教案:锐角三角函数——正弦

合集下载

初中数学教学课例《锐角三角函数—正弦》教学设计及总结反思

初中数学教学课例《锐角三角函数—正弦》教学设计及总结反思

教学策略选 择与设计
1、本节采用“探究——推理——发现”模式. 2、教师的教法突出活动的组织设计与方法的引导. 3、学生的学法突出探究、推理与发现.
教学过程
为了实现本节的教学目标,教学过程分为以下六个
环节: (一)复习旧知,情境引入;(二)合作探究,获
得新知;(三)巩固训练,落实双基;(四)强化提高, 培养能力;(五)小结归纳,拓展深化;(六)反馈练 习,自主评价。
生的求知欲,使师生在和谐的教学环境中零距离的接
触。课堂上学生们的思维空前活跃,发言的人数不断增
多,学生能从多角度认识问题,争先恐后地交流不同的
意见和方法,收到比较好的效果。这是本节课的特色。
二、本节课的不足之处及改进方法: 1、上述教学设计,课堂教学实施时时间有点紧, 应再精心设计。 2、在重难点的突破上还应加一些递进的习题,降低 题的难度,使优生学好,中等生也能跟上,这是我在以后 教学中应该改进的方向。
到解决生活中实际问题,思路清晰明了。
2、体现了“数学源于生活,寓于生活,用于生活”
的教育思想,突出了应用数学知识可以解决生活中的实
际问题。
课例研究综
3、在本节教学活动过程中,我主要采用学生小组

讨论、小组合作探究、小组展示、小组评价等方法,而
我走下讲台,到学生中去,以学生身份和学生一起探讨
问题。用一切可能的方式,激励回答问题的学生,激发学
初中数学教学课例《锐角三角函数—正弦》教学设计及总结 反思
学科
初中数学
教学课例名
《锐角三角函数—正弦》

本课是《义务教育课程标准实验教科书.数学.九年
级下册第 28 章第 1 节锐角三角函数》第 1 课时的内容。

《锐角三角函数》教学设计

《锐角三角函数》教学设计

《锐角三角函数》教学设计一、引言三角函数是高中数学的重要内容之一。

而锐角三角函数则是三角函数中的一个重要分支,涉及到正弦函数、余弦函数和正切函数。

本教学设计旨在帮助学生全面理解锐角三角函数的基本概念、性质和应用,并通过多种教学方法来提高学生的学习兴趣和掌握程度。

二、教学目标1. 理解锐角三角函数的定义及其基本性质;2. 掌握锐角三角函数的计算方法,并能在实际问题中应用;3. 培养学生的空间观念和逻辑思维能力。

三、教学重点1. 锐角三角函数的定义及基本性质;2. 锐角三角函数的计算方法;3. 锐角三角函数在实际问题中的应用。

四、教学内容及方法1. 锐角三角函数的定义及基本性质1.1 正弦函数的定义及性质1.2 余弦函数的定义及性质1.3 正切函数的定义及性质1.4 锐角三角函数的周期性质教学方法:通过课堂讲述、示意图和实例演示来介绍每个函数的定义及其性质,引导学生从几何角度理解函数的含义。

2. 锐角三角函数的计算方法2.1 正弦函数的计算2.2 余弦函数的计算2.3 正切函数的计算教学方法:以求解简单的三角函数值为例,引导学生利用单位圆、特殊角和三角函数定义来计算锐角三角函数的值,并通过练习巩固掌握。

3. 锐角三角函数在实际问题中的应用3.1 三角函数的应用于三角恒等变换3.2 三角函数在直角三角形中的应用3.3 三角函数在航空航天中的应用教学方法:通过实际例子和应用场景,引导学生将锐角三角函数应用于实际问题中,培养学生的问题解决能力和数学思维。

