超声波焊接件的工艺设计

合集下载

超声波焊接工艺参数的设定

超声波焊接工艺参数的设定

超声波焊接工艺参数的设定Hessen was revised in January 2021超声波焊接工艺参数的设定超声波焊接的工艺参数设定包括超声波焊接功率、超声波频率、超声波振幅、超声波焊接压力、超声波焊接时间等。

l. 超声波的频率超声波焊接的工作频率通常在15-40kHz,对低频反应较差的材料,如PvC、PE等可以使用高频进行焊接,这可以减少对材料的损坏。

高频的超声波能量传递集中,对于一些精细的零部件可以使用高频的超声波进行焊接。

超声波焊接时,由于负载的变化会造成超声波设备的失谐现象,使焊接强度下强。

一般情况下,焊接机的工作频率确定后,需要保持声学系保持谐振。

下面的方程可以描述超声波的功率:P=μSnv=-2Aω/π=4usaf式中P超声功率;F静压力;S焊点面积;v相对速度;A振幅;μ一摩擦因数;w为角频率;f为振动频率。

2.超声波振幅在较大的工作频率和振幅下进行焊接,可以减少焊接时问,提高工作效率。

对于不同的材料都存在一个最佳的焊接振幅如表l所示。

超声波焊接20μm的振幅较小,通常建议使用40μm的振幅,因为过大的振幅常会使超声波电源疲劳损坏,所以超声波的振幅要求与超声波电源匹配一致。

3. 超声波焊接时间焊接时间指焊接过程中发出超声波能量的时间。

焊接时间过短,能量不够,并不能造成可靠的焊接结。

随着焊接时间的增加,能使焊件吸收更多的能量,焊接面的温度会提高,焊合面积也会增大,焊接熔深增加,这样焊接强度也会增加[22-24]。

然而,过长的焊接时间,会导致焊接位置材料熔化过多并造成较多的溢料。

这些熔料在焊合区域流动是有方向性的,所以过多的熔料流动会造成强度的下降。

另外,过长的焊接时间会造成焊件温度过高,造成焊件烧化和降解,使焊件表面造成焊痕,造成过焊,使强度下降。

焊接时间过长,能量过多会造成熔化层温度过高,被焊塑料变色、分解、脆化;而且焊接边缘应力集中,焊接表面出现压痕。

所以为了得到较高的焊接强度,必须要选择合适的超声波焊接时间,过短和过长都会造成焊接强度的下降。

ptfe超声波焊接工艺

ptfe超声波焊接工艺

ptfe超声波焊接工艺
PTFE(聚四氟乙烯)超声波焊接工艺要点:
①工件准备:清洁待焊PTFE部件表面,确保无油脂、灰尘等污染物;
②夹具设计:定制专用焊接夹具,保证焊缝对正及稳定受压;
③参数设定:根据PTFE厚度、硬度选择适宜的超声波频率(通常15-70kHz)、振幅、焊接时间和压力;
④预热处理:对PTFE进行局部或整体预热,提高材料塑性,降低焊接难度;
⑤焊接实施:将工件置于夹具中,超声波焊头施加恒定压力并产生高频振动,接触面摩擦生热熔融,形成分子间结合;
⑥冷却固化:焊接后保持压力,自然冷却或辅助风冷,使焊缝充分固化;
⑦质量检验:检查焊缝外观、强度、密封性等,确保符合产品要求。

