超声波焊接线的设计及超声波焊接机的测试
超声波焊接机之超声波熔线设计

接面避免溢出的机构设计A
上图例接面设计为一般方法气水密性不佳壁厚w=1~2mm时内侧接触的宽度宜 x=w/2接合面的间隙t因接合面全体长度而异通常t=0.2~0.5mm。
东莞市协和超声波设备有限公司
接面避免溢出的机构设计B
上图例为适合壁厚薄的设计,w=1mm时,箭头部份溢出,为防止外侧 部份鼓胀,采用x=w/3取t=0.3~0.5mmm。
剪力型接面設計焊接深度
东莞市协和超声波设备有限公司
剪力型式接面设计
东莞市协和超声波设备有限公司
沟槽型1.5MM
东莞市协和超声波设备有限公司
沟槽型2.0MM
东莞市协和超声波设备有限公司
沟槽型3.0MM
东莞市协和超声波设备有限公司
沟槽型式接面设计
东莞市协和超声波设备有限公司
超声波塑料避免接面溢出的机构设计 超声波塑料焊接的塑料接面机构设计, 影响焊接的强度、焊接部的美观、焊接加工的 精度、水气密性。因此须依塑料的材质,适当 的决定接面设计的型式,在传导焊接的特性上, 嵌合形状极为重要。下列为避免加工物外部及 内部溢出的各种接面设计范例,配合超声波焊 接的焊接时间、振幅、压力的调节,能达到焊 接迅速美观强固的最佳效果。
东莞市协和超声波设备有限公司
阶梯型壁厚1.5MM
东莞市协和超声波设备有限公司
远近场焊接─压着面的决定
东莞市协和超声波设备有限公司
远近场焊接─塑料材质接面距
东莞市协和超声波设备有限公司
阶梯型式接面设计
东莞市协和超声波设备有限公司
解决不易焊接的塑料材质─剪力型接面设计
半结晶性塑料材质的分子结构在固态时呈弹簧狀,其内部会吸 收一部分的高频机械振动能量,这使超声波能量难以传导至焊接面, 因此这類塑料的焊接通常需要高振幅。熔点范围狭小的结果是必须 利用高功率的超声波(高熔解热)以破坏结晶结构,使材料流动。一 旦熔化的材料流出加热区域后,只要温度些微下降即快速固化。因 为这种特性, 以期达到满意的焊接效果,所以需要采用特殊的导能 点接面设计。 半结晶性塑料 聚乙烯〈PE〉、聚丙烯〈PP〉、聚氯乙烯〈PVC〉 聚酰胺〈PA or Nylon〉、聚脂〈PET〉、、、。
超声波焊接线的设计规范

超声波焊接线设计熔接前熔接后凹凸槽型设计阶梯形设计汽车后灯片阶梯形水气密设计适用于反光接面以角度为导熔点设计以便渐进熔接★熔接良好可以结合不易熔接两烯晴双烯苯乙烯缩醛树脂压克力纤维素ABS和P.C合成物压克力和PVC合金聚亚苯氧化物尼龙聚碳酸脂PC聚乙烯PE聚丙烯PP聚苯乙烯PS聚讽聚氯乙烯苯乙烯丙烯晴聚脂树脂聚丙烯晴奥龙ABS★★★ACETAL★ACRYLICS★★CELLULOSICS★CYCOLOY-800★★★CYCOVIN★KYDEX★NOROY★★NOLON★PC★★PE★PP★PS★POLYSULFONE★PVC★SAN★POLYESTER★XT-POL YMER★材质参考表List of Naterials不同塑料之熔接状况welding condition of different plasticeUltrasonic超声波焊接Hot-plate热板Vibration 震动Spin旋转RadioFreq高频Near field welding近距离Farfieldewelding远距离Inserting塑胶Staking铆接Spotwelding点焊oncontact接触①low temp低温OnContact②hightemp高温Non-contacd不接触③Acrylic/Styrenne/Acrylonitrle(ASA)丙烯酸/苯乙烯/丙烯晴2-32△2222-333224Acrylonitrle/Butadiene/Styrenne(ABS)丙烯硝/丁二烯/苯乙烯(超不碎胶)11△1-2111-22221-24Cellulose