五、教学过程安排1. 引入锐角三角函数的概念和意义,解释本节课的教学目标。

2. 讲解锐角三角函数的定义及性质,通过示意图和实例演示来帮助学生理解。

3. 引导学生进行锐角三角函数的计算练习,提供不同难度的题目进行巩固。

4. 探究三角函数的恒等变换及其应用,让学生发现三角函数之间的关系。

5. 教学直角三角形中的三角函数应用,以实例演示和问题解决为主,培养学生的问题分析与解决能力。

【教案】锐角的三角函数——正弦与余弦

【教案】锐角的三角函数——正弦与余弦

锐角的三角函数——正弦与余弦教课目的【知识与技术】认识锐角三角函数的观点, 可以正确应用 sinA 、cosA 表示直角三角形中两边的比 .【过程与方法】经过锐角三角函数的学习进一步认识函数 , 领会函数的变化与对应的思想 , 领会数学在解决实质问题中的应用 .【感情、态度与价值观】1.经过学习培育学生的合作意识 .2.经过研究提升学生学习数学的兴趣 .要点难点【要点】锐角三角函数的观点【难点】锐角三角函数观点的理解.教课过程一、创建情境 , 导入新知师:前方我们学过在一个直角三角形中,假如一个锐角等于30o,那么这个角的对边与斜边的比值都等于如图,随意画一个o o,计算∠ A 的对边与斜边的比,Rt△ABC,使∠ C=90,∠A=45能获得什么结论?生:由勾股定理得,故结论:在一个直角三角形中,假如一个锐角等于45o,那么不论三角形的大小如何,这个角的对边与斜边的比值都等于师:回答的很对,一般地,当∠A取其余必定度数的锐角时,它的对边与斜边的比能否也是一个固定值?二、共同研究 , 获得新知教师多媒体课件出示 :师: 在这个图中 , 这些直角三角形都是相像的 , 当锐角 A 的大小确立后 , 不单∠A 的对边与邻边的比随之确立 , 还有一些量也是确立的 , 你知道还有哪些量也是确立的吗 ?学生思虑、沟通 .教师提示 : 还有哪两条边的比值也是确立的 ?生甲 : ∠ A的对边与斜边的比值也是确立的 .生乙 : 邻边与斜边的比值也是确立的 .师: 对.教师画一个图形 :师: 在这个直角三角形 ABC中, 我们把锐角 A 的对边与斜边的比叫做∠ A 的正弦 , 记作 sinA, 即 sinA===. 锐角 A 的邻边与斜边的比叫做∠ A 的余弦 , 记作 cosA,即 cosA===.锐角 A 的正弦、余弦、正切称为锐角 A 的三角函数 . 我们介绍了正弦、余弦 , 下边我们经过详细的实例加深对这些函数的印象 .三、举例应用 , 稳固新知老师多媒体课件出示 :【例 1】如图 , 在 Rt △ABC中, 两直角边 AC=12,BC=5求.∠ A 的各个三角函数值 .师: 要求这三个三角函数的值, 需要知道几条边的长 ?生: 三条.师: 此刻已知了哪几条边的长?生:AC、 BC两条边的长 .师: 那么我们需要求什么才能求出三个三角函数的值?生: 还要求出 AB的长 .师: 如何求呢 ?生: 用勾股定理 .师: 很好 ! 此刻请同学们求出AB的长 , 并进一步求出∠ A 的各个三角函数的值 .学生做题 .师: 请同学们将你的步骤和结果与课本上的解答相对比 , 对不正确的地方加以纠正 .学生比较 .教师多媒体课件出示 :【例 2】如图 , 在平面直角坐标系内有一点P(3,4), 连结 OP.求 OP与 x 轴正方向所夹锐角α的各个三角函数 .教师读题 , 学生思虑 .师: 从前是在直角三角形中 , 用直角三角形的边长之比求三角函数的 , 此刻没有直角三角形怎么办 ?学生思虑 .生: 作协助线 .师: 如何作 ?生: 过点 P 向 x 轴作垂线 , 垂足为 Q.这样在直角三角形 OPQ中求角α的三角函数值就行了 .师: 很好 ! 作出这样的协助线就方便了 , 就变为了我们从前碰到过的种类 , 同学们能求出吗 ?生: 能.师: 好! 此刻请同学们画出协助线, 并求出角α的三角函数值 .学生作图 , 计算 .师: 请同学们将结果与课本上的解答比较, 加以修正 .学生比较 , 修正 .四、练习新知师: 请同学们看课本第116 页练习的第 1、2 题.学生看题 .教师找两生疏别板操练习第1、2 题, 其余同学在下边做 , 而后集体校正。

