2016年南京市中考数学试卷
历年江苏省南京市中考数学试卷(含答案)

2017 年江苏省南京市中考数学试卷一、选择题(本大题共 6 小题,每小题2 分,共12 分。
在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.(2分)计算12+(﹣18)÷(﹣6)﹣(﹣3)×2的结果是()A.7 B.8 C.21 D.362.( 2 分)计算106×(102)3÷104的结果是()A.103 B.107 C.108 D.1093.( 2 分)不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有 4 个面是三角形;乙同学:它有8 条棱,该模型的形状对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥4.( 2 分)若< a< ,则下列结论中正确的是()A.1< a< 3 B.1< a< 4C.2< a< 3D.2< a< 45.( 2 分)若方程(x﹣5)2=19的两根为a和b,且a> b,则下列结论中正确的是()A. a 是19 的算术平方根B. b 是19 的平方根C.a﹣ 5 是19 的算术平方根D.b+5 是19 的平方根6.( 2 分)过三点A(2,2),B (6,2),C(4,5)的圆的圆心坐标为()A.(4,)B.(4,3)C.(5,)D.(5,3)二、填空题(本大题共10 小题,每小题2分,共20 分)7.( 2 分)计算:| ﹣3| = ;= .8.( 2 分)2016年南京实现GDP约10500亿元,成为全国第11 个经济总量超过万亿的城市,用科学记数法表示10500 是.9.( 2 分)分式在实数范围内有意义,则x的取值范围是.10.( 2 分)计算+ × 的结果是.11.( 2 分)方程﹣=0的解是.12.( 2 分)已知关于 x 的方程x 2+px+q=0 的两根为﹣3 和﹣ 1,则 p= ,q= .13.( 2分)如图是某市 2013﹣ 2016年私人汽车拥有量和年增长率的统计图,该市私人汽车拥有量年净增量最多的是 年,私人汽车拥有量年增长率最大14. ( 2 分)如图,∠1 是五边形 ABCDE 的一个外角,若∠ 1=65°,则∠ A+∠ B+∠15.( 2 分)如图,四边形 ABCD 是菱形,⊙ O 经过点 A 、 C 、 D ,与BC 相交于点E ,连接AC 、 AE .若∠ D=78°,则∠ EAC=°.16.( 2 分)函数y 1=x 与 y 2= 的图象如图所示,下列关于函数y=y 1+y 2的结C+∠D=论:①函数的图象关于原点中心对称;②当x<2 时,y随x的增大而减小;③当x> 0 时,函数的图象最低点的坐标是(2,4),其中所有正确结论的序号是.三、解答题(本大题共11 小题,共88 分)17.(7 分)计算(a+2+ )÷(a﹣).18.(7 分)解不等式组请结合题意,完成本题的解答.(1)解不等式①,得,依据是:.(2)解不等式③,得.(3)把不等式①、②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集.19.(7 分)如图,在?ABCD中,点E,F分别在AD,BC上,且AE=CF,EF,B D相交于点O,求证:OE=OF.20.(8 分)某公司共25 名员工,下表是他们月收入的资料.月收入/元4500 1800 1000 550 480 340 300 2200 0 0 00000人数 1 1 1 3 6 1 11 1(1)该公司员工月收入的中位数是元,众数是元.2)根据上表,可以算得该公司员工月收入的平均数为6276元,你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.21.(8 分)全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.22.(8 分)“直角”在初中几何学习中无处不在.如图,已知∠AOB,请仿照小丽的方式,再用两种不同的方法判断∠AOB是否为直角(仅限用直尺和圆规).23.(8 分)张老师计划到超市购买甲种文具100 个,他到超市后发现还有乙种文具可供选择,如果调整文具的购买品种,每减少购买 1 个甲种文具,需增加购买 2 个乙种文具.设购买x 个甲种文具时,需购买y 个乙种文具.(1)①当减少购买 1 个甲种文具时,x= ,y= ;②求y 与x之间的函数表达式.(2)已知甲种文具每个 5 元,乙种文具每个 3 元,张老师购买这两种文具共用去540 元,甲、乙两种文具各购买了多少个?24.(8 分)如图,PA,PB是⊙O 的切线,A,B为切点,连接AO并延长,交PB的延长线于点C,连接PO,交⊙O 于点D.(1)求证:PO平分∠APC;(2)连接DB,若∠C=30°,求证:DB∥ AC.25.(8 分)如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处,一艘海轮位于港口 A 的正南方向,港口 B 的正西方向的 D 处,它沿正北方向航行5km 到达E处,测得灯塔C在北偏东45°方向上,这时,E处距离港口A有多远?(参考数据:sin37≈ ° 0.60,cos37≈° 0.80,tan37 °≈ 0.75)26.(8 分)已知函数y=﹣x2+(m﹣1)x+m(m 为常数).(1)该函数的图象与x 轴公共点的个数是.A.0 B.1 C.2 D.1 或 2( 2)求证:不论m 为何值,该函数的图象的顶点都在函数y=(x+1)2的图象上.(3)当﹣2≤ m≤ 3 时,求该函数的图象的顶点纵坐标的取值范围.27.(11 分)折纸的思考.【操作体验】用一张矩形纸片折等边三角形.第一步,对折矩形纸片ABCD(AB> BC)(图①),使AB 与DC 重合,得到折痕EF,把纸片展平(图②).第二步,如图③,再一次折叠纸片,使点C落在EF上的P处,并使折痕经过点B,得到折痕BG,折出PB、PC,得到△PBC.(1)说明△PBC是等边三角形.【数学思考】(2)如图④,小明画出了图③的矩形ABCD和等边三角形PBC,他发现,在矩形ABCD中把△PBC经过图形变化,可以得到图⑤中的更大的等边三角形,请描述图形变化的过程.(3)已知矩形一边长为3cm,另一边长为 a cm,对于每一个确定的a的值,在矩形中都能画出最大的等边三角形,请画出不同情形的示意图,并写出对应的a的取值范围.【问题解决】(4)用一张正方形铁片剪一个直角边长分别为4cm 和1cm 的直角三角形铁片,所需正方形铁片的边长的最小值为cm.2017 年江苏省南京市中考数学试卷参考答案与试题解析一、选择题(本大题共 6 小题,每小题2 分,共12 分。
管中窥豹可见一斑——从2016年南京市中考数学命题特点分析

Liberal Arts Guidance 2016年12月(总第251期)文理导航No.12,2016SerialNo.251管中窥豹可见一斑———从2016年南京市中考数学命题特点分析张大伟(南京师范大学附属中学江宁分校,江苏南京211100)【摘要】今年的中考试题仍注重对双基的考查,大部分题型来源于教材,贴近初中数学的教学实际,知识点的考查既全面,又突出重点,注重对初中数学中蕴含的数学思想方法和学生思维能力的考查。
本文着重分析了2016年数学中考试卷命题的特点,并由此带来对教学的启发。
【关键词】中考数学;试卷命题;特点分析;启发一、试卷特点分析1.回归课本,考查考生的双基水平。
例如,(试卷第9题)分解因式2a(b+c)-3(b+c)的结果是______。
评析:本题考查了因式分解,应用提公因式法即可解题。
2.关注生活,让数学有教育意义。
例如,(试卷第1题)为了方便市民出行。
提倡低碳交通,近几年南京市大力发展公共自行车系统。
根据规划,全市公共自行车总量明年将达70000辆。
用科学计数法表示70000是A .0.7×105 B.7×104 C.7×105 D.70×103评析:本题考查了科学记数法,科学记数法的表示形式为a ×10n 形式,其中1≤|a |<10,n 为整数,70000=7×104。
故选B 。
此题题目虽简单,但它取材于生活,又应用于生活,提倡“低碳交通”,具有教育意义。
3.注重学习过程,促进学生发展。
例如,(试卷第20题)我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表:评析:本题主要考查了整个初中阶段学生对平移、轴对称、旋转这三种图形变化的掌握情况,注重学生在学习中数学活动经验的积累,需要学生既要重视学习结果也要重视学习过程。
4.稳扎稳打,注重对考生基本能力的培养。
例如,(试卷第25题)图中是抛物线形拱桥,P 处有一照明灯,水面OA 宽4m ,从O 、A 两处观测P 处,仰角分别为α,β,且tan α=1,tan β=3,以O 为原点,OA 所在直线为x 轴建立直角坐标系。
