树脂基复合材料
树脂基复合材料

树脂基复合材料随着科学技术的不断发展,材料科学领域也在不断取得突破性进展。
树脂基复合材料作为一种重要的功能材料,在航空航天、汽车制造、建筑等领域得到了广泛的应用。
它具有重量轻、强度高、耐腐蚀、设计自由度大等优点,因此备受青睐。
本文将就树脂基复合材料的概念、分类、制备方法、性能及应用进行介绍。
一、概念。
树脂基复合材料是由树脂作为基体,再加入填料、增强材料等组成的一种复合材料。
树脂通常选择环氧树脂、酚醛树脂、不饱和聚酯树脂等,而填料和增强材料则有玻璃纤维、碳纤维、芳纶纤维等。
树脂基复合材料具有优异的力学性能和耐腐蚀性能,广泛应用于航空航天、汽车制造、建筑等领域。
二、分类。
树脂基复合材料可以根据树脂的种类、增强材料的种类、制备工艺等进行分类。
按照树脂的种类,可以分为环氧树脂基复合材料、酚醛树脂基复合材料、不饱和聚酯树脂基复合材料等。
按照增强材料的种类,可以分为玻璃纤维增强树脂基复合材料、碳纤维增强树脂基复合材料、芳纶纤维增强树脂基复合材料等。
根据制备工艺的不同,可以分为手工层叠法、预浸法、注射成型法等。
三、制备方法。
树脂基复合材料的制备方法多种多样,常见的包括手工层叠法、预浸法、注射成型法等。
手工层叠法是最早的制备方法,其工艺简单,成本低,但生产效率低,质量不稳定。
预浸法是将增强材料浸泡在树脂中,然后烘干成型,工艺复杂,但成型速度快,质量稳定。
注射成型法是将树脂和增强材料混合后通过模具注射成型,工艺复杂,但成型速度快,适用于大批量生产。
四、性能。
树脂基复合材料具有优异的力学性能和耐腐蚀性能。
其强度和刚度远高于金属材料,比重却只有金属的三分之一至四分之一。
同时,树脂基复合材料具有优异的耐腐蚀性能,不易受到化学物质的侵蚀。
此外,树脂基复合材料还具有设计自由度大、成型工艺灵活等优点。
五、应用。
树脂基复合材料在航空航天、汽车制造、建筑等领域得到了广泛的应用。
在航空航天领域,树脂基复合材料被用于制造飞机机身、飞机翼、航天器外壳等部件,以减轻重量、提高飞行性能。
解析树脂基复合材料的性能及其有效应用

解析树脂基复合材料的性能及其有效应用1. 引言1.1 背景介绍树脂基复合材料是一种由树脂和增强材料混合制成的高性能材料,具有轻质、高强度和耐腐蚀等优点,被广泛应用于航空航天、汽车、船舶、建筑等领域。
随着科技的不断发展,树脂基复合材料在新材料领域中扮演着越来越重要的角色。
树脂基复合材料的发展源远流长,早在上世纪50年代就开始被广泛研究和应用。
随着工业化进程的不断加快,人们对材料性能的要求也越来越高,推动了树脂基复合材料领域的发展。
树脂基复合材料既可以利用各种类型的树脂和各种增强材料进行组合,也可以通过改变其制备工艺来实现更高级的性能要求。
在当前社会环境下,对资源和环境的保护意识日益增强,树脂基复合材料的轻质优势也得到了更多的关注。
通过优化设计和制备工艺,可以进一步提高树脂基复合材料的性能,拓展其应用领域。
对树脂基复合材料的研究和应用具有重要的意义,有望推动新材料领域的发展。
1.2 研究意义树脂基复合材料是一种由树脂基体与增强材料组成的新型材料,具有轻质、高强度、耐腐蚀等优点,在航空航天、汽车制造、建筑等领域有着广泛的应用前景。
研究树脂基复合材料的性能及其有效应用具有重要的意义。
通过深入研究树脂基复合材料的性能特点,可以为工程设计提供科学依据。
