三维激光扫描测量系统

合集下载

工程测量新技术—三维激光扫描技术(工程测量)

工程测量新技术—三维激光扫描技术(工程测量)
• 1) 标靶
扫描仪的内部有一个固定的空间直角坐标系统。当一个扫描站上不能 测量物体全部而需要在不同位置进行测量时,或者需要将扫描数据转 换到特定的工程坐标系中时,都要涉及坐标转换问题。为此,就需要 测量一定数量的公共点来计算坐标变换参数。为了保证转换精度,公 共点一般采用特制的球面(形)标志(也称球星标靶)和平面标志 (也称平面标靶),在变形监测时一般采用贴片固定在监测对象上。
野外扫描方案设计
• 3).大范围区域扫描方案设计。当扫描范围比较大,扫描站 数较多时,采用一种拼接方式可能会有较大的累积误差。 目前大范围区域点云数据拼接是研究的热点问题,直接影 响野外扫描方案的制定。
野外获取点云数据
• 1.扫描的基本步骤。 • 在项目实施过程中,野外获取点云数据是重要的组成部分,
获取完整符合精度要求的点云数据是后续建模与应用的基 础。扫描开始前要做好相关准备工作,主要包括仪器、人 员组织、交通、后勤保障、测量控制点布设等。
野外获取点云数据
• 一个侧站上扫描的基本步骤为: • a.仪器安置。对于集成度较高的扫描仪,仪器安置主要工作包括电源
(锂电池或者交流电源)、对中(在需要条件下)、整平,这些操作 需要的时间非常短。对于扫描控制与数据存储采用笔记本电脑的分体 式扫描仪,需要将各个部件连接完整,就需要一定的时间内,一般是 半小时以内。 • b.仪器参数设置。在确认仪器安置无误后,可以打开仪器电源开关, 一般开机可能需要几分钟时间。当开机完成后,可以进行扫描参数设 置,主要包括工程文件名,文件存储位置,扫描范围,分辨率,标靶 类型等。其中与精度相关参数设置要与项目设计相符。
➢ 制定扫描方案的主要过程:
• 1)明确项目任务要求。当扫描项目确定后,承包方技术负责人必须向项目发 包方全方位细致的了解项目的具体任务要求,这是制定项目技术设计的主要 依据。