2016年中考数学真题试题及答案(word版)

(2)共12种情况,有6种情况两次摸到相同颜色棋子,所以概率为 . 24. 解:(1)设第一批购进水果x千克,则第二批购进水果2.5千克,依
据题意得: ,解得x=200,经检验x=200是原方程的解,∴x+2.5x=700, 答:这两批水果功够进700千克; (2)设售价为每千克a元,则: , 630a≥7500×1.26,∴ ,∴a≥15,答:售价至少为每千克15元. 25. (1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD, ∠EAB=90°+∠EAD, ∴∠GAD=∠EAB,又∵AG=AE,AB=AD,∴△GAD≌△EAB, ∴EB=GD; (2)EB⊥GD,理由如下:连接BD,由(1)得:∠ADG=∠ABE,则 在△BDH中, ∠DHB=180°-(∠HDB+∠HBD)=180°-90°=90°,∴EB⊥GD; (3)设BD与AC交于点O,∵AB=AD=2在Rt△ABD中,DB= , ∴EB=GD= . 26. 解:(1)由y=0得,ax2-2ax-3a=0,∵a≠0,∴x2-2x-3=0,解得 x1=-1,x2=3, ∴点A的坐标(-1,0),点B的坐标(3,0); (2)由y=ax2-2ax-3a,令x=0,得y=-3a,∴C(0,-3a),又 ∵y=ax2-2ax-3a=a(x-1)2-4a,得D(1,-4a),∴DH=1,CH=-4a(-3a)=-a,∴-a=1,∴a=-1,∴C(0,3),D(1,4), 设直线CD的解析式为y=kx+b,把C、D两点的坐标代入得, ,解得 , ∴直线CD的解析式为y=x+3; (3)存在.由(2)得,E(-3,0),N(-
保密 ★ 启用前
2016年中考真题数学试卷
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的 四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题 卡内相应的位置上) 1、计算的结果是( ) A、 B、 C、1 D、22、若∠α的余角是30°,则cosα的值是( ) A、 B、 C、 D、 3、下列运算正确的是( ) A、 B、 C、 D、4、下列图形是轴对称图形,又是中心对称 图形的有( )
2016年南京市中考数学试卷及答案

市2016年初中毕业生学业考试数学一.选择题1.为了方便市民出行.提倡低碳交通,近几年市大力发展公共自行车系统.根据规划,全市公共自行车总量明年将达70 000辆.用科学计数法表示70 000是 A .0.7⨯105 B. 7⨯104C. 7⨯105D. 70⨯1032.数轴上点A 、B 表示的数分别是5、-3,它们之间的距离可以表示为 A .-3+5 B. -3-5 C. |-3+5| D. |-3-5| 3.下列计算中,结果是6a 的是 A .B.23a a C . 122a a ÷D.4、下列长度的三条线段能组成钝角三角形的是A .3,4,4 B. 3,4,5C. 3,4,6D. 3,4,75.己知正六边形的边长为2,则它的切圆的半径为A .C. 26、若一组数据2,3,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为A . B.C. 或6D. 或二.填空题7. ____________.8. 若式子x 在实数围有意义,则x 的取值围是________. 9. 分解因式的结果是_______.10.3________22.(填“>””<”或“=”号) 11.方程132x x=-的解是_______. 12.设12,x x 是方程的两个根,且12x x +-12x x =1,则12x x +=______,=_______.13. 如图,扇形OAB 的圆心角为122°,C 是弧AB 上一点,则_____°.14. 如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO,下列结论①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC,其中正确结论的序号是_______.15. 如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD.EF是△ODB的中位线,且EF=2,则AC的长为________.16.如图,菱形ABCD的面积为120,正方形AECF的面积为50,则菱形的边长为_______.三.解答题17. 解不等式组并写出它的整数解.18. 计算19. 某校九年级有24个班,共1000名学生,他们参加了一次数学测试,学校统计了所有学生的乘积,得到下列统计图,(1)求该校九年级学生本次数学测试成绩的平均数;(2)下列关于本次数学测试说确的是()A.九年级学生成绩的众数与平均数相等B.九年级学生成绩的中位数与平均数相等C.随机抽取一个班,该班学生成绩的平均数等于九年级学生成绩的平均数D. 随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数。
2016年数学中考试题及答案

2016年数学中考试题及答案【篇一:2016年全国中考数学模拟卷及答案】=txt>数学试卷一、选择题下面各题均有四个选项,其中只有一个是符合题意的。
..1.截止到2016年6月1日,北京市已建成39个地下调蓄设施,蓄水能力达到2 40 000立方平米。
将1240 000用科学记数法表示应为2.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是a.a b.bc.cd.d3.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为 a. b. c. d.4.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为6.如图,公路ac,bc互相垂直,公路ab的中点m与点c被湖隔开,若测得am的长为1.2km,则m,c两点间的距离为a.0.5km b.0.6km c.0.9km d.1.2km7.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是 a.21,21 b.21,21.5 c.21,22 d.22,228.右图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图。
若这个坐标系分别以正东、正北方向为x轴、y轴的正方向。
表示太和门的点坐标为(0,-1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是a.景仁宫(4,2)b.养心殿(-2,3) c.保和殿(1,0) d.武英殿(-3.5,-4)9.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:a.购买a类会员年卡b.购买b类会员年卡 c.购买c类会员年卡d.不购买会员年卡10.一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的ab,bc,ca,oa,ob,oc组成。
为记录寻宝者的进行路线,在bc的中点m处放置了一台定位仪器,设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为a.a→o→bb.b→a→cc.b→o→c d.c→b→o 二、填空题11.分解因式:5x2-10x2=5x=_________.12.右图是由射线ab,bc,cd,de,组成的平面图形,则∠1+∠2+∠3+∠4+∠5=_____.13.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架。
2016年南京中考各科考试说明(附名师解析)

2016年南京中考各科考试说明!!!(附名师解析)语文:扎实推进,稳步向前南京市学科带头人、伯乐中学王芳秉承素质教育精神,贯彻课程标准理念。
近年来,在全民阅读的大背景下,南京市语文学科中考试卷高度重视学生语文素养的培育,密切关注学生读书能力的提高,既凸现学科教学的本色,又彰显古都文化的底蕴,赢得了多方面的好评,也为进一步提升中考命题及日常教学质量奠定了良好的基础。
《2016年南京市中考指导书·语文》一书再度继承传统,保持特色,体现出扎实、稳健的态度。
全书仍由“考试说明”和“复习训练”两部分组成。
在“考试说明”中我们看到,“考试范围与内容”与2015年基本一致,只有极微小的变动。
比如,在“考试内容”的“积累运用”第6条,增加了“了解课文涉及的重要作家作品知识”。
