固体物理(docX页)
固体物理(黄昆)第一章总结

固体物理(黄昆)第一章总结.doc固体物理(黄昆)第一章总结固体物理学是一门研究固体物质微观结构和宏观性质的学科。
黄昆教授的《固体物理》一书为我们提供了深入理解固体物理的基础。
本总结旨在概述第一章的核心内容,包括固体的分类、晶体结构、晶格振动和固体的电子理论。
一、固体的分类固体可以根据其结构特征分为晶体和非晶体两大类。
晶体具有规则的几何外形和有序的内部结构,而非晶体则没有长程有序性。
晶体又可以根据其内部原子排列的周期性分为单晶体和多晶体。
二、晶体结构晶体结构是固体物理学的基础。
黄昆教授详细讨论了晶格、晶胞、晶向和晶面等概念。
晶格是描述晶体内部原子排列的数学模型,而晶胞是晶格的最小重复单元。
晶向和晶面则分别描述了晶体中原子排列的方向和平面。
三、晶格振动晶格振动是固体物理中的一个重要概念,它涉及到晶体中原子的振动行为。
黄昆教授介绍了晶格振动的量子化描述,包括声子的概念。
声子是晶格振动的量子,它们与晶体的热传导和电导等性质密切相关。
四、固体的电子理论固体的电子理论是固体物理学的核心内容之一。
黄昆教授从自由电子气模型出发,介绍了固体中电子的行为和性质。
自由电子气模型假设电子在固体中自由移动,不受原子核的束缚。
这一模型可以解释金属的导电性和热传导性。
五、能带理论能带理论是固体电子理论的一个重要组成部分。
黄昆教授详细讨论了能带的形成、能隙的概念以及电子在能带中的分布。
能带理论可以解释不同固体材料的导电性差异,是现代半导体技术和电子器件设计的基础。
六、固体的磁性固体的磁性是固体物理中的另一个重要主题。
黄昆教授讨论了磁性的来源,包括原子磁矩和电子自旋。
磁性固体可以分为顺磁性、抗磁性和铁磁性等类型,它们的磁性行为与电子结构密切相关。
七、固体的光学性质固体的光学性质涉及到固体对光的吸收、反射和透射等行为。
黄昆教授介绍了固体的光学性质与电子结构之间的关系,包括光的吸收和发射过程。
八、固体的热性质固体的热性质包括热容、热传导和热膨胀等。
固体物理-第一章

•
ai
aj
ak
•
•
•
•
顶角8个格点→8×1/8=1个原 子;→平均包含1个原子
原胞的体积 V a1 (a2 a3 ) a3
➢晶体的周期性
面心立方晶胞
晶
胞
的
ABC ABC 排列(立方密堆)
选
取
a1
a 2
jk
顶角8个格点→8×1/8=1个原子;面心6个原 子→6×½=3个原子;→平均包含4个原子
1.1 晶体的周期性
1.1.1 常见的晶体
沸石晶体
方沸石
化学式:RR[Alx+2ySin-(x+2y)O2n]·mH2O含水架状结 构铝硅酸盐矿物,单斜和正交(斜方)晶系为主。 式中R代表碱金属离子,基本上为K+或Na+。
菱沸石
纯净的各种沸石均为无色或白色,但可因混入杂质而呈各种浅色。玻璃光泽。解 理随晶体结构而异。沸石的晶体结构是由硅(铝)氧四面体连成三维的格架,格架中 有各种大小不同的空穴和通道,具有很大的开放性。碱或碱土金属子和水分子均分布 在空穴和通道中,与格架的联系较弱。不同的离子交换对沸石结构影响很小,但使沸 石的性质发生变化。晶格中存在的大小不同空腔,可以吸取或过滤大小不同的其他物 质的分子。工业上常将其作为分子筛,以净化或分离混合成分的物质 ,如气体分离、 石油净化、处理工业污染等。此外沸石还具有独特的吸附性、催化性、离子交换性, 离子的选择性、耐酸性、热稳定性、多成份性、及很高的生物活性和抗毒性等。
1.1.3 基本概念
晶体的特点:晶体具有规则 的几何外形,固定的熔 点,某些晶体具有一定 的解理性。
周期性:晶体中 微粒的排列按照 一定的方式不断 的做周期性重复 的性质,称为晶 体结构的周期性。
固体物理完全版

第二节 一些晶格的举例
学习内容:
定义 一、简单立方晶格(SC格子)
