超声波焊接

合集下载

超声波焊接法

超声波焊接法

超声波焊接法
超声波焊接是一种利用高频振动波传递到两个需焊接的物体表面,在加压的情况下,使两个物体表面相互摩擦而形成分子层之间的熔合的焊接方法。

超声波焊接具有以下优点:
1.熔合强度高,适用于多种塑料焊接,同时还能大大增强焊缝的机械性能;
2.工作效率高,相比于其他焊接方法,超声波焊接的速度更快;
3.对环境污染小,因为整个焊接过程不需要任何辅助剂、焊剂或者气体。

然而,超声波焊接也存在一些缺点:
1.需要对焊头施加压力,导致设备较复杂且维修成本较高;
2.需要焊头传递超声波能量到产品,产品会轻微压痕。

在具体操作过程中,有以下几点注意事项:
1.在熔接法中,通过超音波超高频率振动的焊头在适度压力下,使二块塑胶
的接合面产生摩擦热而瞬间熔融接合,焊接强度可与本体媲美。

此外,采用合适的工件和合理的接口设计,可达到水密及气密的效果;
2.在埋植法中,通过焊头之传道及适当之压力,瞬间将金属零件(如螺母、
螺杆等)挤入预留入塑胶孔内,固定在一定深度。

完成后无论拉力、扭力均可媲美传统模具内成型之强度;
3.在成型法中,该方法与铆焊法类似,将凹状的焊头压着于塑胶品外圈,焊
头发出超音波超高频振动后将塑胶溶融成形而包覆于金属物件使其固定。

总的来说,超声波焊接法是一种有效的塑料焊接方法,它利用了超声波的高频振动来传递能量,使得两个塑料的表面能够迅速地熔合在一起。

超声波焊接技术

超声波焊接技术

超声波金属焊接技术详解定义:超声波金属焊接利用高频振动波传递到需焊接的金属表面,在加压的情况下,使两个金属表面相互摩擦而形成分子层之间的熔合。

原理:超声波金属焊接是利用超声频率的机械振动能量,连接同种金属或异种金属的一种特殊方法.金属在进行超声波焊接时,既不向工件输送电流,也不向工件施以高温热源,只是在静压力之下,将机械能转变为内能、形变能及有限的温升。

两母材达到再结晶温度下发生的固相焊接。

在超声焊接过程中,换能器把高频电信号转化为超声振动信号,高频振动通过焊接工具头传递到待焊金属表面,界面金属氧化膜在一定的压力和超声振动的剧烈摩擦作用下破碎,界面洁净金属接触并在摩擦和超声软化的共同作用下,进一步产生塑性流动和扩散使连接面积逐渐增大最终形成可靠的连接。

系统组成:一套超声波焊接系统的主要组件包括超声波发生器/换能器/变幅杆/焊头三联组/模具和机架。

超声波焊接是通过超声波发生器将50/60赫兹电流转换成15、20、30或40KHz电能。

被转换的高频电能通过换能器再次被转换成为同等频率的机械运动,随后机械运动通过一套可以改变振幅的变幅杆装置传递到焊头。

焊头将接收到的振动能量传递到待焊接工件的接合部,在该区域,振动能量被通过摩擦方式转换成热能,将需要焊接的部件区域熔化。

焊接过程:过渡阶段为清除焊件表面膜和氧化物的短暂过程,稳定阶段为界面产生相互扩散并使相互扩散稳定的过程。

在过渡阶段,焊件表面氧化物膜由于强烈磨擦作用破碎,此时磨擦为主要热源,工件温度升高使工件材料屈服强度降低,有利于工件表面氧化膜破碎及发生塑性变形,对接头形成有重要作用。

稳定阶段,金属接触表面变得平滑后摩擦作用减弱,热量由于产生塑性变形而在焊接界面聚集,在此过程中的热量是由工件的塑性变形过程产生,工具头施加的压力致使界面原子之间产生作用力而形成的金属连接过程。