acervate(CA)醋酸纤维素/纤维素乙酸脂22-3△22-323-43-43-4223-4Methacrylate(Acrylic)(PMMA)甲基丙烯酸脂(亚加力)1-21-2△1-222212-32-323-4PA-Blends尼龙混合物3*3-4△3-43-43-423-4322-34PC-ABS-Blends PC/ABS混合物2-33△3-432-3233224PC-PBT-Blends PC/PBT混合物2-33-4△3-43-42-3233224Polyaceta(POM)聚甲醛22&2-32-32-31-222224 Polyamide(Nylon6)尼龙62-32-3&2-32-32-33-43-42-31-21-23-4 Polyamide(Nylon6/6)尼龙6/62-32-3&2-3332-322-31-223-4 Polyamide-copolymer(Nylon6-3-T)尼龙6-3-T222222-333223-4Polybutylane terephthalate(PBT)聚丁稀酸脂3injectionparts注塑件2-3&232-33-433224 1Foils加薄胶膜Polycarbonate(PC)聚碳酸脂(防弹胶)22△2222-32-3221-24Polyethylene(PE)聚乙烯(软胶)34332123324Polyethylene terephthalate(PET)聚乙烯酸脂(宝特胶)3injectionparts2-3&2-32-333-43322-341Foils加薄胶膜Polyphenylene oxide(PPO)聚氧化亚苯22△2-32-32-3223224 Polyphenylene sulfide(PPS)聚硫苯22&222233224Polypropylene(PP)聚丙烯(百折胶)34332123224Polystyrene(PS)聚苯乙烯(硬胶)11△11112321-24Polysukfone resin(PSO)聚砜树脂22&22-322-32-33224Polyvinyl chloride(PVC)聚氯乙烯2-3with Foils加薄胶膜3△2-32-32-31-23#3-42-321PP-EPDM-Blends PP-EPDMh-混合物33-4△3-42-3222-32-3224PPO-Blends 聚氧化亚苯混合物3with Foils加薄胶膜3-4△3-43-4322-32-3224Styrene/Butadiene(SB)苯乙烯/丁二烯11△22133321-24List of Symbols字符代表1=Very good非常好2=Good良好3=limited尚可4=Not possible不可能#=Exhoust fan recommended建议加排氧扇△=Energy director recommended建议焊接面加焊线*=Knurl Euced horn recommended建议焊头表面刻浪花纹&=Shear joint recommended建议焊接面造剪切面①Hot plate temperature up to290摄氏度,heat platens in contact with parts to be welded.热板温度达到290摄氏度,热板要与工作接触。
超声波焊接焊缝设计

超声波焊接焊缝设计