超声波焊接头设计方法

超声波焊接头设计方法

超声波焊接头设计方法超声波焊接头的设计需要遵循一些关键原则和步骤,以确保其能有效地将超声波能量传递到待焊接的材料上,同时避免对材料造成损伤。

以下是一些设计超声波焊接头的基本步骤和注意事项:1. 确定应用需求:首先,需要明确焊接头的应用需求,例如焊接的材料类型、焊接的厚度、焊接的速度等。

这些参数将直接影响焊接头的设计。

2. 选择合适的材料:根据应用需求,选择能够承受超声波振动和高温的合适材料,同时确保材料具有良好的声学特性和耐腐蚀性。

3. 设计合适的结构:焊接头的结构应该能够有效地将超声波能量传递到待焊接的材料上,同时避免过度加热或损伤材料。

可以考虑使用不同的振动模式、振幅和频率来优化焊接头的结构。

4. 确定合适的尺寸:根据应用需求和材料特性,确定焊接头的直径、长度和振幅等参数。

这些参数将直接影响焊接头的效率和效果。

5. 优化设计:通过实验和仿真,对焊接头的设计进行优化,以提高其效率和可靠性。

可以尝试不同的材料、结构和参数组合,以找到最佳的设计方案。

6. 测试和验证:在生产之前,对焊接头进行测试和验证,以确保其性能符合要求。

测试可以包括焊接效果、效率、寿命等方面的评估。

7. 考虑安全性:在设计和测试过程中,应始终考虑安全性。

确保焊接头不会对操作员或材料造成伤害,同时遵循相关的安全标准和规范。

8. 优化生产工艺:在生产过程中,应考虑焊接头的可制造性和成本。

选择合适的制造工艺和材料,以确保焊接头的质量和效率,同时控制生产成本。

总之,超声波焊接头的设计需要综合考虑应用需求、材料特性、结构、尺寸、优化设计、测试和验证、安全性以及生产工艺等多个方面。

通过不断尝试和改进,可以找到最佳的设计方案,提高焊接的效率和可靠性。

超声波焊接线设计标准

超声波焊接线设计标准

超声波焊接线设计标准一、概述超声波焊接是一种高效、环保的连接工艺,广泛应用于塑料、金属、陶瓷等材料的连接。

本文旨在提供超声波焊接线设计的基本标准,帮助工程师和设计师在产品开发中更好地应用超声波焊接技术。

二、设计标准1. 材料选择:选择适合超声波焊接的材料是关键。

一般来说,高分子材料如塑料、橡胶等较易焊接,而金属、陶瓷等硬质材料则较难焊接。

2. 结构设计:超声波焊接线的结构设计应遵循简单、稳定的原则。

避免有过多的转折、弯曲等复杂结构,以减少能量的损失和焊接不良的风险。

3. 声学匹配:在超声波焊接过程中,声学匹配是影响焊接效果的重要因素。

声学匹配包括声阻抗、声速等参数的匹配,确保超声波在焊接线中传播时能量损失最小。

4. 焊接参数设置:正确设置焊接参数是保证焊接质量的关键。

包括超声波频率、振幅、功率、焊接时间等参数,应根据材料类型和厚度等因素进行合理设置。

5. 焊接质量检测:为确保焊接质量,应在生产过程中定期对焊接线进行检查和测试。

可以采用目视检查、破坏性试验等方法,以确保产品的可靠性。

6. 安全性考虑:超声波焊接过程中会产生高频振动和高温,因此设计时应考虑安全性,包括设备固定、防护措施等。

7. 生产效率:设计超声波焊接线时,应考虑生产效率。

选择合适的设备型号和配置,以提高生产效率。

8. 维护与保养:为确保超声波焊接线的长期稳定运行,应定期对设备进行维护和保养。

包括检查紧固件、更换易损件、清洁设备等。

9. 环境适应性:考虑到生产环境可能存在的温差、湿度等因素,设计时应选择适应性强、耐用的设备及部件。

10. 经济性:在满足生产需求的前提下,应考虑设备的经济性。

选择性价比高的设备型号和配置,以降低生产成本。

三、总结超声波焊接线的设计标准是确保焊接质量和生产效率的关键因素。

在设计过程中,应充分考虑材料选择、结构设计、声学匹配、焊接参数设置、质量检测、安全性、生产效率、维护保养、环境适应性和经济性等方面的要求,以确保设计的有效性。

汽车线束之超声波焊接工艺

汽车线束之超声波焊接工艺

汽车线束之超声波焊接⼯艺线束⾏业中常⽤的焊接⼯艺有:扩散焊接(成本太⾼)、⾼频焊接(焊接温度⾼)、冷压焊接(需要压⼒⼤)和超声波焊接,但是由于前3中焊接⽅式有其⾃⾝的局限性,未能⼤规模的使⽤,只有超声波焊接以其特有的简单,经济成为线束⾏业中的主流焊接⽅式。