工艺参数的影响:超声金属焊接过程的主要工艺参数有焊接压力、焊接能量/时间、工具头振幅和工具、头齿纹与尺寸等。

超声波焊接

超声波焊接

超声波焊接超声波焊接是一种应用超声波技术进行焊接的方法,它具有高效、可靠、环保等特点,广泛应用于工业生产中。

本文将从超声波焊接的原理、设备、应用领域以及优势等方面进行介绍。

超声波焊接是利用超声波振动产生的能量实现焊接材料的熔接。

超声波是一种频率超过人耳能听到的声音的机械波,其频率一般在20kHz到70kHz之间。

超声波焊接的原理主要是利用超声波振动使材料分子的间距变小,从而产生高温高压的效果,促使材料发生熔接现象。

在焊接过程中,超声波振动会穿透至焊材表面,使接触部分的温度升高,然后通过适当的加压使材料熔化并熔接在一起,最终形成焊接接头。

超声波焊接设备主要由超声波振动系统、机械系统和电气系统组成。

超声波振动系统是超声波焊接的核心部分,它由发声器和承载器组成。

发声器是将电能转化为机械振动的装置,承载器则是将振动传递给焊接件的装置。

机械系统主要包括焊接头、压力机构等部分,用于在焊接过程中施加适当的压力。

电气系统则提供了超声波发生器、控制电路、传感器等设备,用于控制焊接过程的各个参数。

超声波焊接在工业生产中有着广泛的应用。

它可以焊接各种金属材料,如铝、铜、钢等,也可以焊接塑料和纺织品等非金属材料。

超声波焊接常被运用在汽车制造、电子设备生产、包装行业等领域。

例如,在汽车制造中,超声波焊接被应用于制造车灯、排气管和电池等零部件;在电子设备生产中,它被用于焊接电子元件和连接导线等;在包装行业中,超声波焊接可用于封口、划线和熔接等工作。

超声波焊接具有许多优势。

首先,它的焊接速度快,能够在短时间内完成焊接工作,提高生产效率。

其次,超声波焊接的焊接接头牢固可靠,具有较高的拉伸强度和密封性能。

再次,它适用于焊接的材料种类广泛,包括金属、塑料和纺织品等。

此外,超声波焊接过程不需要使用焊接剂和填料,所以它是一种环保、无污染的焊接方法。

总结起来,超声波焊接是一种高效、可靠、环保的焊接方法,广泛应用于多个行业中。

随着技术的不断进步,超声波焊接设备的性能和效果也在不断提高,为我们的生产和生活带来了许多便利和效益。

超声波焊接和激光焊接工艺

超声波焊接和激光焊接工艺

超声波焊接和激光焊接工艺1. 引言1.1 背景介绍超声波焊接和激光焊接是两种常见的金属焊接工艺,都是利用能量进行熔化和连接金属材料的方式。

超声波焊接是指利用高周波振动产生的超声波能量,在焊缝处产生高温高压,从而实现金属的焊接。

而激光焊接则是利用激光束产生的热能,将金属迅速加热到熔点并实现连接的过程。

随着工业的发展和对制造品质的要求不断提高,金属材料的焊接工艺也在不断创新和发展。

传统的焊接方式存在一些缺陷,比如热影响区广、变形大等问题。

超声波焊接和激光焊接作为新兴的焊接技术受到了越来越多的重视。

超声波焊接和激光焊接通过其高效的焊接速度、精准的焊接控制和对环境的友好性等优势,逐渐成为金属制造领域中重要的焊接工艺。

它们不仅可以提高焊接质量和生产效率,还能减少能源消耗和环境污染。

研究超声波焊接和激光焊接工艺的优势、应用领域和发展趋势,对于提高金属制造工艺水平、推动工业升级具有重要的意义。

本文将针对超声波焊接和激光焊接进行深入探讨,以期为相关领域的研究和实践提供参考。

1.2 研究意义超声波焊接和激光焊接作为现代工艺技术中广泛应用的焊接方法,具有独特的优势和应用前景。

研究这两种焊接工艺的意义主要体现在以下几个方面:超声波焊接和激光焊接作为高效、高精度的焊接工艺,可以在不加入外部金属材料的情况下完成焊接过程,避免了金属材料污染和材料浪费的问题。