锐角三角函数——正弦函数说课

锐角三角函数——正弦函数说课

学法分析
教学过程设计 板书设计
锐角三角函数——正弦函数
归纳概念:
教材分析
教法分析
在△ABC中,∠C=90°,我们把锐角A的对边 与斜边的比叫做∠A的正弦,记作sinA,
学法分析
A的对边 BC a sin A 斜边 AB c
指出:“sinA”是一个完整的符号,不要误解sin , A,记号里习惯省去角的符号“∠”. 单独写出符 号sin是没有意义的,因为它离开了确定的锐角无法 显示它的含义.
情感、态度与价值观:
学法分析
教学过程设计 板书设计
返回
锐角三角函数——正弦函数
教材分析
教法分析
重点:
使学生知道当锐角固定时,它的对边与斜 边的比值是固定的这一事实.
学法分析
难点:
正弦概念建立及表示 .
教学过程设计 板书设计
返回
锐角三角函数——正弦函数
教材分析
教法分析
确定本节主要教法为:
1.探究式教学
教学过程设计 板书设计
锐角三角函数——正弦函数
引入新知识,发现新问题:
教材分析
教法分析
当你走进学校,仰头望着操场旗杆上高高飘扬的五星红 旗时,你也许很想知道,操场旗杆有多高?
如图(1)所示,九年级(1)班的 同学们,站在离旗杆AE底部10米处的 D点,目测旗杆的顶部,视线AB与水 平线的夹角∠ABC为34°,并已知目 高BD为1米.便算出旗杆的实际高度. 你知道计算的方法吗?
2.体会这种研究问题的方法。
学法分析
教学过程设计 板书设计
返回
锐角三角函数——正弦函数
布置作业
教材分析 1.课本P92
教法分析 2.目标P85

