)时,系统从高温热源吸热及对环境所作的功。
的高温热源和的低温热源间工作,求1(2)3.4试说明:在高温热源和低温热源间工作的不可逆热机与卡诺机联合操作时,若令卡诺热机得到的功wr等于不可逆热机作出的功-w。
假设不可逆热机的热机效率大于卡诺热机效率证:(反证法)设ηir>ηr不可逆热机从高温热源吸热则,向低温热源放热,对环境作功,其结果必然是有热量从低温热源流向高温热源,而违反势热力学第二定律的克劳修斯说法。
逆向卡诺热机从环境得功则从低温热源吸热向高温热源放热若使逆向卡诺热机向高温热源放出的热不可逆热机从高温热源吸收的热相等,即总的结果是:得自单一低温热源的热,变成了环境作功,违背了热力学第二定律的开尔文说法,同样也就违背了克劳修斯说法。
23.5高温热源温度低温热源,求此过程。
,低温热源温度,今有120KJ的热直接从高温热源传给解:将热源看作无限大,因此,传热过程对热源来说是可逆过程3.6不同的热机中作于情况下,当热机从高温热源吸热(1)可逆热机效率(2)不可逆热机效率(3)不可逆热机效率解:设热机向低温热源放热。
物理化学-课后答案-热力学第二定律

物理化学-课后答案-热力学第二定律-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第三章 热力学第二定律【复习题】【1】指出下列公式的适用范围。
(1)min ln BB BS Rnx ∆=-∑;(2)12222111lnln ln ln P v p T V T S nR C nR C p T V T ∆=+=+; (3)dU TdS pdV =-; (4)G Vdp ∆=⎰(5),,S A G ∆∆∆作为判据时必须满足的条件。
【解】 (1)封闭体系平衡态,理想气体的等温混合,混合前后每种气体单独存在时的压力都相等,且等于混合后气体的总压力。
(2)非等温过程中熵的变化过程,对一定量的理想气体由状态A (P 1、V 1、T 1)改变到状态A (P 2、V 2、T 2)时,可由两种可逆过程的加和而求得。
(3)均相单组分(或组成一定的多组分)封闭体系,非体积功为0的任何过程;或组成可变的多相多组分封闭体系,非体积功为0的可逆过程。
(4)非体积功为0,组成不变的均相封闭体系的等温过程。
(5)S ∆:封闭体系的绝热过程,可判定过程的可逆与否; 隔离体系,可判定过程的自发与平衡。
A ∆:封闭体系非体积功为0的等温等容过程,可判断过程的平衡与否; G ∆:封闭体系非体积功为0的等温等压过程,可判断过程的平衡与否;【2】判断下列说法是否正确,并说明原因。
(1)不可逆过程一定是自发的,而自发过程一定是不可逆的; (2)凡熵增加过程都是自发过程; (3)不可逆过程的熵永不减少;(4)系统达平衡时,熵值最大,Gibbs 自由能最小;(5)当某系统的热力学能和体积恒定时,S ∆<0的过程不可能发生;(6)某系统从始态经过一个绝热不可逆过程到达终态,先在要在相同的始、终态之间设计一个绝热可逆过程;(7)在一个绝热系统中,发生了一个不可逆过程,系统从状态1变到了状态2,不论用什么方法,系统再也回不到原来状态了;(8)理想气体的等温膨胀过程,0U ∆=,系统所吸的热全部变成了功,这与Kelvin 的说法不符;(9)冷冻机可以从低温热源吸热放给高温热源,这与Clausius 的说法不符; (10)p C 恒大于V C 。
复旦 物理化学 第三章 习题答案