超声波焊接是利⽤⾼频振动波传递到两个需焊接的线束⼯件表⾯,在加压的情况下,使两个线束⼯件表⾯相互摩擦⽽形成分⼦层之间的熔合。

其优点在于快速、节能、熔合强度⾼、导电性好、⽆⽕花、接近冷态加⼯;缺点是所焊接⾦属件不能太厚(⼀般⼩于或等于5mm)、焊点位不能太⼤、需要加压。

如下是超声波焊接的两种形态,双边焊接和单边焊接。

双边焊接单边焊接超声波焊接在线束⾏业中根据超声波所在的位置,分为以下3种焊接⼯艺,预装焊接,线边焊接,在线焊接;接下来我们分别介绍这三种焊接⼯艺的优缺点:第⼀种,预装焊接,顾名思义,它是在预装区域焊接导线的⼀种⼯艺,它的特点是原线开线后直接送到预装区域超声波压接,优点是原线运输距离近,同时,由于处于预装区域,它对应总装区域的所有项⽬,因此可以实现集中式⽣产,⼤批量⽣产;在物料充⾜,库存允许的情况下,不间断⽣产可以⼤⼤提⾼了设备的利⽤率;但是也有很⼤的缺点,缺点是由于在预装区域,对于总装的需求信息严重滞后,导致必须要以计划主导的⽣产⽅式,这样就会存在⼤量的WIP物料放在物料暂存区,⼀旦出现订单的波动或者⼯艺参数错误,就会造成⼤量的压接看板报废。

第⼆种、线边压接,意思是在总装线线边压接,他与预装压接的区别在于将压接设备从预装区域搬到总装区域,从预装到总装区域的移动,⽣产⽅式也随之转变,从计划⽣产⽅式(推动式)改为拉动式⽣产⽅式,⽣产⽅式的转变导致⼯位之间的WIP⼤量减少,但由于WIP看板减少,则必须在设计⽣产线时,给超声波⼯位预留⼀定的提前期⽤来备料,否则会存在物料供应不及时呆滞停线的风险。

⽣产流程:总装⽣产线上根据⽣产订单⽣产,在⽣产的过程中,流⽔线上产⽣压接看板需求,此时将拉动看板传递到sonic⽣产区域,⽣产⼈员根据拉动看板信息,给出导线拉动看版需求,从导线暂存区拿取单线看板,然后将单线看板送到总装超声波压接区域,单线通过超声波压接后变成压接看板,压接好的看板然后送⾄总装流⽔线上需求位置。