这对于精密仪器制造、电子产品组装等领域具有重要意义。

超声波焊接和激光焊接的焊接速度快、热影响区小、焊接质量高,能够提高生产效率,降低能源消耗,减少生产成本,提高产品的整体质量和可靠性。

通过对超声波焊接和激光焊接工艺的研究,可以不断优化工艺参数,提高焊接质量和稳定性,拓展其在不同材料和结构的应用领域,推动材料加工和制造领域技术的进步。

研究超声波焊接和激光焊接工艺的意义在于不断提升焊接技术水平,推动工业制造的现代化和智能化发展,为构建绿色、高效、可持续的制造业发展模式提供技术支持和保障。

超声波焊接等级划分

超声波焊接等级划分

超声波焊接等级划分一、一级超声波焊接一级超声波焊接是最基本的等级,焊接质量较低。

在一级超声波焊接中,焊接接头的强度和气密性较差,容易出现焊接不牢固的情况。

因此,一级超声波焊接通常应用于对焊接质量要求不高的场景,如一些非关键零部件的生产。

二、二级超声波焊接二级超声波焊接的焊接质量相对较高。

在二级超声波焊接中,焊接接头的强度和气密性较一级焊接有所提高,焊接质量更加可靠。

二级超声波焊接常应用于对焊接质量要求较高的场景,如电子设备、汽车零部件等的生产。

三、三级超声波焊接三级超声波焊接是最高等级的焊接技术,焊接质量最好。

在三级超声波焊接中,焊接接头的强度和气密性达到最高水平,焊接质量非常可靠。

三级超声波焊接通常应用于对焊接质量要求极高的场景,如航空航天领域、医疗器械等的生产。

超声波焊接等级的划分主要根据焊接接头的强度和气密性来确定。

随着等级的提高,焊接接头的强度和气密性也会相应提高,焊接质量更加可靠。

因此,在实际应用中,根据产品的具体要求和使用环境,选择合适的超声波焊接等级非常重要。

除了焊接接头的强度和气密性外,超声波焊接还具有许多其他优点。

首先,超声波焊接可以实现无损焊接,不会对焊接接头和周围材料造成热损伤。

其次,超声波焊接速度快,效率高,能够大幅度提高生产效率。

此外,超声波焊接还可以焊接不同类型的材料,具有较好的适用性。

超声波焊接是一种重要的焊接技术,根据焊接质量要求的不同可以划分为不同的等级。

每个等级的超声波焊接都有其特点和应用场景,选择合适的等级对于保证焊接质量至关重要。

随着技术的不断发展,相信超声波焊接在工业生产中的应用会越来越广泛。

超声焊接原理

超声焊接原理

超声焊接原理全文共四篇示例,供读者参考第一篇示例:超声焊接是一种将金属或塑料物体通过超声波振动进行连接的加工技术。

它广泛应用于汽车、电子、医疗器械等行业,具有快速、高效、环保等优点。

超声焊接的原理是利用超声波高频振动的特性,在接触面产生摩擦热,使材料局部加热并软化,然后通过施加压力将两个材料连接在一起。

超声焊接的原理主要分为以下几个步骤:第一步是能量转换。

超声振动器产生的高频振动能量通过焊头传递给工件,使其表面微震动,产生高频摩擦热。

这种高频振动使得工件分子结构产生变化,形成塑性变形,达到焊接的目的。

第二步是焊接面的预处理。

在焊接前,需要对工件表面进行清洁处理,以确保焊接面无杂质,确保焊接质量。

同时还需要对工件进行定位,使焊接面对齐,以便焊接过程中产生均匀的焊接接触压力。

第三步是焊接过程控制。

在实际焊接过程中,需要控制超声波功率、振幅、焊接时间等参数,以适应不同材料的焊接需求。

通过精确调节这些参数,可以保证焊接过程的稳定性和可靠性。

第四步是焊接质量检测。

焊接完成后,需要进行焊接质量检测,检查焊接面的牢固性和质量。

通过超声波检测仪器可以检测焊缝的密实性和质量,确保焊接的可靠性。

超声焊接原理通过超声波的高频振动产生摩擦热,实现材料的局部加热和塑性变形,最终将两个材料连接在一起。

这种焊接技术不仅可以提高工件的生产效率,还可以降低焊接的成本和能耗,是一种环保节能的焊接方法。

在未来的发展中,超声焊接技术将会得到更广泛的应用。

第二篇示例:超声焊接是一种利用超声波振动能量产生的热量来实现材料的连接的一种焊接方法。