复旦物理化学第三章习题答案第三章习题解答1. 先求H 2O(g)→H 2O(l )J 8592p 3166ln RT G 1-==∆∆G 2=0∆G 3=V l(p ︒-3166)1)3166p (99710183=-⨯=∆G=∆G 1+∆G 2+∆G 3=–8590.9 J)l (O H G)g (O H )g (G )g (O 21)g (H 22mr22−−→−∆−−−−→−∆+∆r G ︒m (l )= ∆r G ︒m (g)+∆G=–228.57–8.59 =–237.16 kJ 2. 反应 C (s)+2H 2(g)=CH 4(g) ∆r G ︒m =–19397 J ⋅mol –1摩尔分数 0.8 0.1(1) T=1000K 时,097.0R 100019397exp RTGexp K mrp=⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛∆-=156.08.01.0Q 2p ==Q ︒p >K ︒p 反应不会正向进行。
(2) 设压力为p ,当097.0p p 8.01.0Q 2p <⎪⎪⎭⎫ ⎝⎛= 时,即p>1.61p ︒时,反应才能进行。
3. SO 2Cl 2(g) + SO 2(g) → Cl 2(g) 反应前压力(kPa) 44.786 47.836 平衡时压力(kPa) x 44.786-x 47.836-x p 总=x+(44.786-x)+( 47.836-x)=86.096 kPa x=6.526 kPa39.2)325.101(526.6)526.6836.47)(526.6786.44()p (K K 1p p =--==-ν∆-4. H 2(g) + I 2(g) → 2HI(g) 开始(mol) 7.945.3平衡(mol) 2x 94.7- 2x 3.5- x ∆ν=01.502x 3.52x 94.7x K K 2x p=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-== x=9.478 mol (另一根x=19.30舍去)5. A(g) + B(g) → AB(g) 开始(mol) 1 1平衡(mol) 1-0.4 1-0.4 0.4 n 总=1.6 mol⎪⎪⎭⎫⎝⎛∆-=⎪⎪⎭⎫ ⎝⎛=ν∆RT G exp ppK K mr x p()⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-R 3008368exp p p 6.1/6.06.1/4.012p=0.06206p ︒=6288 Pa 6. A(g) → B(g) 平衡压力 10p ︒ p ︒ 1.0101Kp==∆r G ︒m =–RTlnK ︒p =5708 J∆r G m (1)= ∆r G ︒m –RTlnQ ︒p(1)0J 398921lm 2985708>=+= 反应不会自发进行。
物理化学第三章习题答案

1mol理想气体 恒 温 可逆1mol理想气体
300K,100 kPa
300K,1000kPa
dT 0 U H 0
S nR ln p1 ?
p2
WT ,r
nRT ln
p1 p2
?
A U TS ?
G H TS ?
Q W
7.10 mol 过冷水在 -10℃ ,101.325 kPa下结冰。
根据吉布斯函数判据,过程不可自发进行。
9. 通过设计过程求1mol H2O(g)在25℃平衡压力下凝结为
液态水的过程的∆H、∆S 和∆G。已知25℃下,水的饱和蒸
气压为3.167kPa;在100℃下水的ΔvapHm = 40.63
kJ·mol-1,
1C·mp,mo⑴l-1=。75H.302OJ·K( g-1·)mol- 1H,CpH,m(2Og)(l=) 33.50 J·K-
压缩到体积为5dm3,求终态温度及过程的Q、W、ΔU、
ΔH、ΔS。
解: 1mol理想气体 恒 熵1mol理想气体
298K,100kPa
T2,5dm3
T2
( V1
)
R CV ,m
T1
V2
V1
nRT1 p1
T2 ?
U nCV ,m (T2 T1) ?
S 0
H nCp,m (T 2T1) ?
nC
p,m
ln
T2 T1
nR ln
p1 p2
?
S1
nS
m
0.04 205 .14
8.21J
K 1
S2 S1 S ?