了解树脂基复合材料的强度、刚度、耐热性等性能参数,有助于工程师选择合适的材料,设计出更加轻量化、高效率的产品,提高产品的竞争力。
研究树脂基复合材料的有效应用可以促进材料科学技术的发展。
随着科技的不断进步,树脂基复合材料在各个领域的应用也在不断扩大和深化。
深入研究其应用技术,可以促进新材料的研发和创新,推动材料领域的发展。
研究树脂基复合材料的性能及其有效应用对于推动材料科学技术发展、提高产品性能、推动工程设计创新具有十分重要的意义。
希望通过本次研究,能够为树脂基复合材料的应用提供新的思路和方法,促进相关领域的发展。
2. 正文2.1 解析树脂基复合材料的性能解析树脂基复合材料是由树脂和增强材料组成的复合材料,具有独特的性能优势。
树脂基复合材料

透光性、抛光性能、及保持表面光滑的性能极佳,且耐磨 耗性能较好。
为了提高填料添加量,事先在工厂中通过机械强力混 合向树脂基质中加入较多的超微填料,后用机械方式 粉碎成预聚合填料。
将预聚合填料与超微填料添加到树脂基质,制出含有 预聚合填料的复合树脂。
用于牙齿缺损、缺失的直接或间接修复。
第一节 组成及固化反应
一、组成
(一)树脂基质
树脂基质是复合树脂的主体成分,主要作用是 将复合树脂的各组成粘附结合在一起,赋予可 塑性、固化特性和强度。
树脂基质由含两个或两个以上的甲基丙烯酸酯 官能团的单体构成。
树脂基质----双酚A双甲基丙烯酸缩水甘油酯(BIS-GMA)
结合来实施聚合。
第二节 复合树脂
一、分类
(一)按无机填料大小分类
1、 超微填料复合树脂 2、 混合填料复合树脂 3、 纳米填料复合树脂
1、 超微填料复合树脂
超微填料(microfiller)的初级粒子平均直径为0.04μm ,但相互黏附、聚集使粒径为0.4-0.7μm。
超微粒子表面积大,增稠作用大,填料的添加量一般不超 过38%,
1.流动性(flowable)复合树脂 较大的流动性,注射到牙齿的微小窝洞内。 无机填料含量少,弹性模量低。 固化深度可达4mm 大体积充填复合树脂。 2. 可压实复合树脂 无机填料含量高(70%~80%),充填时材料不易
从周围挤出,易压实,特别是容易形成良好的后牙邻 面接触点。该材料主要用于后牙较大缺损的修复。
(三)按应用部位分类
1.前牙(anterior)复合树脂 具有优良的色泽、半透明性和抛光性能。 超微填料复合树脂就是一种前牙复合树脂。
树脂基复合材料

(四)根据临床修复过程
1.直接修复复合树脂
用于直接充填修复,目前的大多数复合树脂。
2.间接修复复合树脂
固化过程在体外,力学性能更好。
(五)根据固化方式
1.化学固化复合树脂(chemical cure)
又称自凝复合树脂,一组分含引发剂,另一组分含促进剂,混合后 室温2~5分钟固化。
可将无机填料含量提高到50%,可提高力学性能,降 低聚合收缩和吸水率。
2、 混合填料(hybrid filler)型
大颗粒填料(0.1~10μm)和少量超微填料混合组成。 粒子的表面积小,增稠作用小。 无机填料含量大,力学性能好,聚合收缩小。
根据填料粒度大小可分为:
细混合填料复合树脂(10μm) 超细混合填料复合树脂(5.0μm) 微混合填料复合树脂(不超3.0μm) 粒度越小,抛光性能越好。 前两者具有良好力学性能和抛光性能,称为通用型复合
而获得足够的有效贮存期。常用的阻聚剂是一些酚类 化合物,如对苯二酚。
2、颜料 为获得复合树脂与天然牙颜色相匹配
二、 固化反应