二、面心立方晶格 三、体心立方晶格 四、六角密排晶格 五、金刚石晶体结构 六、氯化钠结构 七、氯化铯晶格
实用文档
了解几个定义: 1·配位数:原子的最近邻(原子)数目 2·致密度:晶胞中原子所占体积与晶胞体积之比 注:配位数和致密度 ↑→ 原子堆积成晶格时愈紧密 3·密排面:原子球在一个平面内最紧密排列的方式 把密排面叠起来可以形成原子球最紧密堆积的晶格。
用
a,b,c
表示。
晶格常数:指晶胞的边长
注意:
固体物理学原胞:最小重复单元—只反映周期性 (n=1) 晶体学原胞:反映周期性和对称性 (n ≥2)
实用文档
原子在三维空间中有规则地周期性重复排列的物质称为晶体
晶体中一种质点(黑点)和周围的另一种质点(小圆圈)的排列是一 样的,这种规律叫做近程规律或短程有序。
① 简单晶格: 性质:每个原胞有一个原子 → 所有原子完全“等价 ” 举例:具有体心立方晶格的碱金属
具有面心立方结构的 Au, Ag,Cu 晶体
实用文档
② 复式晶格:
性质:每个原胞包含两个或更多的原子 → 实际上表 示晶格包含两种或更多种等价的原子或离子
结构:每一种等价原子形成一个简单晶格; 不同等价原子形成的简单晶格是相同的
实用文档
一、简单立方晶格(SC格子)
1· 配位数:每个原子的上下左右前后各有一个最近邻 原子 — 配位数为6
2· 堆积方式:最简单的原子球规则排列形式 — 没有 实际的晶体具有此种结构
简单立方晶 格堆积方式
实用文档
简单立方晶 格典型单元
3· 原胞: SC格子的立方单元是最小的周期性单元 —
固体物理精品教学(华南理工大学)《固体物理》基本概念和知识点.docx

《固体物理》基本概念和知识点第一章基本概念和知识点1)什么是晶体、非晶体和多晶?(□)□晶面有规则、对称配置的固体,具有长程有序特点的固体称为晶体;在凝结过程屮不经过结晶(即有序化)的阶段,原子的排列为长程无序的固体称为非晶体。
由许许多多个大小在微米量级的晶粒组成的固体,称为多晶。
2)什么是原胞和晶胞?(0)□原胞是最小的晶格重复单元,不考虑对称性,原胞只包含1个原子;从对称性的角度,选取几倍于原胞大小的重复单元,称为品胞,一个品胞中有大于2个以上的原子。
3)晶体共有几种晶系和布喇菲格子?(□)□按结构划分,晶体可分为7大晶系,共14布喇菲格子。
4)立方晶系有几种布喇菲格子?画出相应的格子。
(□)□立方晶系有简单立方、体心立方和面心立方三种布喇菲格子。
5)什么是简单晶格和复式格子?分别举3个简单晶格和复式晶格的例子。
(□)0简单晶格中,一个原胞只包含一个原子,所有的原子在儿何位置和化学性质上是完全等价的。
复式格子则包含两种或两种以上的等价原子,不同等价原子各自构成相同的简单晶格(子晶格),复式格子由它们的子晶格相套而成。
Au、Ag和Cu具有面心立方晶格结构,碱金属Li、Na. K为体心立方结构,它们均为简单晶格。
NaCK CsCl、ZnS以及具有金刚石结构的Si、Ge等均为复式格子。
6)钛酸顿是由几个何种简单晶格穿套形成的?(□)□ BaTiO.在立方体的项角上是锲(Ba),钛(Ti)位于体心,面心上是三组氧(0)。
三组氧(01, OIL 0111)周围的情况各不相同,整个晶格是由Ba、Ti和01、OIL 0111各自组成的简立方结构子晶格(共5个)套构而成的。
7)为什么金刚石是复式格子?金刚石原胞中有几个原子?晶胞中有几个原子?(□)□金刚石中有两种等价的C原子,即立方体中的8个顶角和6个面的中心的原子等价,体对角线1/4处的C原子等价。
金刚石结构由两套完全等价的面心立方格子穿套构成。
金刚石属于面心立方格子,原胞中有2个C原子,单胞中有8个C原子。
固体物理第一章晶体-文档资料

三. 固体物理的一些主要研究方向:
1. 有机固体: 电, 磁, 光, 超导. 2. 量子Hall效应: 整数, 分数. 3. 人工微结构: 半导体超晶格, 量子点, 量子