超声波焊接焊缝设计是指在超声波焊接过程中,根据需要的焊接强度和焊接部位的形状设计焊缝的形状和尺寸。
首先,需要确定焊缝的位置和形状。
焊缝应该位于需要焊接的两个工件的接触区域。
焊缝的形状可以根据工件的形状和结构要求进行设计,常见的焊缝形状有直线、环形、锯齿状等。
其次,需要确定焊缝的尺寸。
焊缝的尺寸应该保证焊接部位的接触面积足够大,在不影响焊接质量的前提下尽量减小焊缝的尺寸,可以提高焊接效率和焊接强度。
焊缝的宽度一般为工件厚度的一半到工件厚度的3/4,焊缝的深度一般为工件厚度的
1/4到工件厚度的1/2。
最后,需要考虑焊接过程中的其他因素。
如要保证焊缝的均匀性,可以在焊缝的两侧设置一定的间隔,避免焊接时焊缝偏移。
同时,在焊接前要确保焊接区域的清洁,以提高焊缝的质量。
总体来说,超声波焊接焊缝的设计需要根据具体的焊接要求和工件的结构形状进行,既要考虑焊接强度,又要考虑焊接效率和质量。
超声波焊接线设计标准

超声波焊接线设计标准超声波焊接作为一种高效、环保、节能的焊接技术,被广泛应用于汽车制造、电子设备生产、医疗器械加工等领域。
超声波焊接线设计标准是确保超声波焊接设备安全、稳定、高效运行的重要依据。
下面将从设备选型、安装、调试、操作、维护等方面,详细介绍超声波焊接线的设计标准。
一、设备选型1.根据焊接材料的不同选择适用的超声波焊接设备,包括超声波振动头、超声波焊接机、超声波发生器等设备。
2.超声波焊接设备应根据预期的焊接效果、生产能力、材料特性等因素进行选择,确保设备性能能够满足生产需求。
3.设备选型应符合国家相关标准和规定,并具备生产厂家的合法资质证明。
二、安装1.超声波焊接设备的安装应在专业技术人员的指导下进行,确保设备安装位置合理、固定可靠、通风良好。
2.超声波焊接设备应与其它设备和生产线隔离,避免干扰影响焊接效果。
3.设备安装过程中,应注意保护设备外壳,避免划伤、碰撞等造成设备损坏。
三、调试1.设备安装完成后,应进行严格的电气连接和机械连线检查,确保设备各部分连接良好,不漏电、不短路。
2.进行超声波焊接设备的初始调试,包括超声波振动头的频率、振幅调整,超声波焊接机的压力、时间参数设置等。
3.确保设备调试完成后,验证焊接效果符合要求,材料焊接牢固、美观、无碎裂。
四、操作1.超声波焊接设备的操作应有专门的操作人员进行,操作人员应经过专业培训,熟悉设备的操作流程和注意事项。
2.操作人员应穿戴相应的劳动防护用品,遵守设备操作规程和安全操作规定。
3.在操作过程中,应及时监测设备运行状况,发现异常情况立即停机处理,并报告维修人员进行维护。
五、维护1.超声波焊接设备的维护应按照设备使用说明书和维护手册进行,定期对设备进行清洁、润滑、保养等操作。
2.定期检查超声波焊接设备的电气元件、传动部件、超声波振动头等部分,及时发现并处理设备存在的问题。
3.保持设备周围环境整洁,避免灰尘、湿气等对设备正常运行的影响。
超声波焊接线设计标准是确保超声波焊接设备安全、稳定、高效运行的重要保障。
超声波焊接线设计

2-3
2△
2
2
2
2-3
3
3
2
2
4
Acrylonitrle/Butadiene/Styrenne(ABS)
丙烯硝/丁二烯/苯乙烯(超不碎胶)
1
1△
1-2
1
1
1-2
2
2
2
1-2
4
Cellulose acervate(CA)
醋酸纤维素/纤维素乙酸脂
2
2-3△
2
2-3
2
3-4
3-4
3-4
Near field welding近距离
Far fielde welding远距离
Inserting塑胶
Staking铆接
Spot welding点焊
on contact接触①low temp低温