超声波焊接设计要求

超声波焊接设计要求

超声波焊接设计要求导言:超声波焊接是一种常用的金属焊接方法,它利用超声波振动来产生热量,从而实现材料的焊接。

在超声波焊接的设计过程中,需要考虑一系列的要求和指导原则,以确保焊接质量和工艺稳定性。

本文将就超声波焊接设计的要求进行详细阐述。

一、焊接部件的设计要求1. 材料选择:焊接部件的材料选择应根据焊接的要求来确定。

常见的焊接材料包括金属、塑料、陶瓷等。

在选择材料时,应考虑其导热性、熔点、熔化温度范围等因素。

2. 接头设计:焊接接头的设计应符合力学原理,确保焊接强度和密封性。

接头的形状和尺寸应适当选择,以确保焊接过程中的振动传递和能量转化。

3. 表面处理:焊接部件的表面处理对焊接质量有重要影响。

在进行超声波焊接前,应确保焊接部件的表面清洁、平整,以避免焊接时出现气泡、脱离等问题。

二、焊接设备的设计要求1. 超声波振动系统:焊接设备中的超声波振动系统是实现焊接的核心部分。

其设计应考虑频率、功率、振幅等参数的选择,以及振动传递的稳定性和可靠性。

2. 压力系统:焊接设备中的压力系统用于施加焊接压力。

压力的大小应根据焊接材料和接头的要求来确定,并确保其稳定、均匀施加在焊接部件上。

3. 控制系统:焊接设备的控制系统用于控制焊接过程中的参数,如振动频率、压力大小、焊接时间等。

控制系统的设计应可靠、灵活,以满足不同焊接要求。

三、焊接过程的设计要求1. 焊接参数的选择:焊接过程中的参数选择对焊接质量和工艺稳定性至关重要。

应根据焊接材料、接头形状和尺寸等因素,合理选择振动频率、压力大小、焊接时间等参数。

2. 焊接速度的控制:焊接速度的控制直接影响焊接质量。

过快的焊接速度容易导致焊接不充分,而过慢的焊接速度则容易造成热损伤。

应根据焊接部件的要求,控制焊接速度在适当范围内。

3. 焊接过程的监测:焊接过程中的监测对于及时发现焊接缺陷和调整焊接参数至关重要。

可以利用传感器监测焊接过程中的温度、压力等参数,并通过控制系统进行实时监测和调整。

超声波焊接塑料件的设计

超声波焊接塑料件的设计

超声波焊接塑料件的设计超声波焊接是一种常见的塑料焊接方法,它利用高频率的声波振动将塑料件的表面加热并压合,从而达到焊接的效果。

相比于传统的热熔焊接方法,超声波焊接具有快速、高效、环保、经济等优点,因此得到了广泛的应用。

在超声波焊接塑料件时,为了保证焊接效果,需要对塑料件的设计进行一定的考虑。

下面将探讨超声波焊接塑料件设计的一些要素。

1、材料选择超声波焊接适用于大部分塑料材料,例如ABS、PP、PE、PC等。

在选择材料时需要考虑到材料熔点、熔体流动性、工艺操作温度等因素。

同时也需要考虑到塑料件的用途和环境因素等。

不同的材料可能会呈现不同的熔化状态,选择合适的材料有助于提高焊接效果。

2、结构设计超声波焊接的结构设计需要考虑到焊接面积、夹紧方式、固定件的形态等因素。

同时还需要考虑到焊接面的平整度,避免因平整度不良导致焊接质量下降。

以及线缆的合理布局等因素。

3、设计焊接区域超声波焊接时需要将塑料件的焊接区域考虑在内,这通常要求在设计时将两个零件上的边缘设计成接触面。

在设计过程时也要注意一些特殊的形状,例如圆形、锥形、椭圆形等比较特殊的零件设计。

4、加强件的设计在一些合并的塑料件上设计加强件,能够帮助增强焊点的强度,提升焊接的质量。

例如在汽车零部件、家电等领域,经常使用加强件来增强焊点的结构强度。

5、生产工艺考虑在设计时还需要考虑到生产工艺方面,例如机器设备的限制、操作人员工艺水平等因素。

这需要对焊接过程进行一定的分析,为生产提供方便实用的方案。

总之,超声波焊接塑料件设计需要综合考虑塑料材料、加强件、结构、焊接区域等方面。

设计优秀的塑料件有助于提高超声波焊接的质量和效率。

超声波焊接工艺标准

超声波焊接工艺标准

超声波焊接工艺标准超声波焊接是一种高效、环保的连接工艺,被广泛应用于各种材料和制品的焊接。

本文将介绍超声波焊接工艺标准,包括焊接设备、材料要求、焊接过程、质量检测等方面的内容。