三维激光扫描测绘技术的基本原理与应用

三维激光扫描测绘技术的基本原理与应用

三维激光扫描测绘技术的基本原理与应用激光扫描测绘技术作为一种高效、高精度的测绘方法,得到了广泛的应用。

它利用激光传感器扫描目标物体表面,通过测量激光束的反射时间和强度信息,来获取目标物体的三维坐标数据。

本文将介绍三维激光扫描测绘技术的基本原理以及其应用领域。

首先,激光扫描测绘技术的基本原理是通过对目标物体进行激光扫描,探测激光束在空间中的三维坐标位置。

激光扫描系统由激光器、扫描仪和控制系统组成。

激光器发射的激光束被扫描仪控制进行扫描,然后反射回扫描仪并传回控制系统。

控制系统根据接收到的反射激光束的时间和强度信息,计算出目标物体的三维坐标数据。

激光扫描测绘技术的应用领域非常广泛。

在建筑行业中,三维激光扫描测绘技术可以快速获取建筑物的几何形状和细节信息,用于建筑物的设计、维护和修复。

在城市规划中,激光扫描测绘技术可以用于快速获取城市地形和道路的三维数据,为城市规划提供重要参考。

在文化遗产保护中,激光扫描测绘技术可以用于建筑物或文物的数字化保护,方便后续的修复和保存工作。

在制造业中,激光扫描测绘技术可以用于对零部件进行三维重建和检测,提高生产效率和质量控制。

此外,激光扫描测绘技术还可以应用于地质勘探、地下管线检测以及环境监测等领域。

在实际应用中,激光扫描测绘技术还面临着一些挑战。

首先是数据处理和分析的复杂性。

激光扫描仪产生的数据量庞大,需要进行复杂的处理和分析才能得到有用的信息,这对计算资源和算法的要求较高。

其次是测量误差的影响。

由于外界环境的干扰、激光束在传播过程中的衰减等因素,激光扫描测绘技术的测量结果可能存在一定的误差,需要进行误差补偿和校正。

此外,激光扫描测绘技术在某些特殊场景下,如透明物体和反射率较低的物体,可能无法获取准确的测量结果。

为了克服这些挑战,研究人员和工程师们一直在努力改进激光扫描测绘技术。

他们提出了许多新的算法和方法,以提高数据处理和分析的效率,减小测量误差。

例如,基于机器学习的方法可以通过训练模型,提高对扫描数据的自动分割和分类能力。

车载三维激光扫描系统简介

车载三维激光扫描系统简介

一、系统简介三维激光扫描技术是上世纪九十年代中期开始出现的一项高新技术,是继GPS空间定位系统之后又一项测绘技术新突破。

它通过高速激光扫描测量的方法,大面积高分辨率地快速获取被测对象表面的三维坐标数据。

可以快速、大量的采集空间点位信息,为快速建立物体的三维影像模型提供了一种全新的技术手段。

近些年来,三维激光扫描仪已经从固定朝移动方向发展,最具代表性的就是车载三维激光扫描仪,车载三维激光扫描仪是将三维激光扫描设备、卫星定位模块、惯性测量装置、里程计、360°全景相机、总成控制模块和高性能板卡计算机集成并封装于汽车的刚性平台之上,在汽车移动过程中,快速获取高精度定位定姿数据、高密度三维点云和高清连续全景影像数据,通过统一的地理参考和摄影测量解析处理,实现无控制的空间地理信息采集与建库。

汽车、三维激光扫描仪、数据处理软件,这三部分共同组成了车载三维激光扫描系统。

图1.车载三维激光扫描系统图2.系统工作原理图二、发展状况随着地理空间信息服务产业的快速发展,地理空间数据的需求也越来越旺盛。

地理空间数据的生产,成为世界经济增长的一大热点。

目前世界上最大的两家导航数据生产商NavTech和Tele Atlas均将车载三维激光扫描系统作为其数据采集与更新的主要手段,并将该技术视为公司的核心技术。

我国在车载三维激光扫描系统测图领域的研究起步较早,现已在多传感器集成、系统误差检校、直接地理参考技术、交通地理信息系统等方面取得突破性的进展,其中最具代表性的有李德仁院士主持、立得空间信息技术有限公司研制的LD2000-RM车载道路测量系统和刘先林院长主持、首都师范大学研制的SSW车载测图系统。

三、国内的应用经过多年的发展和应用,车载三维激光扫描系统已在我国基础测绘、应急保障测绘、街景导航地图测绘、三维数字城市建设、矿山测绘、公路GIS与公路路产管理、电力GIS数据采集与可视化管理、铁路GIS与铁路资产管理、公安GIS数据采集等项目中得到广泛应用。

三维激光扫描仪的优点

三维激光扫描仪的优点
三维激光扫描仪环境中进行测量
3D激光扫描仪具有更大的适应温度范围,可避免受到环境的影响,例如雨、灰尘、酷热或严寒。
2
监控工作进展
利用激光扫描仪,测量人员可以测量、管理并报告工作质量,提供三维数据计算体积、面积,工作进展一目了然。
3
数据点云精度更高
三维激光扫描系统可以密集地大量获取目标对象的数据点,相对于传统的单点测量,具有测量精度高,作业周期短的特点。
4
降低施工成本
利用3D激光扫描仪可以节省一定的人力物力,精准测量,避免返工,造成浪费。
5
缩短工期
利用3D激光扫描仪可以快速完成每个测量的扫描放线工作,且精度高,误差极小,避免返工,提高施工效率,节省工期。
6
质量保证
简化施工过程,将设计图与现实之间的偏差降到最低。在项目的每个阶段,数据点云可提供详细的施工信息,施工质量有保证。

徕卡三维激光扫描系统介绍

徕卡三维激光扫描系统介绍
徕卡HDS三维激光扫描系统介绍
1

徕卡HDS三维激光扫描系统介绍
测绘仪器发展历程
徕卡HDS三维激光扫描技术及其原理
徕卡HDS三维激光扫描系统的产品系列及组成 徕卡HDS三维激光扫描系统的主要应用案例
2