物理化学第三章课后答案完整版

第三章热力学第二定律3.1 卡诺热机在的高温热源和的低温热源间工作。
求(1)热机效率;(2)当向环境作功时,系统从高温热源吸收的热及向低温热源放出的热。
解:卡诺热机的效率为根据定义3.2 卡诺热机在的高温热源和的低温热源间工作,求:(1)热机效率;(2)当从高温热源吸热时,系统对环境作的功及向低温热源放出的热解:(1) 由卡诺循环的热机效率得出(2)3.3 卡诺热机在的高温热源和的低温热源间工作,求(1)热机效率;(2)当向低温热源放热时,系统从高温热源吸热及对环境所作的功。
解:(1)(2)3.4 试说明:在高温热源和低温热源间工作的不可逆热机与卡诺机联合操作时,若令卡诺热机得到的功r W 等于不可逆热机作出的功-W 。
假设不可逆热机的热机效率大于卡诺热机效率,其结果必然是有热量从低温热源流向高温热源,而违反势热力学第二定律的克劳修斯说法。
证: (反证法) 设 r ir ηη>不可逆热机从高温热源吸热,向低温热源放热,对环境作功则逆向卡诺热机从环境得功从低温热源吸热向高温热源放热则若使逆向卡诺热机向高温热源放出的热不可逆热机从高温热源吸收的热相等,即总的结果是:得自单一低温热源的热,变成了环境作功,违背了热力学第二定律的开尔文说法,同样也就违背了克劳修斯说法。
3.5 高温热源温度,低温热源温度,今有120KJ的热直接从高温热源传给低温热源,求此过程。
解:将热源看作无限大,因此,传热过程对热源来说是可逆过程3.6 不同的热机中作于的高温热源及的低温热源之间。
求下列三种情况下,当热机从高温热源吸热时,两热源的总熵变。
(1)可逆热机效率。
(2)不可逆热机效率。
(3)不可逆热机效率。
解:设热机向低温热源放热,根据热机效率的定义因此,上面三种过程的总熵变分别为。
3.7 已知水的比定压热容。
今有1 kg,10℃的水经下列三种不同过程加热成100 ℃的水,求过程的。
(1)系统与100℃的热源接触。
(2)系统先与55℃的热源接触至热平衡,再与100℃的热源接触。
物理化学核心教程(第二版)沈文霞编科学出版社_课后习题详解第三章

第三章热力学第二定律三.思考题参考答案1.自发过程一定是不可逆的,所以不可逆过程一定是自发的。
这说法对吗? 答:前半句是对的,但后半句是错的。
因为不可逆过程不一定是自发的,如不可逆压缩过程就是一个不自发的过程。
2.空调、冰箱不是可以把热从低温热源吸出、放给高温热源吗,这是否与热力学第二定律矛盾呢?答:不矛盾。
Claususe 说的是:“不可能把热从低温物体传到高温物体,而不引起其他变化”。
而冷冻机系列,把热从低温物体传到了高温物体,环境做了电功,却得到了热。
而热变为功是个不可逆过程,所以环境发生了变化。
3.能否说系统达平衡时熵值最大,Gibbs 自由能最小?答:不能一概而论,这样说要有前提,即:绝热系统或隔离系统达平衡时,熵值最大。
等温、等压、不做非膨胀功,系统达平衡时,Gibbs 自由能最小。
也就是说,使用判据时一定要符合判据所要求的适用条件。
4.某系统从始态出发,经一个绝热不可逆过程到达终态。
为了计算熵值,能否设计一个绝热可逆过程来计算?答:不可能。
若从同一始态出发,绝热可逆和绝热不可逆两个过程的终态绝不会相同。
反之,若有相同的终态,两个过程绝不会有相同的始态。
所以只有设计一个除绝热以外的其他可逆过程,才能有相同的始、终态。
5.对处于绝热钢瓶中的气体,进行不可逆压缩,这过程的熵变一定大于零,这说法对吗?答:对。
因为是绝热系统,凡是进行一个不可逆过程,熵值一定增大,这就是熵增加原理。
处于绝热钢瓶中的气体,虽然被压缩后体积会减小,但是它的温度会升高,总的熵值一定增大。
6.相变过程的熵变,可以用公式H S T∆∆=来计算,这说法对吗? 答:不对,至少不完整。
一定要强调是等温、等压可逆相变,H ∆是可逆相变时焓的变化值(,R p H Q ∆=),T 是可逆相变的温度。
7.是否,m p C 恒大于,m V C ?答:对气体和绝大部分物质是如此。
但有例外,4摄氏度时的水,它的,m p C 等于,m V C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S
nC
p,m
ln
T2 T1
nR ln
p1 p2
?
S1
nS
m
0.04 205 .14
8.21J
K 1
S2 S1 S ?
H nCp,m (T2 T1) ? G H (T2S2 T1S1) ?
6.1mol某双原子理想气体,从300K、pθ等温可逆压缩到10pθ, 计算该过程的Q、W、∆U、∆H、∆S、∆A和∆G。
1. 将1mol双原子理想气体从298K、100kPa的始态,恒熵
压缩到体积为5dm3,求终态温度及过程的Q、W、ΔU、
ΔH、ΔS。
解: 1mol理想气体 恒 熵1mol理想气体
298K,100kPa
T2,5dm3
T2
( V1
)
R CV ,m
T1
V2
V1
nRT1 p1
T2 ?