一、超声波焊接设备超声波焊接设备应符合相关标准和规格,具备稳定的性能和良好的精度。

设备应包括超声波发生器、换能器、焊头、电源等组成部分,同时应具有相应的控制和调节系统,以确保焊接过程的稳定性和可控性。

二、材料要求超声波焊接适用于各种材料,如金属、塑料、陶瓷等。

材料应具有较好的超声波传播特性,同时应满足相应的物理、化学和机械性能要求。

对于金属材料,应具有良好的导电性和导热性,并且表面应光滑、清洁、无氧化膜等杂质。

对于非金属材料,应具有较好的界面粘结性能和耐热性能。

三、焊接过程1.准备工作:将被焊接材料放置在焊接工装夹具上,调整好位置和角度。

检查设备是否正常运转,确认无误后开始焊接。

2.焊接参数设置:根据材料类型、厚度、焊接方式等因素,设置合适的焊接参数,如超声波频率、振幅、焊接时间、压力等。

3.焊接操作:将焊头放置在待焊接材料上方,启动超声波发生器,调整焊头位置和压力,使焊头与材料表面紧密接触。

观察焊接过程,确保材料熔合良好,无飞溅、烧伤等现象。

4.焊接后处理:完成焊接后,将工件从工装夹具上取下,进行清理和修整。

对于有特殊要求的工件,可以进行相应的检验和测试。

四、质量检测1.外观检测:观察焊接接头的表面质量,应光滑、平整、无气孔、裂纹等缺陷。

检查接头的几何尺寸,确保符合设计要求。

2.拉伸强度测试:采用拉伸试验机对焊接接头进行拉伸强度测试,比较接头的强度与母材的强度是否一致。

一般要求接头的拉伸强度不低于母材的80%。

3.气密性检测:对于有密封性能要求的接头,可以采用气密性检测设备进行检测,确保接头的密封性能符合要求。

4.X射线探伤:对于一些高精度、高要求的焊接接头,可以采用X射线探伤方法对接头内部进行检测,以确定是否存在气孔、裂纹等缺陷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超声波焊接件的工艺设计作者:欣宇机械来源:本站原创日期:2014-5-5 17:32:38 点击:6943 属于:行业新闻超声波焊接件的工艺设计-东莞市欣宇超声波机械有限公司在超声波焊接行业中,很多客户都不知道塑料件焊接,焊接产品优良不只是跟材质,超声波选择机型功率有关系,最容易被忽略的一点是:超声波焊接件的工艺设计,塑料焊接件需要设计有超声线,焊接出来的产品才是比较完美的。

那么,超声波焊接件的工艺设计是怎么样的呢?要怎么设计呢?很多客户初步使用超声波焊接,都会对个问题不了解,今天,欣宇小陈为大家讲解:超声波焊接件的工艺设计,希望对朋友有所帮助!超声波塑料件的结构设计必须首先考虑如下几点:1.是否需要水密、气密。

2.是否需要完美的外观。

3.是否适合焊头加工要求。

4.焊缝的大小(即要考虑所需强度)。

5.避免塑料熔化或合成物的溢出。

超声波焊接质量获得原因:1.材质2.上下表面的位置和松紧度3.焊头与塑料件的妆触面4.顺畅的焊接路径5.塑料件的结构6.焊接线的位置和设计7.焊接面的大小8.底模的支持为了获得完美的、可重复的超声波熔焊方式,必须遵循三个主要设计方向:1.围绕着连接界面的焊接面必须是统一而且相联系互紧密接触的。

如果可能的话,接触面尽量在同一个平面上,这样可使能量转换时保持一致。

2.最初接触的两个表面必须小,以便将所需能量集中,并尽量减少所需要的总能量(即焊接时间)来完成熔接。

3.找到适合的固定和对齐的方法,如塑料件的接插孔、台阶或齿口之类。

下面就对超声波塑料件设计中的要点进行分类举例说明:超声波整体塑料件的结构1.1塑料件的结构塑料件必须有一定的刚性及足够的壁厚,太薄的壁厚有一定的危险性,超声波焊接时是需要加压的,一般气压为2-6kgf/cm2 。

所以塑料件必须保证在加压情况下基本不变形。

1.2罐状或箱形塑料等,在其接触焊头的表面会引起共振而形成一些集中的能量聚集点,从而产生烧伤、穿孔的情况(如图1所示),在设计时可以罐状顶部做如下考虑○1 加厚塑料件○2 增加加强筋○3 焊头中间位置避空1.3尖角如果一个注塑出来的零件出现应力非常集中的情况,比如尖角位,在超声波的作用下会产生折裂、融化。