On Contact②high temp高温
Non-contacd不接触③
Acrylic/Styrenne/Acrylonitrle(ASA)
聚苯乙烯(硬胶)
1
1△
1
1
1
1
2
3
2
1-2
4
Polysukfone resin(PSO)
聚砜树脂
2
2&
2
2-3
2
2-3
2-3
3
2
2
4
Polyvinyl chloride(PVC)
聚氯乙烯
2-3with Foils
加薄胶膜
3△
2-3
2-3
2-3
1-2
3#
3-4
2-3
2
超声波焊接线的设计与超声波焊接机的调试

超声波焊接线的设计与超声波焊接机的调试2009-04-23 09:391.强度无法达到欲求标准。
当然我们必须了解超音波熔接作业的强度绝不可能达到一体成型的强度,只能说接近于一体成型的强度,而其熔接强度的要求标准必须仰赖于多项的配合,这些配合是什么呢?※塑料材质:ABS与ABS相互相熔接的结果肯定比ABS与PC相互熔接的强度来的强,因为两种不同的材质其熔点也不会相同,当然熔接的强度也不可能相同,虽然我们探讨ABS与PC这两种材质可否相互熔接?我们的答案是绝对可以熔接,但是否熔接后的强度就是我们所要的?那就不一定了!而从另一方面思考假使ABS与耐隆、PP、PE相熔的情形又如何呢?如果超音波HORN瞬间发出150度的热能,虽然ABS材质己经熔化,但是耐隆、PVC、PP、PE只是软化而已。
我们继续加温到270度以上,此时耐隆、PVC、PP、PE已经可达于超音波熔接温度,但ABS材质已解析为另外分子结构了!由以上论述即可归纳出三点结论:1.相同熔点的塑料材质熔接强度愈强。
2.塑料材质熔点差距愈大,熔接强度愈小。
3.塑料材质的密度愈高(硬质)会比密度愈低(韧性高)的熔接强度高。
2.制品表面产生伤痕或裂痕。
在超音波熔接作业中,产品表面产生伤痕、结合处断裂或有裂痕是常见的。
因为在超音波作业中会产生两种情形:1.高热能直接接触塑料产品表面 2.振动传导。
所以超音波发振作用于塑料产品时,产品表面就容易发生烫伤,而1m/m以内肉厚较薄之塑料柱或孔,也极易产生破裂现象,这是超音波作业先决现象是无可避免的。
而在另一方面,有因超音波输出能量的不足(分机台与HORN上模),在振动摩擦能量转换为热能时需要用长时间来熔接,以累积热能来弥补输出功率的不足。
此种熔接方式,不是在瞬间达到的振动摩擦热能,而需靠熔接时间来累积热能,期使塑料产品之熔点到达成为熔接效果,如此将造成热能停留在产品表面过久,而所累积的温度与压力也将造成产品的烫伤、震断或破裂。
超声波焊接线设计标准

超声波焊接线设计标准一、概述超声波焊接是一种高效、环保的连接工艺,广泛应用于塑料、金属、陶瓷等材料的连接。
本文旨在提供超声波焊接线设计的基本标准,帮助工程师和设计师在产品开发中更好地应用超声波焊接技术。
二、设计标准1. 材料选择:选择适合超声波焊接的材料是关键。
一般来说,高分子材料如塑料、橡胶等较易焊接,而金属、陶瓷等硬质材料则较难焊接。
2. 结构设计:超声波焊接线的结构设计应遵循简单、稳定的原则。
避免有过多的转折、弯曲等复杂结构,以减少能量的损失和焊接不良的风险。
3. 声学匹配:在超声波焊接过程中,声学匹配是影响焊接效果的重要因素。
声学匹配包括声阻抗、声速等参数的匹配,确保超声波在焊接线中传播时能量损失最小。
4. 焊接参数设置:正确设置焊接参数是保证焊接质量的关键。
包括超声波频率、振幅、功率、焊接时间等参数,应根据材料类型和厚度等因素进行合理设置。
5. 焊接质量检测:为确保焊接质量,应在生产过程中定期对焊接线进行检查和测试。