以甲基丙烯酸酯类为树脂基质的复合材料的固化反 应是活性自由基引发的聚合反应;
自凝复合树脂的聚合是引发剂和促进剂的氧化还原 反应产生的自由基引发的聚合反应;
光固化复合树脂通过可见蓝光引发聚合; 双重固化复合树脂用氧化还原反应引发和光引发相
化学固化型复合树脂在两组分调和时易夹裹空气形 成微小气泡,使表面变得粗糙,易粘附色素,使修 复体变色。
光固化复合树脂不易粘附色素,因此不易变色。
通常填料粒度越小,磨改抛光效果越好,表面光洁 度和审美性能佳。
纳米陶瓷修复材料
...之后
树脂基复合材料和应用

树脂基复合材料和应用树脂基复合材料是由树脂(如环氧树脂、聚酯树脂等)作为基体以及增强材料(如玻璃纤维、碳纤维等)混合而成的一种材料。
由于树脂基复合材料具有良好的机械性能、化学稳定性和耐腐蚀性能,广泛应用于航空航天、汽车、建筑、电子等领域。
首先,树脂基复合材料在航空航天领域中应用广泛。
传统的金属材料由于其密度高、强度低,在飞行器的设计中存在很多限制。
树脂基复合材料具有高强度、低密度的特点,可用于制造飞行器的结构件,如机翼、机身等。
他们不仅能够减轻飞行器的重量,还可以提高其机动性和燃油效率。
其次,树脂基复合材料在汽车制造领域具有广泛的应用前景。
汽车行业对材料的要求是具有足够的强度和刚度,同时要求材料重量轻、耐腐蚀且易加工。
树脂基复合材料正好具备这些特点。
例如,碳纤维增强树脂基复合材料可以用于制造汽车的车身和底盘,可以有效提高车辆的安全性和燃油经济性。
此外,树脂基复合材料在建筑领域也有广泛应用。
传统的建筑材料如砖、混凝土等重量大、强度低。
而树脂基复合材料由于其轻质、高强度的特点,逐渐成为建筑行业的新宠。
例如,玻璃纤维增强聚酯树脂基复合材料可用于制造建筑外墙板、屋顶、地板等。
这不仅可以提高建筑物的结构强度,还可以减轻建筑物自身的负载。
最后,树脂基复合材料在电子行业中也有广泛的应用。
电子产品对材料要求很高,需要具有良好的绝缘性能、尺寸稳定性和导热性能。
树脂基复合材料可以满足这些要求。
例如,环氧树脂基复合材料可用于制造电子元器件的外壳,可以有效地隔离电器元件和外界环境,提高电器元件的稳定性和可靠性。
总的来说,树脂基复合材料具有广泛的应用前景。
随着科技的不断进步和发展,树脂基复合材料将得到越来越广泛的应用,为人类创造更多的奇迹和贡献。
《树脂基复合材料》课件

航空航天领域
树脂基复合材料具有轻量化和高 强度特点,在飞机、卫星等航空 航天组件中得到广泛应用。
体育器材
树脂基复合材料用于制造高性能 的体育器材,如高尔夫球杆、网 球拍等。
优缺点:Advantages and Disadvantages
优点
高强度、高刚度、耐腐蚀性、轻量化、设计自由度高。
缺点
制造工艺复杂、成本较高、部分树脂容易老化和热塑性。
2 增强材料
常见的增强材料包括玻璃 纤维、碳纤维、芳纶纤维 等。
3 制备方法
制备方法包括手工层叠法、 自动化层叠法、预浸法等。
制备方法:Methods for Fabricating Resin Based Composite Materials
1
手工层叠法
通过手工将树脂和增强材料依次叠加,然
自动化层叠法
《树脂基复合材料》PPT 课件
本课件将介绍树脂基复合材料的定义、特点、分类、制备方法、应用领域、 优缺点以及未来发展趋势。
定义:What are Resin Based Composite Materials?