这种情况可考虑在尖角位加R角。

如图2所示。

1.4塑料件的附属物注塑件内部或外部表面附带的突出或细小件会因超声波振动产生影响而断裂或脱落,例如固定梢等(如图3所示)。

通过以下设计可尽可能减小或消除这种问题:○1 在附属物与主体相交的地方加一个大的R角,或加加强筋。

○2 增加附属物的厚度或直径。

1.5塑料件孔和间隙如被焊头接触的零件有孔或其它开口,则在超声波传递过程中会产生干扰和衰减(如图4所示),根据材料类型(尤其是半晶体材料)和孔大小,在开口的下端会直接出现少量焊接或完全熔不到的情况,因此要尽量预以避免。

1.6塑料件中薄而弯曲的传递结构被焊头接触的塑件的形状中,如果有薄而弯曲的结构,而且需要用来传达室递超声波能量的时候,特别对于半晶体材料,超声波震动很难传递到加工面(如图5所示),对这种设计应尽量避免。

1.7近距离和远距离焊接近距离焊接指被焊接位距离焊头接触位在6mm以内,远距离焊接则大于6mm,超声波焊接中的能量在塑料件传递时会被衰减地传递。

衰减在低硬底塑料里也较厉害,因此,设计时要特别注意要让足够的能量传到加工区域。

远距离焊接,对硬胶(如PS,ABS,AS,PMMA)等比较适合,一些半晶体塑料(如POM,PETP,PBTB,PA)通过合适的形状设计也可用于远距离焊接。

1.8塑料件焊头接触面的设计注塑件可以设计成任何形状,但是超声波焊头并不能随意制作。

形状、长短均可能影响焊头频率、振幅等参数。

焊头的设计需要有一个基准面,即按照其工作频率决定的基准频率面。

基准频率面一般占到焊头表面的70%以上的面积,所以,注塑件表面的突超等形状最好小于整个塑料面的30%。

一滑、圆弧过渡的塑料件表面,则比标准可以适当放宽,且突出位尽量位于塑料件的中部或对称设计。

塑料件焊头接触面至少大于熔接面,且尽量对正焊接位,过小的焊头接触面(如图6所示),会引起较大损伤和变形,以及不理想的熔接效果。

在焊头表面有损伤纹,或其形状与塑料件配合有少许差异的情况下,焊接时,会在塑料件表面留下伤痕。

避免方法是:在焊头与塑料件表面之间垫薄膜(例如PE膜等)。

焊接线的设计2 超声波焊接线的设计超声波焊接线是超声波直接作用熔化的部分,其基本的两种设计方式:○1 能量导向○2 剪切设计2.1能量导向能量导向是一种典型的在将被子焊接的一个面注塑出突超三角形柱,能量导向的基本功能是:集中能量,使其快速软化和熔化接触面。

能量导向允许快速焊接,同时获得最大的力度,在这种导向中,其材料大部分流向接触面,能量导向是非晶态材料中最常用的方法。

能量导向柱的大小和位置取决于如下几点:○1 材料○2 塑料件结构○3 使用要求图7所示为能量导向柱的典型尺寸,当使用较易焊接的材料,如聚苯乙烯等硬度高、熔点低的材料时,建议高度最低为0.25mm。

当材料为半晶体材料或高温混合树脂时(如聚乙碳),则高度至少要为0.5mm,当用能量导向来焊接半晶体树脂时(如乙缩荃、尼龙),最大的连接力主要从能量柱的底盘宽带度来获得。

没有规则说明能量导向应做在塑料件哪一面,特殊情况要通过实验来确定,当两个塑料件材质,强度不同时,能量导向一般设置在熔点高和强度低的一面。

根据塑料件要求(例如水密、气密性、强度等),能量导向设计可以组合、分段设计,例如:只是需要一定的强度的情况下,分段能量导向经常采用(例如手机电池等),如图8所示。

2.2能量导向设计中对位方式的设计上下塑料件在焊接过程中都要保证对位准确,限位高度一般不低于1mm,上下塑料平行检动位必须很小,一般小于0.05mm,基本的能量导向可合并为连接设计,而不是简单的对接,包括对位方式,采用能量导向的不同连接设计的例子包括以下几种:插销定位:图9所示为基本的插销定位方式,插销定位中应保证插销件的强度,防此超声波震断。