可以采用目视检查、破坏性试验等方法,以确保产品的可靠性。
6. 安全性考虑:超声波焊接过程中会产生高频振动和高温,因此设计时应考虑安全性,包括设备固定、防护措施等。
7. 生产效率:设计超声波焊接线时,应考虑生产效率。
选择合适的设备型号和配置,以提高生产效率。
8. 维护与保养:为确保超声波焊接线的长期稳定运行,应定期对设备进行维护和保养。
包括检查紧固件、更换易损件、清洁设备等。
9. 环境适应性:考虑到生产环境可能存在的温差、湿度等因素,设计时应选择适应性强、耐用的设备及部件。
10. 经济性:在满足生产需求的前提下,应考虑设备的经济性。
选择性价比高的设备型号和配置,以降低生产成本。
三、总结超声波焊接线的设计标准是确保焊接质量和生产效率的关键因素。
在设计过程中,应充分考虑材料选择、结构设计、声学匹配、焊接参数设置、质量检测、安全性、生产效率、维护保养、环境适应性和经济性等方面的要求,以确保设计的有效性。
超声波焊接结构设计 课件

无损பைடு நூலகம்测
利用超声波、X射线等技术对 焊缝进行无损检测,以发现内
部缺陷。
破坏性检测
通过切割、拉伸等试验,对焊 缝进行破坏性检测,以评估其
力学性能。
焊接质量控制措施
选用合适的焊接参数
根据材料厚度、焊接方式等因 素,选择合适的功率、时间和
压力等参数。
控制材料质量
确保材料表面清洁、无杂质, 符合焊接要求。
超声波气动部分
超声波气动部分包括气源、气路控制系 统和气动元件等,它为超声波焊接提供 气压动力,实现焊头的上下振动和工件
的夹紧。
超声波气动部分的气压、流量和稳定性 对焊接效果有很大影响,因此选择合适 的气动元件和控制方式是实现高效、高
质量超声波焊接的重要环节。
常见的气动元件包括气缸、电磁阀、调 压阀等,可根据实际需求选择适合的元
缝焊
通过在两个金属板材之间施加超声波能量,使接触面熔化,并在压 力作用下形成连续的焊缝。
对焊
将两个金属板材的对接端施加超声波能量,使其熔化后结合在一起, 形成对接接头。
焊接结构设计要点
材料选择
根据焊接工艺要求和产品性能需求,选择适合的金属材料。
焊接面设计
确保焊接面平整、无杂质,以实现良好的接触和熔合。
超声波焊接原理
热作用
超声波在固体材料中传 播时,通过摩擦产生热 量,使接触面材料熔化。
压力作用
在焊接过程中,施加适 当的压力使熔融材料紧
密结合。
声流作用
冶金结合
超声波传播时在材料中 产生的声流能促进材料
流动和结合。
通过热作用、压力作用 和声流作用的综合效应, 实现材料的永久性连接。
02 超声波焊接设备
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超声波焊接线的设计及超声波焊接机的调试(图)
1.强度无法达到欲求标准。
当然我们必须了解超音波熔接作业的强度绝不可能达到一体成型的强度,只能说接近于一体成型的强度,而其熔接强度的要求标准必须仰赖于多项的配合,这些配合是什么呢?※塑料材质:ABS与ABS相互相熔接的结果肯定比ABS与PC相互熔接的强度来的强,因为两种不同的材质其熔点也不会相同,当然熔接的强度也不可能相同,虽然我们探讨ABS与PC这两种材质可否相互熔接?我们的答案是绝对可以熔接,但是否熔接后的强度就是我们所要的?那就不一定了!而从另一方面思考假使ABS与耐隆、PP、PE相熔的情形又如何呢?如果超音波HORN瞬间发出150度的热能,虽然ABS材质己经熔化,但是耐隆、PVC、PP、PE只是软化而已。
我们继续加温到270度以上,此时耐隆、PVC、PP、PE已经可达于超音波熔接温度,但ABS材质已解析为另外分子结构了!