这是《语文课程标准》在七至九年级课程内容中的要求,是对学生语文知识积淀的考量,难度仅限于“了解”。
关于汉字书写,2016年中考仍考查“正确、规范地书写正楷字或行楷字,力求美观”,让学生自主选择字体。
写作部分也与去年相同,在考查文章写作的同时,还考查作文修改。
而“考试形式与试卷结构”部分则与去年完全相同。
“题型示例”部分精选了2015年各地中考试卷中的优秀试题,以与中考试卷结构相同的样式排布,便于学生了解与练习。
“复习训练”部分在原有基础上做了很好的修订,不仅保留了原先优质的训练题,而且根据考试的变化趋势,增设了“非连续文本阅读”和“作文修改”的专项训练。
训练题紧扣今年的考试方向,贴合考试内容,有较大的启发性和训练价值。
该部分按照试卷结构分为“积累运用”“阅读”与“写作”三部分,每部分都设计与编辑了各类形式、各种梯度的训练题,且由易到难,涉及面广,利于复习。
比如现代文阅读的主要文体:小说、散文、说明文和议论文四类,各选择了12篇文本,内容关涉生活的多个方面,题目囊括阅读的基本能力,可以说,对于2016届初中毕业生而言,认真完成此书的“复习训练”,真正掌握初中阶段的语文知识,并能举一反三地运用,在中考中取得理想的语文成绩是完全可能的。
2016年南京市建邺区中考一模数学试卷含答案

2016年初三学情调研试卷(Ⅰ)数 学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上. 3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.(2016•建邺1,1,2分)下列计算结果为负数的是 A .-1+2 B .|-1| C .(-2)2D .-2-11.D2.(2016•建邺1,2,2分)计算a 5·(-1)2的结果是A .-a 3B .a 3C .a 7D .a 102.B3.(2016•建邺1,3,2分)若a <22<b ,其中a 、b 为两个连续的整数,则ab 的值为 A .2 B .5 C .6 D .123.C4.(2016•建邺1,4,2分)如图是一几何体的三视图,这个几何体可能是A .三棱柱B .三棱锥C .圆柱D .圆锥4.A5.(2016•建邺1,5,2分)如图,已知a ∥b ,∠1=115°,则∠2的度数是A .45°B .55°C .65°D .85°主视图左视图俯视图(第4题)a b12(第5题)5.C6.(2016•建邺1,6,2分)在学习“一次函数与二元一次方程”时,我们知道了两个一次函数图像的交点坐标与其相应的二元一次方程组的解之间的关系.请通过此经验推断:在同一平面直角坐标系中,函数y=5x2-3x+4与y=4x2-x+3的图像交点个数有A.0个B.1个C.2个D.无数个6.B二、填空题(本大题共10小题,每小题2分,共计20分.不需写出解答过程,请把答案直接填写在答题卡....上)...相应位置7.(2016•建邺1,7,2分)若式子x-2在实数范围内有意义,则x的取值范围是▲ .7.x≥28.(2016•建邺1,8,2分)若a-b=3,a+b=-2,则a2-b2=▲ .8.-69.(2016•建邺1,9,2分)据统计,2016年春节“黄金周”(2月7日至13日)期间,南京共接待游客4 880 000人.将4 880 000用科学记数法表示为▲.9.4.88×10610.(2016•建邺1,10,2分)若△ABC∽△A'B'C',相似比为1:3,则△ABC与△A'B'C'的面积比为▲ .10.1: 911.(2016•建邺1,11,2分)已知圆锥的底面半径为1cm,母线长为3cm,则其侧面积为▲ cm2(结果保留π).11.3π12.(2016•建邺1,12,2分)已知关于x的方程x2+mx-3=0的一个根是1,则它的另一个根是▲ .12.-313.(2016•建邺1,13,2分)某校射击队从甲、乙、丙、丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示.请你根据表中数据选一人参加比赛,最合适的人选是▲ .13.丁14.(2016•建邺1,14,2分)在同一平面直角坐标系中,正比例函数y =k 1x 的图像与反比例函数y =k 2x的图像一个交点的坐标是(-2,3),则它们另一个交点的坐标是 ▲ . 14.(2,-3)15.(2016•建邺1,15,2分)如图,在正十边形A 1A 2A 3A 4A 5A 6A 7A 8A 9A 10中,连接A 1A 4、A 1A 7,则∠A 4A 1A 7= ▲ °. 15.54°16.(2016•建邺1,16,2分)如图①,在等边△ABC 中,CD ⊥AB ,垂足为D ,⊙O 的圆心与点D 重合,⊙O 与线段CD 交于点E ,且CE =4cm .将⊙O 沿DC 方向向上平移1cm 后,如图②,⊙O 恰与△ABC 的边AC 、BC 相切,则等边△ABC 的边长为 ▲ cm .16.1433A 5A 6 A 7 A 8A 910A 1 A 2A 3 A 4(第15题)三、解答题(本大题共有11小题,共计88分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(2016•建邺1,17,6分)先化简,再求值:(1a -1b )÷a 2-b2ab,其中a =2+1,b =2-1.17.(本题6分)解:原式=(b -a ab )·ab(a +b )(a -b )································································ 2分=-1a +b . ···················································································· 4分当a =2+1,b =2-1时,原式=- 1 (2+1)+(2-1)=- 1 22=- 24. ··································· 6分18.(2016•建邺1,18,6分)解不等式组⎩⎪⎨⎪⎧ x +92≥4,2x -3<0,并写出不等式组的整数解.18.(本题6分)解:解不等式①,得x ≥-1. ···································································· 2分解不等式②,得x <32. ······································································· 4分所以不等式组的解集是-1≤x <32. ························································ 5分不等式组的整数解为-1、0、1. ·························································· 6分19.(2016•建邺1,19,7分)如图,在四边形ABCD 中,AB ∥CD ,点E 、F 在对角线AC 上,且∠ABF=∠CDE , AE =CF .(1)求证:△ABF ≌△CDE ;(2)当四边形ABCD 满足什么条件时,四边形BFDE 是菱形?为什么?解:(1)∵AB ∥CD ,∴∠BAC =∠DCA .∵AE =CF ,∴AE +EF =CF +EF ,即AF =CE . 又∵∠ABF =∠CDE ,∴△ABF ≌△CDE . ····································································· 3分 (2)当四边形ABCD 满足AB =AD 时,四边形BEDF 是菱形. ·················· 4分连接BD 交AC 于点O ,由(1)△ABF ≌△CDE 得AB =CD ,BF =DE ,∠AFB =∠CED , ∴BF ∥DE .∵AB ∥CD ,AB =CD ,∴四边形ABCD 是平行四边形. 又∵AB =AD ,∴□ABCD 是菱形. ∴BD ⊥AC .∵BF =DE ,BF ∥DE , ∴四边形BEDF 是平行四边形,∴□BEDF 是菱形. ······································································ 7分20.(2016•建邺1,20,8分)“低碳环保,你我同行”.近两年,南京市区的公共自行车给市民出行带来了极大的方便.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点A 、D 、C 、E 在同一条直线上,CD =30cm ,DF =20cm ,AF =25cm ,FD ⊥AE 于点D ,座杆CE =15cm ,且∠EAB =75°. (1)求AD 的长;(2)求点E 到AB 的距离.