台阶定位:图10所示为基本的台阶定位方式,如h大于焊线的高度,则会在塑料件外部形成一条装饰线,一般装饰线的大小为0.25mm左右,创出更吸引人的外观,而两个零件之间的差异就不易发现。

图11所示台阶定位,则可能产生外溢料。

图12所示台阶定位,则可能产生内溢料。

图13所示台阶定位为双面定位,可防止内外溢料。

○1 企口定位:如图14所示,采用这种设计的好处是防止内外溢料,并提供校准,材料容易有加强密封性的获得,但这种方法要求保证凸出零件的斜位缝隙,因此使零件更难能可贵于注塑,同时,减小于焊接面,强度不如直接完全对接。

○2 底模定痊:如图15所示,采用这种设计,塑料件的设计变得简单,但对底模要求高,通常会引致塑料件的平行移位,同时底模固定太紧会影响生产效果。

○3 焊头加底模定位:如图16所示,采用这种设计一般用于特殊情况,并不实用及常用。

○4 其它情况:A:如图17所示,为大型塑料件可用的一种方式,应注意的是下支撑模具必须支撑住凸缘,上塑料件凸缘必须接触焊头,上塑料件的上表面离凸缘不能太远,如必要情况下,可采用多焊头结构。

B:如连接中采用能量导向,且将两个焊面注成磨砂表面,可增加摩擦和控制熔化,改善整个焊接的质量和力度,通常磨砂深度是0.07mm-0.15mm。

C:在焊接不易熔接的树脂或不规则形状时,为了获得密封效果,则有必要插入一个密封圈,如图18所示,需要注意的是密封圈只压在焊接末端。

图19所示为薄壁零件的焊接,比如热成形的硬纸板(带塑料涂层),与一个塑料盖的焊接。

2.3剪切式设计在半晶体塑料(如尼龙、乙缩醛、聚丙烯、聚乙烯和热塑聚脂)的熔接中,采用能量导向的连接设计也许达不到理想的效果,这是因为半晶体的树脂会很快从固态转变成融化状态,或者说从融化状态转化为固态。

而且是经过一个相对狭窄的温度范围,从能量导向柱流出的融化物在还没与相接界面融合时,又将很快再固化。

因此,在这种情况下,只要几何原理允许,我们推荐使用剪切连接的结构。

采用剪切连接的设计,首先是熔化小的和最初触的区域来完成焊接,然后当零件嵌入到下起时,继续沿着其垂直壁,用受控的接触面来融化。

如图20所示,这样可能性获得强劲结构或很好的密封效果,因为界面的熔化区域不会让周围的空气进来。

由于此原因,剪切连接尤其对半晶体树脂非常有用。

剪切连接的熔接深度是可以调节的,深度不同所获得的强度不同,熔接深度一般建议为0.8-1.5mm,当塑件壁厚及较厚及强度要求高时,熔接深度建议为1.25X壁厚。

图21所示为几种基本的剪切式结构:剪切连接要求一个塑料壁面有足够强度能支持及防止焊接中的偏差,有需要时,底模的支撑高于焊接位,提供辅助的支撑。

下表所示为零件大小尺寸和接触面、零件误差的大概尺寸:零件最大尺寸接触面尺寸零件尺寸允许误差<18mm 0.2mm-0.3mm ±0.025mm18mm-35mm 0.3mm-0.4mm ±0.05mm>35mm 0.4mm-0.6mm ±0.075mm当零件尺寸大于90mm时,或零件有不规则的形状时,建议不采用剪切连接。

这时因为注塑时很难控制误差及变形使其保持一致。

如果是上述情况,建议采用能量导向的形式。

图22所示为双面剪切式设计图23所示为扣式焊线设计,用于高强度,但上下塑料件不接触的情况下,在特殊情况下,可用于增加密封圈的情况。

相关文档
最新文档