线, 量子阱, 声子晶体, 光子晶体 4. 准晶体 5. 高温超导
6. C60 7. C纳米管 8. 石墨烯 9. 磁性, 巨磁阻 10. 自旋电子学
点对称操作:在对称操作过程中至少有一 点保持不动。
点对称操作要素: 点:对称中心;线:对称轴;面:对称面。
二、晶体的对称轴定理 若一晶体绕一直线至少转过角或角的整数倍,
其性质复原,称为基转角,称 n 360 为对称轴的轴次。
晶体的对称轴定理:晶体中只有1,2,3,4,6 五 种对称轴。 三、晶体中八种独立的对称要素
1.晶体所具有的自发地形成封闭凸多面体的能力称为自限 性。(能量最小)
2.晶体沿某些确定方位的晶面劈裂的性质,称为晶体的解 理性,这样的晶面称为解理面。
3.晶面角守恒定律:属于同一品种的晶体,两个对应晶面 间的夹角恒定不变。
石英晶体:
a、b 间夹角总是141º47´; a、c 间夹角总是113º08´; b、 c 间夹角总是120º00´。
精品
固体物理第一章晶体
二. 固体的分类
➢晶 体: 规则结构,分子或原子按一定的周期性排列。 长程有序性,有固体的熔点。E.g. 水晶 岩盐
➢ 非晶体:非规则结构,分子或原子排列没有一定的周期性。 短程有序性,没有固定的熔点。 玻璃 橡胶
➢ 准晶体: 有长程的取向序,有准周期性,但无长程周期性 。 没有缺陷和杂质的晶体叫做理想晶体。缺陷: 缺陷是指微量的
二.微观特性: 周期性.
密排六方结构(hcp) 面心立方结构(fcc)
第一章固体物理

原胞基矢:
a1 ai
a2 aj
a3 ak
c ak
晶胞基矢:
a ai b aj
原胞包含格点数:1,晶胞包含格点数:1
晶体钋Po
固体物理---晶体结构
第4节
晶格的周期性
立方晶系的面心立方晶格的晶胞与原胞
晶体内部原子排列具有周期性的结果和宏观体现。
单晶:长程有序,具有规则的几何外形和物理性质各向异性。
多晶:短程有序,由单晶构成的晶粒形成。
固体物理---晶体结构
第2节 密堆积 简单立方结构
•
• •
• •
• •
•
原子球的正方堆积
简单立方结构单元
体心立方结构
• •
• •
• • •
• •
体心立方的堆积方式
选取晶胞的原则:
c
能充分反映整个空间点成的周期性和对称性; 满足1的基础上,晶胞要具有尽可能多的直角; 满足上条件,晶胞应具有最小的体积。
b a
特点: 反映晶体对称性;
格点可以出现在体心或面心,含有一个或多个格点; 体积是原胞体积整数倍。
固体物理---晶体结构
第4节 晶格的周期性
主要内容
第1节 晶体的基本性质 第3节 空间点阵 第5节 晶格指数 第6节 晶体的对称性 第2节 密堆积 第4节 晶格周期性 第6节 倒格空间 第7节 晶体的X射线衍射
固体物理---晶体结构
固体物理---晶体结构
第1节 晶体的基本性质
◆原子排列具有周期性,形成长程有序的三维空间结构 。
钻石上的原子
a a 原胞基矢:a1 ( j k ) a 2 (i k ) 2 2 a a 3 (i j ) 2
固体物理学讲义.(PDF)

绪论一固体物理的研究对象固体物理是研究固体的结构及其组成粒子原子离子电子等之间相互作用与运动规律以阐明其性能与用途的学科 固体按结构分类取向对称晶体学上不允许的长程平移序和同时具有长程准周期性准晶准晶体短有序程无明确周期性非晶态非晶体长程有序规则结构晶态晶体:)(,:)(,:)( 二固体物理的发展过程人们很早注意到晶体具有规则性的几何形状还发现晶体外形的对称性和其他物理性质之间有一定联系因而联想到晶体外形的规则性可能是内部规则性的反映十七世纪C Huygens 试图以椭球堆集的模型来解释方解石的双折射性质和解理面十八世纪RJH 认为方解石晶体是由一些坚实的y ua &&相同的平行六面体的小基石有规则地重复堆集而成的到十九世纪费多洛夫熊夫利巴罗等独立地发展了关于晶体微观几何结构的理论系统为进一步研究晶体机构的规律提供了理论依据1912年劳埃首先提出晶体可以作为X 