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)图①(第20题)解:(1)在Rt △ADF 中,由勾股定理得,AD =AF 2-FD 2=252-202=15(cm ). ······································· 3分 (2)AE =AD +CD +EC =15+30+15=60(cm ). ···································· 4分过点E 作EH ⊥AB 于H , 在Rt △AEH 中,sin ∠EAH =EHAE, ··················································· 6分 ∴EH =AE ·sin ∠EAH =AB ·sin75°≈ 60×0.97=58.2(cm ).答:点E 到AB 的距离为58.2 cm . ·················································· 8分21.(2016•建邺1,21,7分)甲、乙两名同学从《奔跑吧兄弟》、《极限挑战》、《最强大脑》三个综艺节目中随机选择一个观看.(1)甲同学观看《最强大脑》的概率是 ▲ ; (2)求甲、乙两名同学观看同一节目的概率.21.(本题7分)解:(1)13 . ·························································································· 2分(2)分别用A ,B ,C 表示《奔跑吧兄弟》、《极限挑战》、《最强大脑》三个综艺节目,用表格列出所有可能出现的结果:一共有9种可能的结果,它们是等可能的,其中符合要求的有3种. P (甲、乙两名同学观看同一节目)= 39 = 13.答:甲、乙两名同学观看同一节目的概率为 13. ································· 7分22.(2016•建邺1,22,8分)“世界那么大,我想去看看”一句话红遍网络,随着国际货币基金组织正式宣布人民币2016年10月1日加入SDR (特别提款权),以后出国看世界更加方便.为了解某区6 000名初中生对“人民币加入SDR ”知晓的情况,某校数学兴趣小组随机抽取区内部分初中生进行问卷调查,将问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不了解”四个等级,并将调查结果整理分析,得到下列图表:(1)本次问卷调查抽取的学生共有 ▲ 人,其中“不了解”的学生有 ▲ 人; (2)在扇形统计图中,学生对“人民币加入SDR ”基本了解的区域的圆心角为 ▲ °; (3)根据抽样的结果,估计该区6 000名初中生对“人民币加入SDR ”了解的有多 少人(了解是指“非常了解”、“比较了解”和“基本了解”)? 22.(本题8分)解:(1)100,20. ··················································································· 2分 (2)72. ·························································································· 4分 (3)6 000×80%=4 800人.答:估计该校6 000名初中生中对“人民币加入SDR ”了解的有4 800人.···· 8分23.(2016•建邺1,23,8分)某商场将进货价为每只30元的台灯以每只40元售出,平均每月能售出600只.调查表明,这种台灯的售价每上涨1元,其销售量将减少10只.当这种台灯的售价定为多少元时,每个月的利润恰为10 000元? 23.(本题8分)解法一:设这种台灯的售价上涨x 元,( 600-10x ) ( 40+x -30)=10 000, ················································· 4分某区抽取学生对“人民币加入SDR ”知晓情况扇形统计图非常了解 26%比较了解 基本了解不了解解得x 1 =10,x 2=40, ·································································· 6分 ∴当x =10时,40+x =50,当x =40时,40+x =80; ························ 7分解法二:设这种台灯的售价为x 元,[600-10(x -40)] (x -30)=10 000, ·················································· 4分 解得x 1 =50,x 2=80, ·································································· 7分答:当这种台灯的售价定为50或80元时,每个月的利润恰为10 000元. ··········· 8分24.(2016•建邺1,24,9分)货车和轿车分别从甲、乙两地同时出发,沿同一公路相向而行.轿车出发2.4 h 后休息,直至与货车相遇后,以原速度继续行驶.设货车出发x h 后,货车、轿车分别到达离甲地y 1 km 和y 2 km 的地方,图中的线段OA 、折线BCDE 分别表示y 1、y 2与x 之间的函数关系.(1)求点D 的坐标,并解释点D 的实际意义; (2)求线段DE 所在直线的函数表达式; (3)当货车出发 ▲ h 时,两车相距20024.(本题9分)解:(1)求出点坐标D ( 4,300 ). ······························································ 2分 点D 是指货车出发4h 后,与轿车在距离A 地300 km 处相遇. ·············· 3分 (2)求出点坐标E ( 6.4,0 ). ······························································· 4分 设DE 所在直线的函数表达式为y =kx +b ,将点D ( 4,300 ),E ( 6.4,0)代入y =kx +b 得:⎩⎪⎨⎪⎧4k +b =300,6.4k +b =0, 解得 ⎩⎪⎨⎪⎧b =800,k =-125,∴DE 所在直线的函数表达式为y =-125x +800. ····························· 7分 (3) 2或5. ····················································································· 9分25.(2016•建邺1,25,8分)数学活动课上,小君在平面直角坐标系中对二次函数图像的平移进行了研究.图①是二次函数y =(x -a )2+a3(a 为常数)当a =-1、0、1、2时的图像.当a 取不同值时,其图像构成一个“抛物线簇”.小君发现这些二次函数图像的顶点竟然在同一条直线上!(1)小君在图①中发现的“抛物线簇”的顶点所在直线的函数表达式为 ▲ ; (2)如图②,当a =0时,二次函数图像上有一点P (2,4).将此二次函数图像沿着(1) 中发现的直线平移,记二次函数图像的顶点O 与点P 的对应点分别为O 1、P 1.若点P 1到x 轴的距离为5,求平移后二次函数图像所对应的函数表达式.25.(本题8分)解:(1)y = 13x . ··················································································· 2分(2)点O 1的坐标为 ( 3,1) 或 (-27,-9) ············································· 4分平移后的二次函数的表达式为y =(x -3)2 +1或y =(x +27)2 -9. ·········· 8分26.(2016•建邺1,26,10分)如图,直线AB 交⊙O 于C 、D 两点,CE 是⊙O 的直径,CF 平分∠ACE交⊙O 于点F ,连接EF ,过点F 作FG ∥ED 交AB 于点(1)求证:直线FG 是⊙O 的切线;(2)若FG =4,⊙O 的半径为5,求四边形FGDE(第25题)26.(本题10分)证明:(1)连接FO,∵OF=OC,∴∠OFC=∠OCF.∵CF平分∠ACE,∴∠FCG=∠FCE.∴∠OFC=∠FCG.