它是一种非接触式的焊接方式,通过将超声波振动传递到焊接材料表面,产生的摩擦热能使材料表面达到熔化点,从而实现焊接。

超声焊接的原理是利用超声波在焊接头部引起的高频振动,通过摩擦热的作用使焊接材料局部升温至其熔化点,然后冷却固化形成焊接接头。

超声波传递到焊接头部后,由于头部和工件之间的相互作用,形成了频率一定的机械振动能量,这种振动能量被称为纵波。

超声波焊接技术PPT课件.ppt

超声波焊接技术PPT课件.ppt

焊头接触
耦合面
太小
正确
不正确
焊头接触
增加法兰以便焊头 直接位于焊接区域 上
超声波模具設計和应用对焊接效 果産生什庅作用
?
• 換能器 • 調幅器 • 焊头 • 底座
模具技术
压电陶瓷
H H
通电前
通电后
标准振幅
可能损坏的原因
✓ 横向振动 ✓过热 ✓撞击 ✓焊头频率相差大 ✓不適當調幅器
什么是调幅器 ?
剪切接口的局限
需要紧密公差 需要刚性侧壁支撑 零件尺寸 不规则外形
塑膠件焊接線設計外,還需要考 慮其它因素吗
?
其它设计考虑因素
尖角 孔洞和弯曲 附加物 振动膜 焊头接触
尖角
避免
推荐
孔洞和弯曲
焊头
空洞
潜在的焊接盲区
半结晶型树脂
无定型树 脂
附加物
焊头
潜在的裂纹点
附加物
振动膜
焊接时间改小 振幅加大或减小 Amplitude ProfilingTM 焊头中心柱塞 内壁加厚 内部支撑筋
调幅器是铝合金或钛合金材料制成的一 个半波长共振部分。它安置于换能器和焊头 之间,调节传递至焊头的振动幅度。
调幅器的增益
1:0.6
1:1
1:1.5
1:2.0
1:2.5
1:0.6
1:1
1:1.5
1:2.0
能量 = 功率 X 时间
功率因素

X
速率
力可以改变
速率因素
压强
下降速率
频率 X 振幅
负 载
黑色 银色
压力
金色
无调幅 器
如何选择调幅器
• 可咨询本公司应用部 • 超声焊头有其相应的调幅器增益极限 • 工件塑膠特性,面積大少,形狀------振幅 • 应用之種類---铆焊,点焊,嵌插焊等

超声波焊接应用场景

超声波焊接应用场景

超声波焊接应用场景
超声波焊接是一种利用超声波振动产生的热能将物体进行连接的技术。

它在多个领域有着广泛的应用,以下是一些超声波焊接的应用场景。

1. 汽车制造业:超声波焊接可以用于汽车制造业中的零部件连接,例如汽车灯罩、仪表盘、车门板等。

超声波焊接可以快速、准确地将这些零部件连接在一起,保证连接的强度和密封性。

2. 医疗器械制造:超声波焊接在医疗器械制造中有着重要的应用。

例如,超声波焊接可以用于制造各种医用塑料容器,如输液瓶、血袋等。

超声波焊接可以确保容器的密封性和抗压性能,从而保证医疗器械的安全性和可靠性。

3. 电子产品制造:超声波焊接在电子产品制造中也有着广泛的应用。

例如,超声波焊接可以用于手机、电视、电脑等电子产品的组装。

通过超声波焊接,可以将电子元件连接在一起,确保电子产品的稳定性和可靠性。

4. 塑料制品制造:超声波焊接在塑料制品制造中起着重要的作用。

例如,超声波焊接可以用于制造塑料管道、塑料容器、塑料玩具等。

超声波焊接可以快速、高效地连接塑料制品,确保连接的牢固性和密封性。

5. 包装行业:超声波焊接在包装行业中有着广泛的应用。

例如,超
声波焊接可以用于制造塑料包装袋、封口袋等。

通过超声波焊接,可以将塑料薄膜连接在一起,形成牢固的封口,保持包装的完整性和密封性。

总的来说,超声波焊接在多个领域都有着重要的应用。

它可以快速、高效地将物体连接在一起,确保连接的强度和密封性。

超声波焊接技术的应用不仅提高了生产效率,还提高了产品的质量和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超声波焊接机的工作原理!超声波焊接装置是通过一个电晶体功能设备将当前50/60Hz的电频转变成20KHz或40KHz的电能高频电能,供应给转换器。