射线的衍射光栅索末菲发展了固体量子论费米发展了统计理论在这些研究的基础上逐渐地建立了固体电子态理论能带论和晶格动力学固体的能带论提出了导电的微观机理指出了导体和绝缘体的区别并断定有一种固体它们的导电性质介乎两者之间叫半导体四十年代末五十年代初以锗硅为代表的半导体单晶的出现并以此制成了晶体三极管进而产生了半导体物理这标志着固体物理学发展过程的又一次飞跃为了适应微波低噪音放大的要求曾经出现过固体量子放大器脉泽1960年出现的第一具红宝石激光器就是由红宝石脉泽改造而成的可以说固体物理学尖端技术和其他学科的发展相互推动相辅相成的作用反映在上述的固体新材料与新元件的发现和使用上新技术和其他学科的发展也为固体物理学提供了空前有利的研究条件三固体物理的学科领域随着生产及科学的发展固体物理领域已经形成了象金属物理半导体物理晶体物理和晶体生长磁学电介质包括液晶物理固体发光超导体物理固态电子学和固态光电子学等十多个子学科同时固体物理的本身内核又在迅速发展中主要有1研究固体中的元激发及其能谱以更深入更详细地分析固体内部的微观过程揭示固体内部的微观奥妙2研究固体内部原子间结合力的综合性质与复杂结构的关系掌握缺陷形成和运动以及结构变化相变的规律从而发展多功能的复合材料以适应新的需要3研究在极低温超高压强磁场强辐射条件下固体的性质4表面物理----在研究体内过程的基础上进入了固体表面界面的研究5非晶态物理----在研究晶态的基础上开始进入非晶态的研究即非晶体中原子电子的微观过程四固体物理的研究方法固体物理主要是一门实验性学科但是为了阐明所揭示出来的现象之间的内在的本质联系就必须建立和发展关于固体的微观理论实验工作与理论工作之间要相互密切配合以实验促进理论以理论指导实验相辅相成相得益彰第一章晶体结构固体的结构决定其宏观性质和微观机理本章主要阐明晶体中原子排列的几何规则性1-1 一些晶格的实例晶体组成微粒具有空间上按周期性排列的结构基元当晶体中含有多种原子多种原子构成基本的结构单元格点结点结构中相同的位子图1-1-1 结构中相同的位子点阵晶体中格点的总体又称为布拉菲点阵布拉菲格子这种格子的特点是每点周围的情况都一样如果晶体由完全相同的一种原子组成则这种原子所组成的网格也就是布拉菲格子和结点所组成的相同如果晶体的基元中包含两种或两种以上的原子则每个基元中相应的同种原子各构成和结点相同的网格不过这些网格相对地有位移而形成所谓的复式格子显然复式格子是由若干相同的布拉菲格子相互位移套构而成晶格通过点阵中所有节点的平行直线簇和平行平面簇构成的网格元胞反映晶格周期性的最小重复单元侧重最小重复单元每个元胞中只有一个格点晶胞晶体学单胞既反映晶格周期性又反映晶格的空间对称性的最小重复单元侧重空间对称性每个元胞可能不止一个格点一单原子组成的元素晶格1简单立方晶格图1-1-2 原子球的正方排列及其各层球完全对应层叠形成的简单立方晶格2体心立方晶格的典型单元及堆积方式图1-1-3体心立方晶格的典型单元及体心立方晶格的堆积方式3原子球最紧密排列方式与面心立方晶格和六角密排晶格图1-1-4原子球最紧密排列方式当层叠是ABABAB方式则构成六角密排晶格当层叠是ABCABCABC方式则构成面心立方晶格4金刚石类晶格金刚石类晶格是由面心立方单元的中心到顶角引8条对角线在其中互不相邻的4条对角线的中点各加一个原子就得到金刚石类晶格结构也可看成面心立方沿体对角线平移1/4体对角线套购而成除金刚石外半导体硅和锗也具有类似金刚石类晶格结构图1-1-5金刚石类晶格结构的典型单元二化合物晶体的结构1NCl类晶格结构其好似于简单立方晶格只是每一行相间地排列着正的和负的离子N a+和Cl-碱金属和卤族元素的化合物都具有类似的结构Cl类晶格结构2C其好似体心立方晶格只是体心和顶角是不同的离子3闪锌矿ZS类晶格结构和金刚石类晶格结构相仿只要在金刚石晶格立方单元的对角线位置上放置一种原子在面心立方位置上放置另一种原子441-2晶格的周期性对于晶格的周期性通常用元胞和基矢来描述图1-2-1 