锐角三角函数教案

锐角三角函数教案

第一章 直角三角形的边角关系1.1 锐角三角函数(2)一、知识点1. 认识锐角三角函数——正弦、余弦2. 用sinA,cosA 表示直角三角形中直角边与斜边的比, 用正弦、余弦进行简单的计算. 二、教学目标 知识与技能1. 能利用相似的直角三角形,探索并认识锐角三角函数——正弦、余弦,理解锐角的正弦与余弦和梯子倾斜程度的关系.2. 能够用sinA,cosA 表示直角三角形中直角边与斜边的比,能够用正弦、余弦进行简单的计算. 过程与方法1. 经历类比、猜想等过程.发展合情推理能力,能有条理地、清晰地阐述自己的观点. 2、体会解决问题的策略的多样性,发展实践能力和创新精神. 情感态度与价值观1. 积极参与数学活动,对数学产生好奇心和求知欲,学有用的数学. 2、形成实事求是的态度以及交流分享的习惯. 三、重点与难点重点:理解正弦、余弦的数学定义,感受数学与生活的联系. 难点:体会正弦、余弦的数学意义,并用它来解决生活中的实际问题. 四、复习引入设计意图:以练代讲,让学生在练习中回顾正切的含义,避免死记硬背带来的负面作用(大脑负担重,而不会实际运用),测量旗杆高度的问题引发学生的疑问,激起学生的探究欲望. 五、探究新知探究活动1(出示幻灯片4):如图,请思考: (1)Rt △AB 1C 1和Rt △AB 2C 2的关系是 ; (2)的关系是和222111AB C B AB C B ; (3)如果改变B 2在斜边上的位置,则的关系是和222111AB C B AB C B ; 思考:从上面的问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值__________,根据是______________________________________.B 1B 2AC 1C 2它的邻边与斜边的比值呢?设计意图:1、在相似三角形的情景中,让学生探究发现:当直角三角形的一个锐角大小确定时,它的对边与斜边的比值也随之确定了.类比学习,可以知道,当直角三角形的一个锐角大小确定时,它的邻边与斜边的比值也是不变的.2、在探究活动中发现的规律,学生能记忆得更加深刻,这比老师帮助总结,学生被动接受和记忆要有用得多.归纳概念1、正弦的定义:如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边BC与斜边AB的比叫做∠A的正弦,记作sinA,即sinA=________.2、余弦的定义:如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边AC与斜边AB的比叫做∠A的余弦,记作cosA,即cosA=_ _____.3、锐角A的正弦,余弦,正切和余切都叫做∠A的三角函数.温馨提示(1)sinA,cosA是在直角三角形中定义的,∠A是一个锐角;(2)sinA,cosA中常省去角的符号“∠”.但∠BAC的正弦和余弦表示为: sin∠BAC,cos∠BAC.∠1的正弦和余弦表示为: sin∠1,cos∠1;(3)sinA,cosA没有单位,它表示一个比值;(4)sinA,cosA是一个完整的符号,不表示“sin”,“cos”乘以“A”;(5)sinA,cosA的大小只与∠A的大小有关,而与直角三角形的边长没有必然的关系.设计意图:1、类比正切的定义,让学生理解正弦和余弦的含义;2、让学生了解:求一个角的三角函数,是指求这个角的正切、正弦和余弦,不是单指某一个值;3、正弦和余弦容易出现一些不规范的表示方法,在这里先进行明确,可以减少日后不必要的错误.探究活动2:我们知道,梯子的倾斜程度与tanA有关系,tanA越大,梯子越陡,那么梯子的倾斜程度与sinA和cosA有关系吗?是怎样的关系?设计意图:在探究中进一步让学生理解正弦和余弦的含义,体会正弦和余弦的生活意义,避免数学知识的枯燥无味,通过利用正弦和余弦来描述梯子的倾斜程度拓展了学生思维,感受到从不同角度去解释一件事物的合理性,感受数学与生活的联系.探索发现:梯子的倾斜程度与sinA,cosA的关系:sinA越大,梯子;cosA 越,梯子越陡.探究活动3:如图,在Rt△ABC中,∠C=90°,AB=20,,求BC和cosB.BA C通过上面的计算,你发现sinA与cosB有什么关系呢? sinB与cosA呢?在其它直角三角形中是不是也一样呢?请举例说明.小结规律:在直角三角形中,一个锐角的正弦等于另一个锐角的 .设计意图:在探究中进一巩固正弦和余弦的定义,同时发现直角三角形中两个锐角的三角函数值之间存在一定的关系,拓展学生的知识储备.六、归类提升类型一:已知直角三角形两边长,求锐角三角函数值例1、在Rt△ABC中,∠C=90°, BC=3,AB=5,求A的三个三角函数值.类型二:利用三角函数值求线段的长度例2、如图,在Rt△ABC中,∠B=90°,AC=200,sinA= ,求BC的长七、总结延伸1、锐角三角函数定义:sinA= ,cosA= ,tanA= ;2、温馨提示:(1)sinA,cosA,tanA,是在直角三角形中定义的,∠A是锐角(注意数形结合,构造直角三角形);(2)sinA,cosA,tanA是一个完整的符号,表示∠A的正切,习惯省去“∠”号;(3)sinA,cosA,tanA都是一个比值,注意区别,且sinA,cosA,tanA均大于0,无单位;(4)sinA,cosA,tanA的大小只与∠A的大小有关,而与直角三角形的边长没有必然关系;(5)角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等.3、在用三角函数解决一般三角形或四边形的实际问题中,应注意构造直角三角形.设计意图:课堂小结,检查学生掌握情况,同时能对知识进行及时梳理,有利于学生归纳和消化,特别对于重要的方法提示和要注意的细节,能再次呈现,使学生印象深刻..八、 随堂小测1、下图中∠ACB=90° ,CD ⊥AB 指出∠A2、1题中如果CD=5,AC=10,则sin ∠ACD= sin ∠DCB=3、如图:在等腰△ABC 中,AB=AC=5,BC=6.求: sinB,cosB,tanB设计意图:设计各种题型,可以检验学生的方法掌握情况,同时巩固学生的知识,提高学生的运用能力,若时间不允许该部分也可作为课后作业完成.BCABCsin a A c=cos b A c =sin b B c=cos a B c=bABCa┌csinA=cosB ,cosA=sinB (∠A+∠B=90。