树脂基复合材料是由树脂基质和增强材料组成的一种复合材料。树脂负责提供基质的连续相,而增强材料则增 加材料的强度和刚度。
未来发展趋势:Future Development Trends
树脂基复合材料领域的研究正在不断突破,未来的发展趋势包括:
• 开发新型树脂和增强材料,提高材料性能。 • 改进制备工艺,降低成本,提高生产效率。 • 加强环境保护和可持续性,推动绿色树脂基复合材料的发展。
耐腐蚀性
树脂基复合材料具有出色的 耐腐蚀性,能够抵抗酸碱侵 蚀和一些化学物质的腐蚀。
设计自由度
树脂基复合材料简介-2022年学习资料

©传统的聚合物基体是热固性的,-o优点:良好的工艺性-©由于固化前,热固性树脂粘度很低,因而宜于在常温常压 下浸渍纤维,并在较低的温度和压力下固化成型;-©固化后具有良好的耐蚀性和抗蠕变性;-⊙缺点:预浸料需低温冷 且贮存期有限,成型周期长和-材料韧性差。-6
热塑性树脂-。1具有线形或支链结构的有机高分子化合物。特点是预-热软化或熔融而处于可塑性状态,冷却后又变坚 。-2成型利用树脂的熔化、流动,冷却、固化的物理过程-变化来实现的,过程具有可逆性,能够再次加工。-。3聚 状态为晶态和非晶态的混合,结晶度在20%-85%-b-热塑性高聚物模量与-结晶度增大-整责!-温度关系-0 -冻-Tg:玻璃化转变温度,-,GPa-10-Tf:流动温度-Tm:粘流温度-熔点-Tg温度-6
三·树脂基复合材料的制备成型工艺方法-预浸料-预混料-纤维、树脂、添加剂等原料-二步法:降低孔隙-率,提高 匀性-预成型-固化-一步法:工艺简单,-但复合材料中会存-在孔洞,均匀性差-脱模-整修-10
成型工艺主要方法-3-手糊成型-喷射成型-袋压成型-5-缠绕成型-拉挤成型-树脂传递模成型-11
四·树脂基复合材料的应用举例-20世纪60年代美国空军材料研究所将B纤维增强环氧树脂复-合材料命名为先进复 材料-先进树先进树脂基复合材料在军用飞机上的应用20多年来-走过了一条由小到大由弱到强,由少到多,由结构受 到增-加功能的道路。第三代歼击机如法国的Raflae、j-瑞典的JAs一-39,树脂基复合材料用量分别达4 %和30%,第四代歼击机-如美国的F.22和F一35,树脂基复合材料用量分别达24%和-30%以上。F一2 飞机主要应用耐热150℃以上IM7中模量碳纤-维增强韧性BMI复合材料,应用的主要部位包括前、中机身,-机 蒙皮,框,梁,壁板等,成型工艺技术主要为热压罐和-RTM成型。-12
树脂基复合材料

树脂基复合材料树脂基复合材料是一种将多种共性结合在一起的新型材料,由纤维增强树脂基体和复合材料完成。
复合材料有着良好的力学性能、较少的收缩性和减震性,具有重量轻、抗拉强度高的特点,是现代航空航天设计中非常重要的一种材料。
树脂基复合材料是由聚合物树脂和纤维材料组成的。
聚合物树脂能够在正常使用温度范围内具有很好的机械性能和耐久性,而纤维材料则使电性能、热稳定性和疲劳耐久性等性能得到明显提高。
加工过程中,纤维材料能够把聚合物树脂均匀地分散在一起,这样可以使复合材料具有更高的强度和更强的感应响应。
树脂基复合材料具有很多优势。
首先,它具有较高的强度与轻质,重量轻,耐腐蚀,耐冲击,电气绝缘,耐湿热,机械性能稳定,施工容易,可再利用,价格低,安全性高等特点,激发了工程师的创新精神,从而使得复合材料在现代航空行业中变得越来越受欢迎。
其次,复合材料还具有很好的机械性能,其附加的纤维材料提高了韧性、抗拉强度、耐水蚀等特性,可以有效地提升工程结构的强度,从而实现高效可靠的航空设计。