由以上论述即可归纳出三点结论:1.相同熔点的塑料材质熔接强度愈强。
2.塑料材质熔点差距愈大,熔接强度愈小。
3.塑料材质的密度愈高(硬质)会比密度愈低(韧性高)的熔接强度高。
2.制品表面产生伤痕或裂痕。
在超音波熔接作业中,产品表面产生伤痕、结合处断裂或有裂痕是常见的。
因为在超音波作业中会产生两种情形:1.高热能直接接触塑料产品表面 2.振动传导。
所以超音波发振作用于塑料产品时,产品表面就容易发生烫伤,而1m/m以内肉厚较薄之塑料柱或孔,也极易产生破裂现象,这是超音波作业先决现象是无可避免的。
而在另一方面,有因超音波输出能量的不足(分机台与HORN 上模),在振动摩擦能量转换为热能时需要用长时间来熔接,以累积热能来弥补输出功率的不足。
此种熔接方式,不是在瞬间达到的振动摩擦热能,而需靠熔接时间来累积热能,期使塑料产品之熔点到达成为熔接效果,如此将造成热能停留在产品表面过久,而所累积的温度与压力也将造成产品的烫伤、震断或破裂。
是以此时必须考虑功率输出(段数)、熔接时间、动态压力等配合因素,来克服此种作业缺失。
解決方法:1.降低压力。
2.减少延迟时间(提早发振))。
3.减少熔接时间。
4.引用介质覆盖(如PE袋)。
5.模治具表面处理(硬化或镀铬)。
6.机台段数降低或减少上模扩大比。
7.易震裂或断之产品,治具宜制成缓冲,如软性树脂或覆盖软木塞等(此项指不影响熔接强度)。
8.易断裂产品于直角处加R角。
3.制品产生扭曲变形。
发生这种变形我们规纳其原因有三:1.本体与欲熔接物或盖因角度或弧度无法相互吻合.</P< p>
2.产品肉厚薄(2m/m以内)且长度超出60m/m以上.
3.产品因射出成型压力等条件导致变形扭曲.所以当我们的产品经超音波作业而发生变形时,从表面看来好像是超音波熔接的原因,然而这只是一种结果,塑料产品未熔接前的任何因素,熔接后就形成何种结果。
如果没有针对主因去探讨,那将耗费很多时间在处理不对症下药的问题上,而且在超音波间接传导熔接作业中(非直熔),6kg以下的压力
是无法改变塑料的轫性与惯性。
所以不要尝试用强大的压力,去改变熔接前的变形(熔接机最高压力为6kg),包含用模治具的强迫挤压。
或许我们也会陷入一个盲点,那就是从表面探讨变形原因,即未熔接前肉眼看不出,但是经完成超音波熔接后,就很明显的发现变形。
其原因乃产品在熔接前,会因导熔线的存在,而较难发现产品本身各种角度、弧度与余料的累积误差,而在完成超音波熔接后,却显现成肉眼可看到的变形。
解決方法:1.降低压力(压力最好在2kg 以下)。
2.减少超音波熔接时间(降低强度标准)。
3.增加硬化时间(至少0.8 秒以上)。
4.分析超音波上下模是否可局部调整(非必要时)。
5.分析产品变形主因,予以改善。
4.制品内部零件破坏※超音波熔接后发生产品破坏原因如下:1.超音波熔接机功率输出太强.2.超音波能量扩大器能量输出太强.3.底模治具受力点悬空,受超音波传导振动而破坏.4.塑料制品高、细成底部直角,而未设缓冲疏导能量的R角.
5.不正确的超音波加工条件.