∵CE是⊙O的直径,∴∠EDG=90°,又∵FG∥ED,∴∠FGC=180°-∠EDG=90°,∴∠GFC+∠FCG=90°∴∠GFC+∠OFC=90°,即∠GFO=90°,∴OF⊥GF, ····················································································4分又∵OF是⊙O半径,∴FG与⊙O相切. ···········································································5分(2)延长FO,与ED交于点H,由(1)可知∠HFG=∠FGD=∠GDH=90°,∴四边形FGDH是矩形.∴FH⊥ED,∴HE=HD.又∵四边形FGDH是矩形,FG=HD,∴HE=FG=4.∴ED=8. ·························································································7分∵在R t△OHE中,∠OHE=90°,∴OH=OE2-HE2=52-42=3.∴FH=FO+OH=5+3=8. ·······························································9分S四边形FGDH=12(FG+ED)·FH=12×(4+8)×8=48. ································ 10分27.(2016•建邺1,27,11分)问题提出平面上,若点P与A、B、C三点中的任意两点均构成等腰三角形,则称点P是A、B、C三点的巧妙点.若A、B、C三点构成三角形,也称点P是△ABC的巧妙点.初步思考(1)如图①,在等边△ABC的内部和外部各作一个△ABC的巧妙点.(尺规作图,不写作法,保留作图痕迹)(2)如图②,在△ABC中,AB=AC,∠BAC=36°,点D、E是△ABC的两个巧妙点,其中AD=AB,AE=AC,BD=BC=CE,连接DE,分别交AB、AC于点M、N.2(3)在△ABC中,AB=AC,若存在一点P,使PB=BA,P A=PC.点P可能为△ABC 的巧妙点吗?若可能,请画出示意图,并直接写出∠BAC的度数;若不可能,请说明理由.27.(本题11分)解:(1)画对1个巧妙点给一分. ······························································· 2分(2)∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB=72°,∵AD=AB,AB=AC,BD=BC,∴△ADB≌△ABC.同理:△ACE≌△ABC.∴∠BAD=∠BAC=∠CAE=36°,∠ADB=∠ABD=∠ABC=72°,∴∠DAE =∠BAD +∠BAC +∠CAE =108°, ∵AD =AB =AC =AE ,∴∠ADE =∠AED =36°=∠BAD ,∴∠BDM =∠BDA -∠MDA =36°,∠BMD =∠ADM +∠DAM =72°=∠ABD ,∴DB =DM . ············································································· 5分 ∵∠DBM =∠ABD ,∠AED =∠BAD ,∴△DAM ∽△DEA ,∴DM DA =DADE,DA 2 =D M ·DE ,∵DM =DB ,∴DA 2 =D B ·DE . ··················································· 7分(3)第一种如图①或图②(只需画一个即可),∠BAC =60°.第二种如图③,∠BAC =36°; 第三种如图④,∠BAC =108°; 第四种如图⑤,∠BAC =120°.以上共四种:60°、36°、108°、120°. ········································ 11分(第27题)图⑤图④图③(第27题)图①BACPBACPCBPBACPC建邺区2016年九年级学情分析卷数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共计12分)二、填空题(每小题2分,共计20分)7.x ≥2 8.-6 9.4.88×106 10.1: 9 11.3π 12.-3 13.丁 14.(2,-3) 15.54° 16.1433三、解答题(本大题共11小题,共计88分) 17.(本题6分)解:原式=(b -a ab )·ab(a +b )(a -b )································································ 2分=-1a +b . ···················································································· 4分当a =2+1,b =2-1时,原式=- 1 (2+1)+(2-1)=- 1 22=- 24. ··································· 6分18.(本题6分)解:解不等式①,得x ≥-1. ···································································· 2分解不等式②,得x <32. ······································································· 4分所以不等式组的解集是-1≤x <32. ························································ 5分不等式组的整数解为-1、0、1. ·························································· 6分19.(本题7分)解:(1)∵AB ∥CD ,∴∠BAC =∠DCA .∵AE =CF ,∴AE +EF =CF +EF ,即AF =CE .又∵∠ABF =∠CDE ,∴△ABF ≌△CDE . ····································································· 3分 (2)当四边形ABCD 满足AB =AD 时,四边形BEDF 是菱形. ·················· 4分连接BD 交AC 于点O ,由(1)△ABF ≌△CDE 得AB =CD ,BF =DE ,∠AFB =∠CED , ∴BF ∥DE .∵AB ∥CD ,AB =CD ,∴四边形ABCD 是平行四边形. 又∵AB =AD ,∴□ABCD 是菱形. ∴BD ⊥AC .∵BF =DE ,BF ∥DE , ∴四边形BEDF 是平行四边形,∴□BEDF 是菱形. ······································································ 7分20.(本题8分)解:(1)在Rt △ADF 中,由勾股定理得,AD =AF 2-FD 2=252-202=15(cm ). ······································· 3分 (2)AE =AD +CD +EC =15+30+15=60(cm ). ···································· 4分过点E 作EH ⊥AB 于H , 在Rt △AEH 中,sin ∠EAH =EHAE, ··················································· 6分 ∴EH =AE ·sin ∠EAH =AB ·sin75°≈ 60×0.97=58.2(cm ).答:点E 到AB 的距离为58.2 cm . ·················································· 8分21.(本题7分)解:(1)13 . ·························································································· 2分(2)分别用A ,B ,C 表示《奔跑吧兄弟》、《极限挑战》、《最强大脑》三个综艺节目,用表格列出所有可能出现的结果:。
江苏省南京市六合区中考数学一模试卷(含解析)