中除4外均为最小单元由此元胞的选取并不是唯一的但各种晶格元胞都有习惯的选取方式并用元胞的边矢量作晶格的基矢基矢之间并不都相互正交图1-2-1平面元胞示意图1 简单立方晶格的元胞三个基矢分别zy x e a a e a a e a v v v v v v ===32,,为a 13321a a a a =×⋅vv r2 面心立方晶格的元胞三个基矢分别为)(2),(2),(2321j i a a j i a a j i a a v v v v v v v v v +=+=+=43321a a a a =×⋅vv r3体心立方晶格的元胞三个基矢分别为)(2),(2),(2321k j i a a k j i a a k j i a a v v v v v v v v v v v v −+=+−=++−=23321a a a =×⋅v v r a)3322a l a l ++}设为元胞中任意一处的位子矢量r vQ代表晶体中的任一物理量则Q ()(11a l r Q r +=vv l 1l 2l 3为整数即任意两元胞中相对应的点的物理性质相同我们可以用表示一种空间点阵{a l a l a l v v v 321++即一组l 1l 2l 3的取值表示格子中的一个格点l 1l 2l 3所有可能的集合就表示一个空间格子实际晶体可以看成在上述空间格子的每个格点上放置一组基元可为多种原子这个空间格子表征了晶格的周期性称为布拉菲格子Cu 的面心立方晶格Si 的金刚石晶格和NaCl 晶格均具有相同的布拉菲格子—面心立方格子它们的晶格结构虽然不同但具有相似的周期性自然界中晶格的类型很多但只可能有十四种布拉菲格子。
(完整版)固体物理概念(自己整理)

1.晶体-----内部组成粒子(原子、离子或原子团)在微观上作有规则的周期性重复排列构成的固体。
晶体结构——晶体结构即晶体的微观结构,是指晶体中实际质点(原子、离子或分子)的具体排列情况。
金属及合金在大多数情况下都以结晶状态使用。
晶体结构是决定固态金属的物理、化学和力学性能的基本因素之一。
2.晶体的通性------所有晶体具有的共通性质,如自限性、最小内能性、锐熔性、均匀性和各向异性、对称性、解理性等。
3.单晶体和多晶体-----单晶体的内部粒子的周期性排列贯彻始终;多晶体由许多小单晶无规堆砌而成。
4.基元、格点和空间点阵------基元是晶体结构的基本单元,格点是基元的代表点,空间点阵是晶体结构中等同点(格点)的集合,其类型代表等同点的排列方式。
倒易点阵——是由被称为倒易点或倒易点的点所构成的一种点阵,它也是描述晶体结构的一种几何方法,它和空间点阵具有倒易关系。
倒易点阵中的一倒易点对应着空间点阵中一组晶面间距相等的点格平面。
5.原胞、WS原胞-----在晶体结构中只考虑周期性时所选取的最小重复单元称为原胞;WS原胞即Wigner-Seitz原胞,是一种对称性原胞。
6.晶胞-----在晶体结构中不仅考虑周期性,同时能反映晶体对称性时所选取的最小重复单元称为晶胞。
7.原胞基矢和轴矢----原胞基矢是原胞中相交于一点的三个独立方向的最小重复矢量;晶胞基矢是晶胞中相交于一点的三个独立方向的最小重复矢量,通常以晶胞基矢构成晶体坐标系。
8.布喇菲格子(单式格子)和复式格子------晶体结构中全同原子构成的晶格称为布喇菲格子或单式格子,由两种或两种以上的原子构成的晶格称为复式格子。
9.简单格子和复杂格子(有心化格子)------一个晶胞只含一个格点则称为简单格子,此时格点位于晶胞的八个顶角处;晶胞中含不只一个格点时称为复杂格子,其格点除了位于晶胞的八个顶角处外,还可以位于晶胞的体心(体心格子)、一对面的中心(底心格子)和所有面的中心(面心格子)。