B1001F23
你能看出这座桥吗?
B1001F23
B1001F23
B1001F23 B1001F23 B1001F23
B1001F23
B1001F23
B1001F23 B1001F23 B1001F23 B1001F23 B1001F23 B1001F23 B1001F23 B1001F23 B1001F23 B1001F23 B1001F23 B1001F23 B1001F23 B1001F23 B1001F23 B1001F23 B1001F23 B1001F23
25

徕卡HDS的主要应用——地形测绘
26

徕卡HDS的主要应用——公路测量
扫描点云 扫描点云 整条公路点云数据 清除路面噪音数据

27
线画图
徕卡HDS的主要应用——桥梁
管道设计分析
To 3D Model
化工设备和装置
To Accurate 2D Drawing
J-Tech Design LTD – Ingersoll, Ontario, Canada
三维数据存档
54
Areva / Framatome-ANP Lynchburg, Virginia USA
13

现场扫描工作流程
选点
14
设站
连接电源
15
量仪器高
选取扫描范围

探究三维激光扫描仪在矿山井下测量技术中的应用刘彬

探究三维激光扫描仪在矿山井下测量技术中的应用刘彬

探究三维激光扫描仪在矿山井下测量技术中的应用刘彬发布时间:2023-05-08T09:57:13.888Z 来源:《工程建设标准化》2023年5期作者:刘彬[导读] 当前通过三维激光扫描仪设备开展三维测量和实体建模工作的情况下,其主要目的是为获取大量实体表面坐标点的数据和信息。

河北峪耳崖黄金矿业有限责任公司河北承德 067601摘要:当前通过三维激光扫描仪设备开展三维测量和实体建模工作的情况下,其主要目的是为获取大量实体表面坐标点的数据和信息。

矿山井下开展测量工作的情况下,通过对三维激光扫描仪的运用,能够适应矿山井下高温和潮湿以及粉尘恶劣的施工环境下,并提高空区三维形态测量工作的准确性,满足矿山开展数字建模工作的要求与标准,提升矿山井下测量工作数字化和信息化的发展水平,强化矿山生产工作的安全性。

因此,本文主要针对三维激光扫描仪在矿山井下测量技术的应用状况进行分析和研究,并提出科学合理的建议。

关键词:三维激光;扫描仪;矿山井下;测量技术;应用探究引言当前三维激光扫描技术的快速发展,在各个行业中得到广泛推广和运用,其自身具备速度和精确度以及真实度较高的特点,满足各个行业生产工作中的需求与标准。

依照相关调查数据显示,当前三维激光扫描技术在矿山井下测量工作中的应用,逐渐趋向成熟化的方向发展,但在一些工作阶段还是会存在不合理问题,需要相关部门提高重视程度,采取优化和改善措施,针对三维激光扫描技术合理运用,满足矿山井下测量工作的需求与标准。

1三维激光扫描测量系统的阐述针对三维激光扫描测量系统的运行,主要有三个方面工作内容组合而成,包含扫描仪器设备和计算机处理器以及电源供应装置。

在运用扫描仪器设备针对矿山井下区域能够开展全方面和自动化的扫描工作,并获取井下区域具备全面性和连续性以及关联性较高的数据点和坐标。

扫描仪设备在出现激光脉冲信号的情况下,其自身具备周期性的特点,同时激光信号在接触到目标后,会及时反射,并由接收仪器透镜设备接收,脉冲信号会经过长时间的停留,在石英钟稳定的情况下,能够对发射和接收脉冲的时间差合理计算[1]。