数学教案:锐角三角函数

数学教案:锐角三角函数

数学教案:锐角三角函数一、教学目标1.理解正弦、余弦、正切函数的概念及其图像;2.掌握三角函数在锐角三角形中的性质;3.掌握三角函数定理及其用法;4.解决三角函数相关的简单问题。

二、教学重点1.正弦、余弦、正切函数的定义及图像;2.解锐角三角形中各角度的三角函数值及定理;3.使用三角函数定理解决相关问题。

三、教学难点1.正弦、余弦、正切函数在锐角三角形中的理解和应用;2.对三角函数定理的掌握及其运用。

四、教学过程1. 引入让学生想一想,我们在初中学习了什么三角函数?然后向学生介绍锐角三角函数,并通过以下问题引入:在直角三角形ABC中,∠C是直角角,sinA=0.6,AC=5cm,问BC等于多少?2. 理解正弦、余弦、正切函数的概念及其图像定义正弦函数,让学生理解和掌握正弦函数的性质,使学生通过图片感受正弦函数的变化。

定义余弦函数,同样理解和掌握余弦函数的性质,使学生通过图片感受余弦函数的变化。

定义正切函数,同样理解和掌握正切函数的性质,使学生通过图片感受正切函数的变化。

3. 掌握三角函数在锐角三角形中的性质在锐角三角形中,了解并掌握正弦、余弦、正切等三角函数与角的关系。

知道在锐角三角形中,角度越小,正弦与余弦的值越小,正切的值越大。

4. 掌握三角函数定理及其用法学习正弦定理,余弦定理和正切定理等三角函数定理,并理解它们的用法。

通过做一些例题和练习,使学生掌握运用三角函数定理解决问题的方法。

5. 解决三角函数相关的简单问题做一些例子,并让学生尝试自己解决一些简单的问题,以更好地理解掌握三角函数。

五、教学方法1.课堂讲解;2.图片演示;3.组内讨论和互动;4.课后练习和作业。

六、教学评估1.课堂互动和答题结果;2.课后练习和作业评估;3.课程评价表。

七、教学过程评价通过这样的教学过程,学生可以更好地理解和掌握锐角三角函数的知识。

学生可以借助图像更好地感受正弦、余弦和正切函数的变化,结合三角函数定理解决相关问题。

锐角三角函数数学教案

锐角三角函数数学教案

锐角三角函数数学教案标题:锐角三角函数数学教案一、教学目标:1. 理解并掌握正弦、余弦、正切等基本概念。

2. 学会利用直角三角形的边长关系求解三角函数值。

3. 能够运用锐角三角函数解决实际问题。

二、教学内容:1. 锐角三角函数的基本概念- 正弦、余弦、正切的定义- 特殊角的三角函数值2. 锐角三角函数的应用- 利用直角三角形的边长关系求解三角函数值- 利用三角函数解决实际问题三、教学过程:1. 引入新课:- 通过展示一些生活中常见的角度和比例问题,引入锐角三角函数的概念。