U nCV ,m (T2 T1) ?
解: 0.1mol理想气体 绝 热 不可逆 0.1mol理想气体
298.15K,100 kPa
T2,150kPa
Q 0 W U nCV ,m (T2 T1) 502 J
T2 539 .67 K H nCp,m (T2 T1) 702 .8J
S
nC p,m
ln
T2 T1
nR ln
p1 p2
1.39 J K 1
S(环) 0
S(隔) S
3. 1mol O2,始态为300K 和 1013.25kPa,经过恒温 可逆膨胀至终态压力为101.325 kPa。试计算该过程的
W、Q、ΔU、ΔH、ΔS。
解: 1mol理想气体 恒 温 可逆1mol理想气体
S 0
H nCp,m (T 2T1) ?
Q0
W U nCV ,m (T2 T1)
2. 将298.15K、100kPa的0.1mol的双原子理想气体绝热不
可逆压缩至150kPa,测得此过程系统得功502J,求终态温
度T2及该过程的 Q、ΔU、ΔH、ΔS系统、ΔS环境和ΔS隔离。
已知: fus Hm(0℃) 6.012kJ·mol1
Cp,m(s) = 37.20 Jmol–1K–1, Cp,m(l) = 76.28Jmol–1K–1 .
求:Q 、S 、G.
H2O(l) HSH2O(s)
T1 263 .15K,101 .325 kPa
263.15K ,101.325k Pa
S1
H1
H 3
S3
Qp H
S2
T2 273 .15KH,1021O.32(5lk)P aH 2 2H73.21O5K(,1s0)1.325kPa
H1 nCp,m (l)(T2 T1) 10 76.28 (273 .15 - 263 .15) 7.63kJ
300K,1013.25 kPa
300K,101.325kPa
dT 0 U H 0
S nR ln p1 ?
p2
WT ,r
nRT ln
p1 p2
?
Q W
4. 10mol H2(理想气体),从始态298.15K、50 kPa绝热
可逆地压缩到100 kPa,计算该过程的Q、W、∆U、∆H、
∆S、∆A和∆G 。S巳m 知 (298.15K) = 130.59 J·K-
1解·m:o1l-01m。ol理想气体 绝 热 可逆10mol理想气体
298.15K,50 kPa
T2,100kPa
T2
(
p2
)
R C p ,m
T2 363 .27 K
T1
p1
Q0
W U nCV ,m (T2 T1) 13.57kJ
(l )
ln
T2 T1
28.45 J K 1
S3
nC p,m (s) ln
T1 T2
13.87 J
K 1
S2
n fus Hm T2
220.10J K 1
S 205.52J K 1
G H TS 56210 263.15(- 205.52) 2127.4J
H3 nCp,m (s)(T1 T2 ) 10 37.2(263 .15 - 273 .15) 3.72kJ
H 2 n fus H m (273 .15 K ) 60.12kJ
H 56.21kJ
S S1 S2 S3
S1
nC p,m
1mol理想气体 恒 温 可逆1mol理想气体
300K,100 kPa
300K,1000kPa
dT 0 U H 0
S nR ln p1 ?
p2
WT ,r
nRT ln
p1 p2
?
A U TS ?
G H TS ?
Q W
7.10 mol 过冷水在 -10℃ ,101.325 kPa下结冰。
S S nSm (298 .15K ) 1363 .53J K 1
G 70.01kJ
A U (T2S2 T1S1) U S(T2 T1) 75.43kJ
5. 将298.15 K,p下的 1dm3 O2绝热压缩到 5p ,耗费功
502 J。求终态的T2和S2以及过程的ΔU、ΔH、ΔS 和ΔG。
H nCp,m (T 2T1) 18.99kJ
G H (T2S2 T1S1) H S(T2 T1)
10mol理想气体 S10mol理想气体
298.15K,100kPa 298.15K,50 kPa
S nR ln 100 57.63J K 1 50
已知 S(mO2,298.15 K) = 205.14 J·K1·mol-1,
Cp,m (O2) = 29.29 J·K-1·mol-1 。
n mol理想气体 绝 热 n mol理想气体
298.15K,101 RT1
0.04mol
Q 0 W U nCV ,m (T2 T1) 502 J T2 ?