三维激光测量技术的原理与使用方法

三维激光测量技术的原理与使用方法

三维激光测量技术的原理与使用方法激光测量技术是一种高精度、高效率的测量方法,在工业生产、建筑设计以及科学研究中被广泛应用。

其中,三维激光测量技术作为激光测量技术的一种重要形式,具有更高的精确度和全面性。

本文将介绍三维激光测量技术的原理与使用方法。

一、三维激光测量技术的原理三维激光测量技术是通过测量物体与激光束的相互作用来确定物体表面的点坐标,进而建立物体的三维坐标系统。

其基本原理可以概括为以下几点:1. 激光测距原理:三维激光测量技术主要是基于激光测距原理实现的。

激光器发出的激光束照射到物体上,激光束被物体表面反射后再由激光接收器接收。

通过测量激光束的往返时间,并结合光速的知识,可以计算出激光束从发射到接收的时间,从而得到物体表面的点到激光器的距离。

2. 多点定位原理:三维激光测量技术的另一个重要原理是多点定位原理。

通过在物体表面上布置多个接收器,可以同时接收到多个反射激光束,从而确定物体表面的多个点的坐标。

而通过这些点的坐标,可以建立起物体的三维坐标系统。

3. 反射率校正原理:物体表面的反射率对激光测量结果有一定的影响。

在进行激光测量时,常常需要对物体表面的反射率进行校正,以得到更准确的测量结果。

一般来说,物体表面越光滑,其反射率就越高,对激光的反射也就越强。

二、三维激光测量技术的使用方法三维激光测量技术在实际应用中有多种方法和步骤,可以根据具体需求选择不同的使用方式。

1. 扫描法:三维激光测量技术可以通过扫描法获取目标物体表面的三维信息。

首先,在测量区域内设置扫描器和接收器,扫描器会以一定的速度扫描整个区域,同时记录接收到的反射激光束信息。

然后,将接收到的数据进行处理和分析,得到物体表面各个点的三维坐标数据。

2. 三角测量法:三角测量法是三维激光测量技术中常用的一种方法。

在进行测量之前,确定基准点和测量点的坐标,通过测量激光束与基准点和测量点的夹角,以及激光束与基准点之间的距离,可以利用三角函数计算出测量点的三维坐标。

基于控制器的高速三维激光扫描系统设计与实现

基于控制器的高速三维激光扫描系统设计与实现

基于控制器的高速三维激光扫描系统设计与实现随着科技的不断发展,激光技术的应用越来越广泛,如在仓储、制造、医疗等行业都有着重要的作用。

其中,三维激光扫描系统可以快速地获取三维模型,广泛应用于制造业、文化遗产保护、室内设计等领域。

本文将介绍一种基于控制器的高速三维激光扫描系统设计与实现。

一、系统架构系统架构主要由三部分组成:控制器、激光扫描头和制动器。

其中,控制器作为整个系统的核心,主要负责数据处理、控制和传输等任务。

激光扫描头则用于发射激光束并接收反射回来的激光信号。

制动器则起到激光扫描头的定位作用,以确保扫描的精度和精度。

二、系统设计本系统采用的激光扫描头为TOF(Time-of-Flight)类型激光扫描头,其工作原理是计算反射回来的激光信号的往返时间,并通过ToF芯片进行数据转换,从而得到距离信息。

同时,由于ToF激光扫描头的工作频率高,能量密度大,因此可以实现高速扫描。

另外,为了确保扫描的精确性,本系统采用了高精度制动器来控制激光扫描头的运动轨迹。

在控制器的设计方面,本系统选择了基于FPGA(Field-Programmable Gate Array)芯片的控制器,该芯片具有可重构性、并行性、低功耗等特点,适用于高速数据处理和控制。

控制器的软件部分则主要由C语言和Verilog HDL编写而成。

三、系统实现系统实现的关键在于算法的设计和实现。

本系统采用了基于去噪和网格化的数据处理算法,通过滤波、积分、分割、匹配等步骤将原始扫描数据进行处理,最终得到三维点云数据。

算法实现过程中主要采用了C++编程语言。

同时,为了实现高速扫描,本系统采用了基于DSP芯片的数据传输方式,用于实现控制器和激光扫描头之间的快速数据传输。

同时,为了实现较长距离的扫描,本系统还采用了多台激光扫描头的联合扫描方式,以减小扫描盲区和遮挡等现象。

四、系统优化在系统优化方面,本文主要着重从三个方面进行了优化:数据采集、数据处理和数据显示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三维激光扫描测量系统
基本介绍
三维测量可定义为“一种具有可作三个方向移动的探测器,可在三个相互垂直的导轨上移动,此探测器以接触或非接触等方式传送讯号,三个轴的位移测量系统经数据处理器或计算机等计算出工件的各点坐标(X、Y、Z)及各项功能的测量”。