2. 讲授新知:- 介绍正弦、余弦、正切的定义,并举例说明。

- 介绍特殊角的三角函数值,并让学生记住这些基本的三角函数值。

3. 巩固练习:- 给出一些简单的直角三角形,让学生计算对应的三角函数值。

4. 拓展应用:- 给出一些实际的问题,让学生尝试使用锐角三角函数来解决。

5. 总结归纳:- 回顾本节课的主要知识点,强调锐角三角函数在实际生活中的应用。

四、教学方法:1. 直观演示法:通过实物或模型直观展示锐角三角函数的概念。

2. 启发引导法:通过提出问题,引导学生思考,激发他们的学习兴趣。

3. 实践操作法:让学生亲自参与实践活动,提高他们解决问题的能力。

五、教学评估:1. 过程评价:观察学生在课堂上的表现,包括他们的参与度、理解程度等。

2. 结果评价:通过作业和测试,检查学生对知识的掌握情况。

六、教学反思:1. 对于学生的反馈进行分析,找出教学中的不足,以便改进。

2. 根据学生的接受程度,调整教学进度和难度。

九年级数学上册《锐角三角函数》教案、教学设计

九年级数学上册《锐角三角函数》教案、教学设计
3.小组合作题需充分发挥团队协作精神,共同完成任务;
4.作业完成后,请学生认真检查,确保答案的正确性。
4.利用信息技术手段,如动态课件、网络资源等,丰富教学手段,提高学生的学习兴趣和积极性。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生的学习热情,提高学生的自主学习能力。
2.通过解决实际问题,使学生认识到数学知识在实际生活中的重要作用,增强学生的应用意识。
3.培养学生勇于探索、克服困难的精神,提高学生的自信心和自尊心。
九年级数学上册《锐角三角函数》教案、教学设计
一、教学目标
(一)知识与技能
1.使学生掌握锐角三角函数的定义,理解正弦、余弦、正切函数的概念,并能够运用这些概念进行简单的计算。
2.培养学生运用三角函数解决实际问题的能力,如测量物体的高度、计算角度等。
3.使学生掌握特殊角的三角函数值,并能熟练运用到实际问题中。
(2)运用三角函数解决实际问题,尤其是将实际问题抽象为数学模型,并运用三角函数进行求解;
(3)掌握特殊角的三角函数值,并能灵活运用到实际问题中。
(二)教学设想
1.教学策略:
(1)采用情境教学法,创设实际问题情境,引导学生主动探究锐角三角函数的定义和性质;
(2)运用任务驱动法,设计具有挑战性的任务,让学生在实践中掌握三角函数的计算方法和应用;
(3)了解三角函数在其他学科领域的应用,如物理、工程等。
4.小组合作题:
(1)分组讨论:如何利用三角函数解决实际问题?举例说明;
(2)小组合作完成一份关于锐角三角函数在实际问题中应用的报告。
作业要求:
1.学生需独立完成基础题,提高题和拓展题可根据个人能力选择完成;
2.作业过程中,要求学生注重解题思路和方法的总结,养成良好的学习习惯;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巢湖市高林初中教案
28.1、锐角三角函数——正弦
教学目标:
知识与技能:1、在了解认识正弦(sinA )的基础上,通过探究使学生知道当直角三角形
的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。

2、能根据正弦概念正确进行计算
过程与方法:1、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一
事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。

2、在直角三角形中,初步建立边、角之间的关系,初步了解解决三角形问题的新途径.
情感态度:使学生体验数学活动中充满着探索与创造,并使之能积极参与数学学习活动. 教学重点:理解认识正弦(sinA )概念,通过探究使学生知道当锐角固定时,它的对边
与斜边的比值是固定值这一事实.
教学难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值
的事实。

教学过程:
新课导入:
问题1、 为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修
建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m ,那么需要准备多长的水管?
二、新课教学 (一)、认识正弦
1、认识角的对边、邻边。