复合材料也有一些缺点,其中最重要的是它的价格较高。
现代航空航天设计中经常使用复合材料,但由于它的价格昂贵,往往会给航空公司造成负担,削弱它们的竞争力。
另外,由于复合材料表面细小的纤维以及其物理性质的不稳定性,树脂基复合材料的力学性能也存在一定的局限性。
尽管复合材料存在一些缺点,但其积极的作用和优点已经被广泛地认识到。
复合材料表现出良好的机械性能和耐久性,并且具有体积小、质量轻、力学性能高、价格低等特点,运用在航空航天设计中得到广泛应用,其应用将使航空航天工程的范围更加广泛。
综上所述,树脂基复合材料是一种具有很多优势的新型材料,具有良好的力学性能、较少的收缩性和减震性,并且还具有重量轻、抗拉强度高等优点,在现代航空航天设计中得到广泛应用,它的应用将为航空航天研究和设计带来更多可能性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)纤维混合。热塑性聚合物纺成多根长丝纤维,使得
热塑性树脂--Thermoplastic resins
在常温下是固体。加热到一定温度时,可软化,甚 至流动(特别是在加压时易流动),它们可以塑制加 工成一定的形状。冷却后变硬。再加热可软化。即它 的变化(相变)是双向的。这类树脂中所包含的高分 子聚合物属于线型或支链型分子结构。常用的有:聚 乙烯(PE)、聚丙烯(PP)、聚苯乙烯、聚碳酸酯 、聚甲醛、氯化聚醚、聚砜、聚酚醚、有机氟树脂、 聚甲基丙烯酸甲酯、聚丙烯腈、聚氨基甲酸酯、聚丁 烯、聚醋酸乙烯、聚乙烯醇、聚氯乙烯、丙烯腈-丁 烯-苯乙烯共聚物(ABS)、聚酰胺等、聚醚醚酮( PEEK)。
再生性
次品可再生利用
再生利用困难
(一)短纤维增强热塑性树脂基复合材料成型工艺
1、挤拉成型
2、注塑成型 (二) 连续纤维增强热塑性树脂基复合材料成型工艺 1、预浸料加工方法 2、成型工艺:辊轧成型、纤维缠绕、挤拉和热成型。
Thermoplastic Resin composites molding
(一)短纤维增强热塑性树脂基复合材料成型工艺 挤出成型 挤出成型工艺是生产热塑性复合材料制品的主要方法之一。 各种增强塑料管、棒材、异形断面型材等。其工艺过程是先 将树脂和增强纤维制成粒料,然后再将粒料加入挤出机内, 经塑化、挤出、冷却、定型成制品。 纤维和树脂无规混合。 长纤维粒料生产的制品力学性能较高,短纤维粒料则用于生 产形状复杂的薄壁制品。
Thermoplastic Resin composites molding
(2)熔融浸渍法。在这种方法中,熔融聚合物浸渍纤维
粗纱已有两种方法用于生产中:(A)十字头挤拉机把熔融聚 合物喂入纤维粗纱通过的模具中;(B)纤维粗纱通过一个配 有浸渍杆的熔融基体槽以增加纤维束的渗透性。 在每一种方法中,作用于纤维束上的力是非常高的并可能引 起纤维损伤。并由于热塑性基体的高粘性,导致纤维粗纱不 能充分预浸。同时,在基体熔融过程中,通常需要高的温度 和压力来提供足够低的融化粘性,致使消耗大量能量,浸渍 过的粗纱常常缺乏柔软性和悬垂性。
Thermoplastic resins
主要种类的基本性能
主要种类 聚乙烯PE 强度(MPa) 23 模量(GPa) 0.8 弯曲强度(MPa) 25-29 延伸率(%) 60
聚丙烯PP
聚苯乙烯PS 聚碳酸酯PC
35-40
59 63
1.4
2.3 2.3
42-56
77 100