转换器将电能转换成用于超声波的机械振动能,调压装置负责传输转变后的机械能至超声波焊接机的焊头。

焊头是将机械振动能直接传输至需压合产品的一种声学装置!!振动通过焊接工作件传给粘合面振动磨擦产生热能使塑胶熔化,振动会在熔融状态物质到达其介面时停止,短暂保持压力可以使熔化物在粘合面固化时产生个强分子键,整个周期通常是不到一秒种便完成,但是其焊接强度却接近是一块连着的材料!!三、超声波焊接的应用领域目前被运用的朔胶制品与之间的粘结,朔胶制品与金属配件的粘结及其它非朔胶材料之间的粘结!四、超声波焊接的工艺焊接:指的是广义的将两个热塑性塑料产品熔接的过程。

当超音停止振动时,固体材料熔化,完成焊接。

其接合点强度接近一整块的连生材料,只要产品的接合面设计得匹配,完全密封是绝对没有什么问题的,碟合:熔化机械锁形成一个材质不同的塑料螺栓的过程。

嵌入:将一个金属元件嵌入塑料产品的预留孔内。

具有强度高,成型周期短安装快速的优点!!类似于模具设计中的嵌件!弯曲/生成音波将配件的一部分熔化再组成一个塑料的突起部位或塑料管或其它挤出配件。

这种方式的优势在于处理的快速,较小的内压,良好的外观及对材料本性的克服。

点悍点焊是对没有预留也或能源控制的两个热塑塑料组件的局部焊接。

点焊也能产生一个强有力的粘合构造,尤其适合一些大型配件、有突起的塑料片或浇注的热塑塑料以及那些结构复杂、难以进入接合面的产品。

剪切切和封口一些有序与无序的热塑材料的超音波工艺。

用这种方法密封的边缘不开裂,且没有毛边、卷边现象。

纺织品/胶片的密封纺织品品及一些胶片的密封也可用到超音波。

它可对胶片实行紧压合,还可对纺织品进行整洁的局部剪切与密封。

缝合的同时也起到了装饰的作用。

聚合物:热塑性与热固性将单体结合在一起的过程称为“聚合”。

聚合物基本可分为两大类:热塑性和热固性。

热塑性材料加热成型后还可以重新再次软化和成型,基所经历的只是状态的变化而已-这种特性使决定了热塑性材料超音波压合的适应性。

热固性材料是通过不可逆反的化学反应生成的,再次加热或加压均不能使已成型的热固性产品软化,所以传统上一直认为热固性材料是不适合使用超音波的。

影响超音波焊接的因素说起热塑塑料的可焊接力,不能不说到超音波压合对各种树脂的要求。

其最主要的因素包括聚合物结构,熔化温度、柔韧性(硬度)、化学结构。

聚合物结构非结晶聚合物分子排列无序、有明显的使材料逐步变软、熔化及至流动的温度(Tg玻璃化温度)。

这类树脂通常能有效传输超音速振动并在相当广泛的压力/振幅范围内实现良好的焊接。

半结晶型聚合物分子排列有序,有明显的熔点(Tm熔化温度)和再度凝固点。

固态的结晶型聚合物是富有弹性的,能吸收部分高频机械振动。

所以此类聚合物是不易于将超声波振动能量传至压合面,帮要求更高的振幅。

需要很高的能量(高熔化热度)才能把半结晶型的结构打断从而使材料从结晶状态变为粘流状态,这也决定了这类材料熔点的明显性,熔化的材料一旦离开热源,温度有所降低便会导致材料的迅速凝固。

所以必须考虑这类材料的特殊性(例如:高振幅、接合点的良好设计、与超音夹具的有效接触、及优良的工作设备)才能取得超声波焊接的成功。

熔化温度聚合物的熔点越高,其焊接所需的超音波能量越多.硬度(弹力系数)材料的硬度对其是否能有效传输超音速振动是很有影响的。

总的说来,愈硬的材料其传导力愈强。

问题一:我以前有做过一个这样的东东,在一个表面要求较高的塑胶件是垂直打入一个带内螺丝的金属件,要求用15KG的力都拉不出该金属件,结果出来的东东都凶多吉少,问题:1,用超声波打入时,破坏了已有高质量塑胶表面,不但是精度达不到了,个别还出现凹凸什么的2,打好的东东放几天之后出现裂纹,使得预留孔与金属件的干涉量一点都不好控制,大了--开裂,小了--能承受的拉力不够3,垂直度不好控制,装上螺丝之后发现它老人家居然是斜的最后不得不改用其它方式作罢答:出现以上情况,主要是因为你的金属件结构不合理。