如图,在Rt △ABC 中,∠A 所对的边BC ,我们称为∠A 的对边;∠A 所在的直角边AC ,我们称为∠A 的邻边。

师:指名学生说出∠B 的对边和邻边
A
C B
巩固练习:﹙指名学生回答﹚
如图,﹙1﹚在Rt △ABE 中,∠BEA 的对边是 ,邻边
是 ,斜边是 。

﹙2﹚在Rt △DCE 中,∠DCE 的对边是 ,邻边是 ,斜边是 。

﹙3﹚在Rt △ADE 中,∠DAE 的对边是 ,邻边是 ,斜边是 。

2、认识正弦
如图,在Rt △ABC 中,∠A 、∠B 、∠C 所对的边分别记为a 、b 、c 。

师:在Rt △ABC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦。

记作sinA 。

板书:sinA =A a
A c
∠=∠的对边的斜边 (举例说明:若a=1,c=3,
则sinA=3
1)
注意:1、sinA 不是 sin 与A 的乘积,而是一个整体;
2、正弦的三种表示方式:sinA 、sin56°、sin ∠DEF
3、sinA 是线段之间的一个比值;sinA 没有单位。

提问:∠B 的正弦怎么表示?要求一个锐角的正弦值,我们需要知道直角三角形中的哪些边?
3、尝试练习:
如图,在Rt △ABC 中,∠C=90°,求sinA 和sinB 的值. (二)探究:
1、求出下面每组三角形中指定锐角的正弦值,然后思考或与同桌讨论这些正弦值有何规律,由此发现了什么?(要求:分组完成)
(1)、在Rt △ABC 中,∠A=30°,分别求出图1、图2、图3中∠A 的正弦值。

(sinA=sin30°=2
1)
A
B
E
C
D
(1)
C
B A
4
3
(2)、在Rt △DEF 中,∠D=45°,分别求出图1、图2、图3中∠D 的正弦值。

(sinD=sin45°=
2
2

(3)、在Rt △ABC 中,∠A=60°,分别求出图1、图2、图3中∠A 的正弦值。

(sinA=sin60°=
2
3

2、引导归纳小结:
(1)每组指名学生说出计算结果(教师板书),并说出自己发现(或讨论出)的关于正弦值的规律。

(学生:一个锐角的正弦值与边的长短无关,与锐角的大小有关;锐角越大,正弦值越大,反之亦然。


(2)师:大家刚才所总结的是否正确呢?下面我们来验证一下吧!
观察图中的Rt △AB 1C 1、Rt △AB 2C 2和Rt △AB 3C 3,它
们之间
有什么关系?
分析:由图可知Rt △AB 1C 1∽Rt △AB 2C 2∽Rt △AB 3C 3,

1
C
A
图2
图1
F
D
图2
D
图3
n

1
A
B
图2
图3
19.3.2
所以有:
k AB C B AB C B AB C B ===3
3
3222111,即sinA=k 可见,在Rt △ABC 中,锐角A 的正弦值与边的长短无关,而与∠A 的度数大小有关。

也即是对于锐角A 的每一个确定的值,其对边与斜边的比值是惟一确定的. (三)例题教学:
例1、在△ABC 中,∠C 为直角。

(1)已知AC=3,
sinA 的值.(学生完成)
(2)已知sinB=5
4,求sinA 的值.
解:(1)如图,在Rt △ABC 中,根据勾股定理可得:()
5
31422
=-=
BC ,∴
1470145sin =
==
AB BC A ; (2)∵sinB=5
4=AB AC ,故设
AC=4k ,则AB=5k,根据勾股定理可得:BC=3k ,所以:sinA=5
3
小结:①求正弦值或运用正弦值求线段时,要根据正弦的概念,找准相应的边,不能张冠李戴.②正弦值只是一个比值,不能直接当作边长用。

三、巩固练习: 1、见课件 四、归纳小结
本节课中你有哪些收获与大家交流? 五、作业:
1、《基础训练》
28.1.1 2、预习课本P80-82。

相关文档
最新文档