2016年江苏省南京市六合区中考数学一模试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.﹣的相反数是( )A .﹣B .C .D .﹣2.计算a 2b•a 的结果是( ) A .a 3b B .2a 2b C .a 2b 2D .a 2b3.用4个小立方体搭成如图摆放的几何体,下面视图是几何体主视图的是( )A .B .C .D .4.如图,在△ABC 中,DE ∥BC , =,则下列结论中正确的是( )A . =B . =C .=D .=5.在正方形网格中,∠BAC 如图所示放置,则cos ∠BAC 等于( )A .3B .C .D .6.圆心为P (m ,n ),半径为1的圆与平面直角坐标系的两坐标轴都相交,则m+n 的值可能是( )A .﹣2B .2C .﹣D .3二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7. 9的平方根是,9的算术平方根是.8.函数y=中,自变量x的取值范围是.9.2016年4月份某天小明在百度搜索“云课堂”一词进行了解时,出现提示:“百度为您找到相关结果约81 300 000个”,则数据81 300 000用科学记数法表示为:.10.如图,在正六边形ABCDEF中,连接AE,DF,则∠1= °.11.(+)×= .12.若△ABC的一边为4,另两边分别满足x2﹣5x+6=0的两根,则△ABC的周长为.13.用半径为6cm,圆心角为120°的扇形围成一个圆锥,则圆锥的底面圆半径为cm.14.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,若∠C=15°,AB=6cm,则⊙O半径为cm.15.已知二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:则关于x的一元二次方程ax2+bx+c=﹣2的根是.16.已知x、y都是正实数,且满足x2+2xy+y2+x+y﹣12=0,则x(1﹣y)的最小值为.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.解不等式+≥1,并把它的解集在数轴上表示出来.18.解方程: =.19.化简:( +)÷.20.如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.(1)求证:△ABE≌△DFE;(2)连接BD、AF,当BE平分∠ABD时,求证:四边形ABDF是菱形.21.国家规定体质健康状况分为优秀、良好、合格和不合格四种等级.为了了解某地区10000名初中学生的体质健康状况,某校数学兴趣小组从该地区七、八、九年级随机抽取了共500名学生数据进行整理分析,他们对其中体质健康为优秀的人数做了以下分析:(1)写出本次随机抽取的七年级人数m= ;(2)补全条形统计图;(3)在分析样本时,发现七年级学生的体质健康状况中不合格人数有10人,若要制作样本中七年级学生体质健康状况等级人数的扇形统计图,求“不合格”人数对应扇形统计图的圆心角度数;(4)根据抽样调查的结果,估计该地区10000名初中学生体质健康状况为优秀的人数.22.四张卡片,分别标有1,2,3,4四个数字.(1)从中随机取出一张卡片,请直接写出卡片上数字是奇数的概率;(2)从中随机取出两张卡片,求两张卡片上数字之和大于4的概率.23.某数学兴趣小组用高为1.2米的测角仪测量小树AB的高度,如图,在距AB一定距离的F处测得小树顶部A的仰角为50°,沿BF方向行走3.5米到G处时,又测得小树顶部A的仰角为27°,求小树AB的高度.(参考数据:sin27°=0.45,cos27°=0.89,tan27°=0.5,sin50°=0.77,cos50°=0.64,tan50°=1.2)24.小明和小刚同时从公园门口出发,散步到公园“雨花亭”.他们离公园门口的距离y(m)与小刚行走的时间x(min)之间的关系如图.请根据图象回答:(1)小明到达“雨花亭”休息了分钟;(2)求出图中BC段对应的函数表达式;(3)若小刚行走18分钟时两人相遇,求相遇点到公园门口的距离,并直接写出小刚从“雨花亭”回到公园门口所用的时间.25.请用尺规作出符合下列要求的点(不写作法,保留作图痕迹).(1)在图①中作出一点D,使得∠ADB=2∠C;(2)在图②中作出一点E,使得∠AEB=∠C.26.已知二次函数y=ax2+bx﹣3的图象与x轴相交于A、B两点,与y轴相交于点C.(1)写出点C的坐标;(2)若点A坐标为(4,0),且△ABC为等腰三角形,求点B坐标;(3)求出一条过(2)中三点且开口向上的抛物线的函数表达式.27.如图,在平面直角坐标系中,直角梯形OABC,BC∥OA,一边OA在x轴上,另一边OC在y轴上,且OA=AB=5cm,BC=2cm,以OC为直径作⊙P.(1)求⊙P的直径;(2)⊙P沿x轴向右滚动过程中,当⊙P与x轴相切于点A时,求⊙P被直线AB截得的线段AD长;(3)⊙P沿x轴向右滚动过程中,当⊙P与直线AB相切时,求圆心P移动的距离.2016年江苏省南京市六合区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.﹣的相反数是()A.﹣ B.C.D.﹣【考点】相反数.【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣的相反数是.故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易把相反数的意义与倒数的意义混淆.2.计算a2b•a的结果是()A.a3b B.2a2b C.a2b2D.a2b【考点】单项式乘单项式.【分析】直接利用单项式乘以单项式运算法则求出答案.【解答】解:a2b•a=a3b.故选:A.【点评】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.3.用4个小立方体搭成如图摆放的几何体,下面视图是几何体主视图的是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层右边是一个小正方形,故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.如图,在△ABC中,DE∥BC, =,则下列结论中正确的是()A. =B. =C. =D. =【考点】相似三角形的判定与性质.【分析】根据=,求得=,由DE∥BC,根据平行线分线段成比例定理得到=,根据相似三角形的性质得到结论.【解答】解:∵ =,∴=,∵DE∥BC,∴=,△ADE∽△ABC,∴, ==, =()2=,故A,B,D错误,故选C.【点评】本题主要考查了相似三角形的判定和性质,掌握相似三角形的判定和性质是解题的关键.5.在正方形网格中,∠BAC如图所示放置,则cos∠BAC等于()A.3 B.C.D.【考点】锐角三角函数的定义.【分析】根据余弦=邻边:斜边进行计算即可.【解答】解:cos∠BAC==,故选D.【点评】此题主要考查了锐角三角函数的定义,关键是掌握余弦=邻边:斜边.6.圆心为P(m,n),半径为1的圆与平面直角坐标系的两坐标轴都相交,则m+n的值可能是()A.﹣2 B.2 C.﹣ D.3【考点】直线与圆的位置关系;坐标与图形性质.【分析】由已知条件得到OB=|m|,PB=|n|,由PA=1,得到|m|<1,|n|<1,当m,n同号,则|m+n|<2,当m,n异号,则|m+n|<1,于是得到结论.【解答】解:如图,∵P(m,n),∴OB=|m|,PB=|n|,∵PA=1,∴|m|<1,|n|<1,∵|2|=2,|﹣2|=2,|﹣|=,|3|=3,当m,n同号,则|m+n|<2,故m+n不可能A,B,D,当m,n异号,则|m+n|<1,故m+n不可能A,B,D,故选C.【点评】本题考查了直线与圆的位置关系,坐标与图形的性质,绝对值的意义,正确的理解题意是解题的关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.9的平方根是±3 ,9的算术平方根是 3 .【考点】算术平方根;平方根.【专题】计算题;实数.【分析】利用平方根、算术平方根的定义计算即可得到结果.【解答】解:9的平方根是±3,9的算术平方根是3,故答案为:±3;3【点评】此题考查了算术平方根,以及平方根,熟练掌握各自的定义是解本题的关键.8.函数y=中,自变量x的取值范围是x≠﹣3 .【考点】函数自变量的取值范围.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,x+3≠0,解得x≠﹣3.故答案为:x≠﹣3.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.9.2016年4月份某天小明在百度搜索“云课堂”一词进行了解时,出现提示:“百度为您找到相关结果约81 300 000个”,则数据81 300 000用科学记数法表示为:8.13×107.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,所以可以确定n=8﹣1=7.【解答】解:81 300 000=8.13×107.