三维测量的测量功能应包括尺寸精度、定位精度、几何精度及轮廓精度等。

2三维测量方式
1)将被测物体置于三坐标测量空间,可获得被测物体上各测点的坐标位置,这项技术就是三坐标测量机的原理。

三坐标测量机是测量和获得尺寸数据的最有效的方法之一,可以替代多种表面测量工具,减少复杂的测量任务所需的时间,为操作者提供关于生产过程状况的有用信息。

2)三维激光扫描仪是通过发射激光来扫描被测物,以获取被测物体表面的三维坐标。

三维激光扫描技术又被称为实景复制技术,具有高效率、高精度的测量优势。

有人说,三维激光扫描是继GPS技术以来测绘领域的又一次技术革命。

三维激光扫描仪被广泛应用于结构测量、建筑测量、船舶制造、铁路以及工程的建设等领域,近些年来,三维激光扫描仪已经从固定朝移动方向发展,最具代表性的就是车载三维激光扫描仪和机载三维激光雷达。

3)[1] 拍照式三维扫描仪采用一种结合结构光技术、相位测量技术、计算机视觉技术的复合三维非接触式测量技术。

这种测量原理,使得对物体进行照相测量成为可能。

所谓拍照测量,就是类似于照相机对视野内的物体进行照相,不同的是照相机摄取的是物体的二维图象,而研制的测量仪获得的是物体的三维信息。

3应用领域
机械、汽车、航空、军工、家具、工具原型等测量高精度的几何零部件以及测量复杂形状的机械零部件。

三维测量技术的应用领域:
最近几年,三维激光扫描技术不断发展并日渐成熟,目前三维扫描设备也逐渐商业化,三维激光扫描仪的巨大优势就在于可以快速扫描被测物体,不需反射棱镜即可直接获得高精度的扫描点云数据。

这样一来可以高效地对真实世界进行三维建模和虚拟重现。

因此,其已经成为当前研究的热点之一,并在文物数字化保护、土木工程、工业测量、自然灾害调查、数字城市地形可视化、城乡规划等领域有广泛的应用。

(1)测绘工程领域:大坝和电站基础地形测量、公路测绘,铁路测绘,河道测绘,桥梁、建筑物地基等测绘、隧道的检测及变形监测、大坝的变形监测、隧道地下工程结构、测量矿山及体积计算。

(2)结构测量方面:桥梁改扩建工程、桥梁结构测量、结构检测、监测、几何尺寸测量、空间位置冲突测量、空间面积、体积测量、三维高保真建模、海上平台、测量造船厂、电厂、化工厂等大型工业企业内部设备的测量;管道、线路测量、各类机械制造安装。

(3)建筑、古迹测量方面:建筑物内部及外观的测量保真、古迹(古建筑、雕像等)的保护测量、文物修复,古建筑测量、资料保存等古迹保护,遗址测绘,赝品成像,现场虚拟模型,现场保护性影像记录。

(4)紧急服务业:反恐怖主义,陆地侦察和攻击测绘,监视,移动侦察,灾害估计,交通事故正射图,犯罪现场正射图,森林火灾监控,滑坡泥石流预警,灾害预警和现场监测,核泄露监测。

(5)娱乐业:用于电影产品的设计,为电影演员和场景进行的设计,3D游戏的开发,虚拟博物馆,虚拟旅游指导,人工成像,场景虚拟,现场虚拟。

三维激光切割行业应用
三维激光切割广泛应用于钣金加工、金属加工、广告制作、厨具、汽车、灯具、锯片、升降电梯、金属工艺品、纺织机械、粮食机械、眼镜制作、航空航天、医疗器械、仪器仪表等行业。

特别是在钣金加工行业中已取代传统加工方式,深受行业用户的青睐。

相关文档
最新文档