这种场合的金属件(铜套)外表一般都要采用花纹(滚花)或者条文,花样很多,有专业的厂家制造!而且中间腰部还要切一圈,类似于“退刀槽”一样的结构,然后在塑胶件孔内预留单边0.1~0.2(根据花纹的粗细)过盈量,再采用超声波压入,用夹具保证垂直即可!上次我们公司要模具厂家做一个电池盒,电池的上下盖就是用超声波焊接在一起的。

那是我第一次接触到超声波焊接的概念,厂方的技术员希望结合处的截面是前面的三种样式,当然具体哪一种就根据你设计的产品的实际情况来定了。

第四种情况是不能接受的。

可能和rubbin的内容重复了,不过这是我遇到的实际情况,大家看看看看吧。

关于超声的截面形状,就不说了,我这里增加一个对与三角形截面超声的底下平台的尺寸,一般我在手机电池中所做的超声线采用3角形,尺寸高度0.3--0.4,角度采用60度,在电池中,由于壁厚有限,一般只有0.7--1.0,我们尽量会采用RUBBIN所说的STEP JOINT方式,但是平台的尺寸我们一般会做到0.6以上,否则容易出现超声线往里面跑,超声不牢,另外一种就是壁厚足够,采用我图上所示的那种形状,里面做个筋挡住它,这样的超声效果一般都很好EVA树脂的特点是具有良好的柔软性,橡胶般的弹性,在-50℃下仍能够具有较好的可挠性,透明性和表面光泽性好,化学稳定性良好,抗老化和耐臭氧强度好,无毒性。

与填料的掺混性好,着色和成型加工性好。

它和乙酸乙烯含量和分子量、熔融指数关系很大。

当熔融指数(MI)一定,乙酸乙烯(VAC)含量提高时候,其弹性、柔软性、相溶性,透明性等也随着提高。

当VAC含量减少时候,则性能接近于聚乙烯,刚性增高,耐磨性、电绝缘性提高,。

若VAC含量一定时候,融体指数增加时,则软化点下降,加工性和表面光泽改善但强度会下降,否则,随MI的降低则分子量增大,冲击性能和抗环境应力开裂性能提高。

乙酸根的极性使弹性和粘性增大,结晶性和电性能下降,溶于烃类溶剂和油类。

EVA及PEVA的特点是:1、可生物降解:弃掉或燃烧时不会对环境造成伤害。

2、与PVC价格相近:EVA的价格比有毒的PVC较贵,但相对不含邻苯二甲酸盐之PVC 为便宜。

3、重量较轻:EVA的密度介乎0.91至0.93,而PVC则为1.32。

4、不含臭味:EVA不含像阿摩尼亚(ammonia)或其它有机气味。

5、不含重金属:符合有关国际的玩具条例(EN-71 Part 3及ASTM-F963)。

6、不含邻苯二甲酸盐:适合儿童玩具及不会产生增塑剂释出危险。

7、高透明,柔软及坚韧度:应用范围十分广阔。

8、超强耐低温(-70C):适合结冰环境。

9、抗水,盐份及其它物质:在大部分的应用情况下都能保持穏定。

10、高热贴性:可牢固地贴于尼龙,涤纶,帆布及其它布类。

11、低贴合温度:可加快生产速度。

12、可丝印及柯式印刷:可用于多图案的产品(但必须用EVA类的油墨)。

在设计超声模具时,象我所贴图中的电池上壳是做在下模,下壳(绿色的)做在上模,因为下壳比较浅,这样超声时能量损失会比较小另外还需注意一下超声线的长度,太长了塑胶超声时没地方跑,不容易压下去,需要用较大的振幅才可以,我常做的超声线长度一般为3-4MM实我在实际的设计中一般也是采用“cmk123cn”兄所讲的那种形式,一般的情况为了更好的保机壳上下盖在超音波熔接之后的强度,可以将上下盖的高度做得不一至,即打破传统的设计观念,不将Case从中间分开,而是整个高度尺寸上下盖可以做得高一点,上盖的高度尺寸可以做得小一点,这样在超音波熔接之后一般的情况下强度会较中分的要好得多。