故答案为:8.13×107.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.10.如图,在正六边形ABCDEF中,连接AE,DF,则∠1= 120 °.【考点】正多边形和圆.【分析】由正六边形的性质得出∠AFB=∠DEF=120°,AF=EF=DE,由等腰三角形的性质和三角形内角和定理得出∠FAE=∠FEA=∠EFD=30°,求出∠AFD=90°,由三角形的外角性质即可求出∠1的度数.【解答】解:∵六边形ABCDEF是正六边形,∴∠AFB=∠DEF=120°,AF=EF=DE,∴∠FAE=∠FEA=∠EFD=(180°﹣120°)÷2=30°,∴∠AFD=120°﹣30°=90°,∴∠1=∠FAE+∠AFD=30°+90°=120°.故答案为:120.【点评】本题考查了正六边形的性质、等腰三角形的性质、三角形内角和定理、三角形的外角性质;熟练掌握正六边形的性质,求出∠FAE和∠AFD是解决问题的关键.11.(+)×= 5 .【考点】二次根式的混合运算.【专题】计算题.【分析】根据二次根式的乘法法则运算.【解答】解:原式=+=1+4=5.故答案为5.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.12.若△ABC的一边为4,另两边分别满足x2﹣5x+6=0的两根,则△ABC的周长为9 .【考点】根与系数的关系.【分析】设x2﹣5x+6=0的两个根分别为x1、x2,由根与系数的关系可得出x1+x2=5,再加上三角形的另外一边长度即可得出结论.【解答】解:设x2﹣5x+6=0的两个根分别为x1、x2,则有x1+x2=﹣=﹣=5,△ABC的周长为x1+x2+4=5+4=9.故答案为:9.【点评】本题考查了根与系数的关系以及三角形的周长,解题的关键是找出三角形的两边之和.本题属于基础题,难度不大,解决该题型题目时,由根与系数的关系得出两根之和,再结合三角形的周长公式即可解决问题.13.用半径为6cm,圆心角为120°的扇形围成一个圆锥,则圆锥的底面圆半径为 2 cm.【考点】圆锥的计算.【专题】计算题.【分析】设圆锥的底面圆半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=,然后解方程即可.【解答】解:设圆锥的底面圆半径为r,根据题意得2πr=,解得r=2,即圆锥的底面圆半径为2cm.故答案为2.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,若∠C=15°,AB=6cm,则⊙O半径为 6 cm.【考点】垂径定理.【分析】连接OA,由圆周角定理得出∠AOE=2∠C=30°,由垂径定理得出AE=BE=AB=3cm,得出OA=2OE=6cm即可.【解答】解:连接OA,如图所示则∠AOE=2∠C=30°,∵AB⊥CD,∴AE=BE=AB=3cm,∴OA=2OE=6cm,即⊙O半径为6cm;故答案为:6.【点评】本题考查了垂径定理、圆周角定理以及含30°角的直角三角形的性质;熟练掌握圆周角定理,由垂径定理求出AE是解决问题的关键.15.已知二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:则关于x的一元二次方程ax2+bx+c=﹣2的根是x1=﹣4,x2=0 .【考点】抛物线与x轴的交点.【分析】根据图表求出函数对称轴,再根据图表信息和二次函数的对称性求出y值等于﹣2的自变量x的值即可.【解答】解:∵x=﹣3,x=﹣1的函数值都是﹣5,相等,∴二次函数的对称轴为直线x=﹣2,∵x=﹣4时,y=﹣2,∴x=0时,y=﹣2,∴方程ax2+bx+c=3的解是x1=﹣4,x2=0.故答案为:x1=﹣4,x2=0.【点评】本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键.16.已知x、y都是正实数,且满足x2+2xy+y2+x+y﹣12=0,则x(1﹣y)的最小值为﹣1 .【考点】配方法的应用;非负数的性质:偶次方;二次函数的最值.【分析】已知等式左边变形后,分解因式得到x+y=3或2x+y=﹣4(舍去),表示出y代入所求式子中配方即可求出最小值.【解答】解:x2+2xy+y2+x+y﹣12=0=(x+y)2+(x+y)﹣12=0,即(x+y﹣3)(x+y+4)=0,可得x+y=3或x+y=﹣4(舍去),即y=﹣x+3,当y=﹣x+3时,x(1﹣y)=x(1+x﹣3)=x2﹣2x=(x﹣1)2﹣1,最小值为﹣1.故答案为:﹣1.【点评】此题考查了配方法的应用,解一元二次方程﹣因式分解法,以及二次函数的最值,熟练掌握完全平方公式是解本题的关键.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.解不等式+≥1,并把它的解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先去分母,再去括号,移项,合并同类项,把x的系数化为1,再把不等式的解集在数轴上表示出来即可.【解答】解:去分母得,2(x﹣2)+3x≥6,去括号得,3x+2x﹣4≥6,移项,合并同类项得,5x≥10,x的系数化为1得,x≥2.解集表示在数轴上为:.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.18.解方程: =.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边乘(x﹣2)(x+1),得(x﹣1)(x+1)=x(x﹣2),整理得:x2﹣1=x2﹣2x,解得:x=,检验:当x=时,(x﹣2)(x+1)=﹣×=﹣≠0,则x=是原方程的根.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要进行检验.19.化简:( +)÷.【考点】分式的混合运算.【分析】首先把除法转化为乘法,然后利用分配律计算,再通分相加即可求解.【解答】解:原式=(+)•=•+•=+==2b.【点评】本题考查了分式的混合运算,分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.20.如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.(1)求证:△ABE≌△DFE;(2)连接BD、AF,当BE平分∠ABD时,求证:四边形ABDF是菱形.【考点】菱形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)由平行四边形的性质和已知条件得出∠ABE=∠DFE,AE=DE,由AAS证明△ABE≌△DFE 即可.(2)由全等三角形的性质得出AB=DF,证出四边形ABDF是平行四边形,再由平行四边形的性质和已知条件得出∠DBF=∠DFB,得出DB=DF,即可得出结论.【解答】(1)证明:∵四边形ABCD为平行四边形,∴AB∥CD.∵点F在CD的延长线上,∴FD∥AB.∴∠ABE=∠DFE.∵E是AD中点,∴AE=DE.在△ABE和△DFE中,,∴△ABE≌△DFE(AAS);(2)证明:∵△ABE≌△DFE,∴AB=DF.∵AB∥DF,AB=DF,∴四边形ABDF是平行四边形.∵BF平分∠ABD,∴∠ABF=∠DBF.∵AB∥DF,∴∠ABF=∠DFB,∴∠DBF=∠DFB.∴DB=DF.∴四边形ABDF是菱形.【点评】此题考查了平行四边形的性质与判定、全等三角形的判定与性质.此题难度不大,证明三角形全等是解决问题的关键,注意掌握数形结合思想的应用.21.(2016•六合区一模)国家规定体质健康状况分为优秀、良好、合格和不合格四种等级.为了了解某地区10000名初中学生的体质健康状况,某校数学兴趣小组从该地区七、八、九年级随机抽取了共500名学生数据进行整理分析,他们对其中体质健康为优秀的人数做了以下分析:(1)写出本次随机抽取的七年级人数m= 200 ;(2)补全条形统计图;(3)在分析样本时,发现七年级学生的体质健康状况中不合格人数有10人,若要制作样本中七年级学生体质健康状况等级人数的扇形统计图,求“不合格”人数对应扇形统计图的圆心角度数;(4)根据抽样调查的结果,估计该地区10000名初中学生体质健康状况为优秀的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据七年级优秀人数除以优秀人数所占的百分比,可得答案;(2)根据八年级优秀人数除以优秀人数所占的百分比,可得八年级的人数,根据有理数的减法,可得九年级人数,根据九年级人数乘以九年级的优秀率,可得九年级优秀的人数,可得答案;(3)根据七年级不合格人数除以七年级的人数乘以360°,可得答案;(4)根据优秀率诚意总人数,可得答案.