>200
2 60-100
1、预浸料加工方法薄膜叠合。 (4)纤维混合:(A)共混纤维 (B)共织织物 (5)粉末浸渍。
Thermoplastic Resin composites molding
(1)溶液浸渍法。热塑性聚合物被溶解在溶剂中,然后用低粘
度溶液浸渍增强纤维集合体(纤维束或织物)。为了避免预浸料在复合材 料固化中产生空隙,必须完全去除溶剂。亚基氯化物和N—甲基吡咯烷 广泛用作溶剂。但是去除预浸料中的溶剂常常是一个困难工序,在最后 成型时,遗留的溶剂能引起气泡、表面缺陷及内部空隙,并且排出的溶 剂会带来环境污染。除此之外,许多重要的热塑性聚合物在室温下不能 溶解于普通溶剂中,在使用高相对分子质量聚合物时,聚合物在溶液中 的质量分数应该不大于15%,因为较高质量分数将产生高的溶液粘度, 达不到使用溶剂的目的。经过浸渍的纤维集合体的柔软性、悬垂性差, 不利于一些部件的成型加工。
注塑成型
注塑成型是树脂基复合材料生产中的——种重要成型方法材料, 它适用于热塑性和热固性树脂基复合材料,但以热塑性树脂基复 合材料应用为广。 注射成型是将粒状或粉状的纤维-树脂混合料从注射机的料斗送 入机筒内,加热熔化后由柱塞或螺杆加压,通过喷嘴注入温度较 低的闭合模内,经过冷却定型后,脱模得制品。 特点:成型周期短,热耗量少,闭模成型,可使形状复杂的产品 一次成型,生产效率高、成本低。但是它不适于长纤维增强的产 品,模具质量要求高。 注射成型工艺在复合材料制品生产中,主要是代替模压成型工艺, 生产各种电器材料、绝缘开关、汽车零部件、纺织零部件、家电 壳体、安全帽、食品周转箱、空调机叶片等。
Thermoplastic Resin composites molding
(二)连续纤维增强热塑性树脂基复合材料成型工艺
长期以来,连续纤维增强热固性复合材料的研究与应用占主导地位。进 入80年代,连续纤维增强热塑性复合材料的研究成为国际上关注的热点。 研究表明:加工费用本身占先进热塑性复合材料部件总成本的72%。提 高连续纤维增强热塑性复合材料的应用的关键是要开发最合适的成型技 术。
Thermoplastic Resin composites molding
优点:能加工绝大多数热塑性复合材料及部分热固性复合材 料时,生产过程连续,自动化程度高,工艺易掌握及产品 质量稳定等。 缺点:只能生产线型制品。
Thermoplastic Resin composites molding
Thermoplastic Resin composites molding
热塑性复合材料和热固性复合材料相比,具有不同的特点
项目 力学性能 热塑性复合材料 耐冲击和疲劳性能优良 热固性复合材料 高强度、高刚度、静态性能好
成型加工性 成型时间短、温度高,成型较困难 成型时间长、温度低,成型较容易
Thermoplastic Resin composites molding
(3)薄膜叠合。热塑性树脂的内在特性允许其以—种形
式成型,然后通过加热和模压而成为另一种型式。因此,假 如热塑性树脂成型为薄膜,就可用两层或更多层薄膜与纤维 单向带或机织物相互交叉叠合,然后加热、加压,形成制品。 双带机是该方法的一种成型设备。在这个加工中,增强材料 夹在两个聚合物膜之间,由脱膜薄膜夹带通过加热区,施加 热和压力使熔融的聚合物浸渍增强材料,然后在冷却区中进 行硬化成型。由于熔融热塑性树脂相对高的粘性,该方法要 求高压力。就板材尺寸而言,该加工也受到限制。