6.塑料产品之柱或较脆弱部位,开置于塑料模分模在线.所以当我们的产品经超音波作业而发生变形时,从表面看来好像是超音波熔接的原因,然而这只是一种结果,塑料产品未熔接前的任何因素,熔接后就形成何种结果。
如果没有针对主因去探讨,那将耗费很多时间在处理不对症下药的问题上,而且在超音波间接传导熔接作业中(非直熔),6kg以下的压力是无法改变塑料的轫性与惯性。
所以不要尝试用强大的压力,去改变熔接前的变形(熔接机最高压力为6kg),包含用模治具的强迫挤压。
或许我们也会陷入一个盲点,那就是从表面探讨变形原因,即未熔接前肉眼看不出,但是经完成超音波熔接后,就很明显的发现变形。
其原因乃产品在熔接前,会因导熔线的存在,而较难发现产品本身各种角度、弧度与余料的累积误差,而在完成超音波熔接后,却显现成肉眼可看到的变形。
解決方法:1.提早超音波发振时间(避免接触发振)。
2.降低压力、减少超音波熔接时间(降低强度标准)。
3.减少机台功率段数或小功率机台。
4.降低超音波模具扩大比。
5.底模受力处垫缓冲橡胶。
6.底模与制品避免悬空或间隙。
7.HORN(上模)掏孔后重测频率。
8.上模掏孔后贴上富弹性材料。
5.产品产生溢料或毛边※超音波熔接后产品发生溢料或毛边原因如下:1.超音波功率太强.2. 超音波熔接时间太长.3. 空气压力(动态)太大.4.上模下压力(静态)太大.5.上模(HORN)能量扩大比率太大.6.塑料制品导熔线太外侧或太高或粗.上述六项为造成超音波熔接作业后产品发生溢料毛边的原因,然而其中最关键性的是在第六项超音波的导熔线开设,一般在超音波熔接作业中,空气压力大约在2~4kg范围,根据经验值最佳的超音波导熔线,是在底部0.4~0.6m/m×高度0.3~0.4m/m 如:此型Δ,尖角约呈60°,超出这个数值将导至超音波熔接时间、压力、机台或上模功率的升高,如此就形成上述1~6项造成溢料与毛边的原因。
解決方法:
1.降低压力、减少超音波熔接时间(降低强度标准)。
2.减少机台功率段数或小功率机台。
3.降低超音波模具扩大比。
4.使用超音波机台微调定位固定。
5.修改超音波导熔线。
6.产品熔接后尺寸无法控制于公差内※在超音波熔接作业中,产品无法控制于公差范围有其下述原因:1.机台稳定性(能量转换未增设安全系数).2.塑料产品变形量超出超音波自然熔合范围.3.治具定位或承受力不稳定.4.超音波上模能量扩大输出不配合.5. 熔接加工条件未增设安全系数.
解決方法:
1.增加熔接安全系数(依序由熔接时间、压力、功率)。
2.启用微调固定螺丝(应可控制到0.02m/m)。
3.检查超音波上模输出能量是否足够(不足时增加段数)。
4.检查治具定位与产品承受力是否稳合。
5.修改超音波导熔线。
超声波塑料焊接水、气密导熔线(焊线)设计我们欲求产品达到水、气密的功能时,定位与超声波导熔线是成败的重要关键,所以在产品设计时的考虑,如:定位、材质、肉厚,与超声波导熔线的对应比例有绝对的关系。
在一般水、气密的要求,导熔线高度应在0.5~0.8m/m 之范围(视产品肉厚而定),如低于0.5m/m 以下,要达到水气密的功能,除非定位设定要非常标准,而且肉厚有 5 m/m 以上,否则效果不佳。
一般要求水气密的产品其定位与超音波导熔线的方式如下:斜切式:适合水密性及大型产品之熔接,接触面角度=45°,x=w/2,d=0.3~0.8mm为佳。
阶梯尖式:适合水密性及防止外凸或龟裂之方法,接触面的角度= 45°,x=w/2,d=0.3~0.8mm为佳。
峰谷尖式:适合水密性且高强度熔接,d=0.3~0.6mm内侧接触面之高度h 依形状大小而有变化,但h 约在1~2mm左右。
产品实施超声波作业无法达到水、气密,除了超声波导熔线、治具定位、产品本身定位等因素外,超声波设定的条件也是一项主因。
我们在此更深入探讨引响水气密的另一原因(熔接条件),在我们实施超音波熔接作业时,求效率求快是最基本目标,但往往也忽略了其求效率的要领,正常有两种现象出现:一、下降速度、缓冲太快:此一形成的速度,使动态压力加上重力加速度将把超声波导熔线压扁,使导熔线无法发挥导熔的作用,形成假相熔接。
二、熔接时间过长:塑料产品因接收过长时间的热能,不仅使塑料材质熔化,更进而造成塑料组织焦化现象,产生砂孔,水或气即由此砂孔渗透而出。
这是一般生产技术者最不易发现之处。