【解答】解:(1)本次随机抽取的七年级人数m=38÷19%=200,故答案为:200.(2)八年级人数26÷26%=100人,九年级人数500﹣200﹣100=200人,九年级人数优秀的人数200×28%=56人,统计图正确;(3)“不合格”人数占七年级总人数的百分比==5%.“不合格”人数对应扇形统计图的圆心角度数=360°×5%=18°.答:“不合格”人数对应扇形统计图的圆心角度数为18°.(4)×10000=2400人.答:估计该地区10000名初中学生体质健康状况优秀人数是2400人.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,折线统计图表示的是事物的变化情况,如增长率;折线统计图表示的是事物的变化情况,如增长率.22.四张卡片,分别标有1,2,3,4四个数字.(1)从中随机取出一张卡片,请直接写出卡片上数字是奇数的概率;(2)从中随机取出两张卡片,求两张卡片上数字之和大于4的概率.【考点】列表法与树状图法;概率公式.【分析】(1)由四张卡片,分别标有1,2,3,4四个数字,卡片上数字是奇数的有2种情况,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两张卡片上数字之和大于4的情况,再利用概率公式即可求得答案.【解答】解:(1)∵四张卡片,分别标有1,2,3,4四个数字,卡片上数字是奇数的有2种情况,∴从中随机取出一张卡片,卡片上数字是奇数的概率为: =;故答案为:;(2)画树状图得:∵一共有12种等可能的结果,两张卡片之和大于4的有8种情况,∴P(两张卡片之和大于4)==.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.某数学兴趣小组用高为1.2米的测角仪测量小树AB的高度,如图,在距AB一定距离的F处测得小树顶部A的仰角为50°,沿BF方向行走3.5米到G处时,又测得小树顶部A的仰角为27°,求小树AB的高度.(参考数据:sin27°=0.45,cos27°=0.89,tan27°=0.5,sin50°=0.77,cos50°=0.64,tan50°=1.2)【考点】解直角三角形的应用-仰角俯角问题.【分析】首先设AC=x米,然后由在Rt△ACD中,tan50°=,求得CD,由在Rt△ACE中,tan27°=,求得CE,又由CE﹣CD=DE,即可得方程,继而求得答案.【解答】解:设AC=x米,在Rt△ACD中,tan50°=,∴CD===x,在Rt△ACE中,tan27°=,∴CE===2x,∵CE﹣CD=DE,∴2x﹣x=3.5.解得x=3.∴AB=AC+CB=3+1.2=4.2(米).答:小树AB的高为4.2米.【点评】此题考查了仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.24.小明和小刚同时从公园门口出发,散步到公园“雨花亭”.他们离公园门口的距离y(m)与小刚行走的时间x(min)之间的关系如图.请根据图象回答:(1)小明到达“雨花亭”休息了 5 分钟;(2)求出图中BC段对应的函数表达式;(3)若小刚行走18分钟时两人相遇,求相遇点到公园门口的距离,并直接写出小刚从“雨花亭”回到公园门口所用的时间.【考点】一次函数的应用.【分析】(1)根据题意即可得到结论;(2)设BC段对应的函数表达式为y=kx+b,列方程组即可得到结果;(3)把x=18代入函数解析式即可得到结论.【解答】解:(1)15﹣10=5分钟.故答案为:5;(2)设BC段对应的函数表达式为y=kx+b,由题意得,解得.则y=﹣40x+1200(15≤x≤30);(3)当x=18时,y=﹣40×18+1200=480(米).答:相遇点P到公园门口的距离480米.【点评】此题主要考查了一次函数的应用,关键是看懂图象所表示的意义,利用待定系数法求出小明从B返回C的过程中,y与x之间的函数关系式.25.请用尺规作出符合下列要求的点(不写作法,保留作图痕迹).(1)在图①中作出一点D,使得∠ADB=2∠C;(2)在图②中作出一点E,使得∠AEB=∠C.【考点】作图—复杂作图.【专题】作图题.【分析】(1)作AC的垂直平分线交BC于D,则DA=DC,所以∠DAC=∠C,然后根据三角形外角性质可得到∠ADB=2∠C;(2)延长BC到E使CE=CA,则∠E=∠CAE,然后根据三角形外角性质可得到∠AEB=∠C.【解答】解:(1)如图1,∠ADB即为所作;(2)如图2,∠AEB即为所作.【点评】本题考查了作与﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.26.(2016•六合区一模)已知二次函数y=ax2+bx﹣3的图象与x轴相交于A、B两点,与y轴相交于点C.(1)写出点C的坐标;(2)若点A坐标为(4,0),且△ABC为等腰三角形,求点B坐标;(3)求出一条过(2)中三点且开口向上的抛物线的函数表达式.【考点】抛物线与x轴的交点;等腰三角形的性质.【分析】(1)令x=0,即可得出点C的坐标;(2)分三种情况: 以A为顶点时,求得点B坐标; 以C为顶点时,求得点B坐标; 以B为顶点时,求得点B坐标; 综上所述,B点坐标为(9,0),(﹣1,0),(﹣4,0)或者(,0);(3)若选择点B坐标为(﹣4,0),把A坐标为(4,0),B坐标为(﹣4,0),点C(0,﹣3),代入抛物线的解析式,得出a,b的值,即可得出答案.【解答】解:(1)当x=0时,y=﹣3∴点C(0,﹣3),(2)连接AC,在Rt△AOC中,AC===5,以A为顶点时,B1(9,0),B2(﹣1,0)以C为顶点时,由题意知CB3=CA∵OC⊥AB3∴OB3=OA=4∴B3(﹣4,0)以B为顶点时,则B在AC垂直平分线上,则B4C=B4A,设OB4=x,则B4C=B4A=4﹣x,在Rt△OB4C中,由OB42+OC2=B4C2,得x2+32=(4﹣x)2,解得:x=,∴B4(,0),综上所述,B点坐标为(9,0),(﹣1,0),(﹣4,0)或者(,0);(3)若选择B点坐标为(﹣4,0),由题意得,解得,∴y=x2﹣3.【点评】本题考查了抛物线和x轴的交点问题以及等腰三角形的性质,掌握分类讨论思想是解此题的关键.27.(2016•枣庄模拟)如图,在平面直角坐标系中,直角梯形OABC,BC∥OA,一边OA在x轴上,另一边OC在y轴上,且OA=AB=5cm,BC=2cm,以OC为直径作⊙P.(1)求⊙P的直径;(2)⊙P沿x轴向右滚动过程中,当⊙P与x轴相切于点A时,求⊙P被直线AB截得的线段AD长;(3)⊙P沿x轴向右滚动过程中,当⊙P与直线AB相切时,求圆心P移动的距离.【考点】圆的综合题.【专题】综合题.【分析】(1)作BD⊥OA于点D,由题意可得BD=OC,要求⊙P的直径,只要求出BD的长即可,根据题目中的数量关系,由勾股定理可以得到BD的长,本题得以解决;(2)根据题意,画出相应的图形,作AE⊥CP交CB的延长线于点E,根据直径所对的圆周角是直角和勾股定理可以得到AD的长,本题得以解决;(3)根据题意可知,分两种情况,分别画出相应的图形,然后根据题目中的数量关系和切线的性质,可以分别求得圆心P移动的距离,本题得以解决.【解答】解:(1)如右图①,过B作BD⊥OA.由题意知:∠BCO=∠DOC=∠BDO=90°.∴四边形ODBC为矩形.∴OC=BD,OD=BC.∵BC=2,∴DA=OA﹣OD=5﹣2.在Rt△ABD中,根据勾股定理,得BD2=AB2﹣DA2,∴BD=4,∴CD=4,即⊙P的直径是4cm;(2)如右图②所示,当⊙P与x轴相切于A时,设⊙P与CB所在直线相切于E.易知P在EA上,且CE=AO=5∴BE=3连接ED,∵EA为直径,∴∠EDA=90°.设AD=x,则BD=5﹣x由勾股定理知32﹣(5﹣x)2=42﹣x2解得x=∴AD=cm.(3)如右图③所示,当⊙P与AB相切时,分两种情况.第一种情况:当⊙P滚动到P1时,设PP1=x,由题意易知:PP1=CE=OG=x,则BE=BC﹣CE=2﹣x,AG=AO﹣OG=5﹣x.∵⊙P1与AB、AO相切于点F、G,∴AF=AG=5﹣x.∵⊙P1与BC、AB相切于点E、F,∴BF=BE=2﹣x.∵AB=5,AF+BF=AB,∴5﹣x+2﹣x=5.解得,x=1,即PP1=1cm;第二种情况: 当⊙P滚动到P2时,设PP2=x,易知:OJ=CH=PP2=x,则AJ=x﹣5,BH=x﹣2,∵⊙P2与AB、CH相切,∴BI=BH=x﹣2.同理,AI=AJ=x﹣5.∵AB=BI+AI,∴x﹣2+x﹣5=5.解得,x=6,即PP2=6cm;∴当⊙P与直线AB相切时,点P移动的距离为1cm或6cm.【点评】本题考查圆的综合题、直径所对的圆周角是直角、勾股定理、切线的性质,解题的关键是明确题意,根据题意可以画出相应的图形,作出合适的辅助线,找出所求问题需要的条件.。