同时还要注意一点的是,一般的情况我是将音波线做在上盖上,而凹槽部分做在下盖上,这样做当然也是为提高其强度(个人看法)。

对于音波线的高度我一般的情况下会取得比较大,因为根据前次我所讲的IEC标准,如音波线的高度做得太小了,则无法通过此检验标准的。

以下是我在设计中常用的取值标准:音波线的H=0.9~1.0mm,形状呈三角形,音波线的W=1.2mm左右(当然底部还会有一节过渡段,H=1.5mm左右;下盖的凹槽:H=1.5~1.6mm,W=1.5~1.6mm。

这样熔接之后的美观线高度一般会在0.5mm以下,尺寸做得好可以达0.3mm以下的美观线(这个看你自己怎么定了)。

上面cmk123cn兄所讲的在做音波线时提到了做成虚线的形式,其实这一招在平时也是满有道理的:1.可以减少溢胶的可能性,一般情况下,做成虚线的音波线很少会有溢胶的现象的啦。

2.有很好的熔接效果,其实这一点我还存在有一点点困惑的,依我个人认为,虚线音波线的熔接强度应该要比实线音波线的熔接强度低一些。

兄弟们可别拿砖头扔我哦,说错了请指正。

圖片來了,但是事先聲明,這只是本人在實際設計中用到的經驗數據,各位可以做個參考.超声粘接是塑胶玩具业中使用得非常广泛的一种紧固联接的方法,但并非所有的塑胶都可以超声粘接的。

这跟塑胶的性能有关系,一般来讲,非极性化合物(如PP,PE)是很难超声的,极性化合物是可以超声的,而且极性化合物之间也是可以超声的,如PS与PMMA之间是可以超声的,典型的产品,如望远镜系列,望远镜的镜片是PMMA的,而镜身可能是PS或者ABS,就可直接把PMMA镜片超声粘接到PS或者ABS镜身上,而一般来说,玩具产品中的硬胶使用得最多的就是聚笨乙烯(PS)及其改良品种,所以超声粘接使用得最多的就是PS。

超声的原理可以被认为是使用振幅很小的高频振动使得两个相互接触的表面在小范围内剧烈的磨擦,而使得接触面发热而熔解到一小部分熔胶。

并在压力的作用下,熔胶变得凝固而使得两个制件粘接到一起。

这个过程很短,一般在几秒到十几秒之间,而频率的选择一般在20-40MHZ之间(注:实际上原理比之复杂,但可以这样认为)超声的过程是由超声机来完成的,它主要有三个变量可以选择:(1)频率、(2)时间、(3)压力,而一般来说,频率越高,时间越长,熔胶越多,而压力越大,凝固的熔胶屋越薄,对于一个制件来讲,压力与面积有关,而使得必须要有一定的压力,合适的时间与频率可以保证有足够的熔胶使得两制件能够粘在一起,过多会使得胶件变软,外流,尺寸减小,而过少而不能粘牢。

对超声起作用的还有超声模,超声模分上下模,上模是金属的,而下模则可以是树脂的,只要按形状的要求把制件定位好就可以了。

上模是关系高频波是通过上模传递到制件重要粘接的位置上影响超声粘接效果除了调节超声机的工用状况外,还有材料,环境与制件结构,由材料的自身性能决定是否可以超声,而环境中的湿度也会对超声起作用,如尼龙件具有较大的吸湿性,使用制件中吸水量较小,而水的存在可以分散高频振荡,使得正超声质量下降,但最主要的还是结构,比较常用的三种方法,共同点是有一个四分之一的宽,八分之一的长的超声线,这样的原理是在高频接触时,让细长的线先熔解再在压力的作用下分布在被粘接面上,一方面减少了因大面积接触而产生的滑动偏移,另一方面使得熔解液可以控制,可实际*作中没有这样的规范,所谓的超声线就是高0.3mm的半圆线。

相关文档
最新文档