生物化学2--核酸化学
生物化学 第2章Ⅱ 核酸(共86张PPT)

内呈正比
5、电泳缓冲液
DNA的凝胶电泳检测
(ethidiumbromide, 简称EB)是一种核酸染料,可以插入到DNA
或RNA分子的碱基之间,并在300nm波长的
紫外光照射下放射出橘红色的荧光,可用来显现 凝胶中的核酸分子。
在凝胶电泳中,溴化乙锭染料可对核酸分子 染色,在紫外光下便可以十分敏感而方便地检测 出凝胶介质中DNA谱带。
五、变性、复性与杂交
(一)、DNA的变性
1、概念 2、变性因素
3、变性的指标
1、概念
是指核酸双螺旋区的氢键断裂,双螺旋 解开,变成无规则线团的现象。核酸变 性其分子中的共价键并没有破坏,分子 量也不改变,核酸的变性(
denaturation )
2、DNA的变性的因素
温度升高;
酸碱度改变、 pH(>11.3或<5.0);
1、核酸分子本身的大小:同分子的摩擦
系数成反比的 Maxam和Gilbert 于1977年发明
Primer1(10uM)
2、琼脂糖的浓度:迁移率与胶浓度成反比 而聚丙烯酰胺凝胶制胶时不能将染料加入,会影响聚合。
第五节 核酸的研究方法 据此特性可以定性和定量检测核酸。
在液氮蒸发去2/3时,用自制研杵迅速磨碎叶片;
RNA本身只有局部的双螺旋区,所以变 性行为所引起的性质变化没有DNA那样 明显。 天然状态的DNA在完全变性后,紫外吸
收(260 nm)值增加25-40%.而RNA变性 后,约增加1.1%。
4. DNA变性后的表现
A260值增加
粘度下降
浮力密度增大
分子量不变
(二)、DNA的复性
1、概念:
变性DNA在适当的条件下,两条彼此分 开的单链可以重新缔合成为双螺旋结构 ,这一过程称为复性;
生物化学 第二章 核酸化学

1 核苷酸的组成
核酸化学
• 核苷酸是核苷的磷酸酯。作为DNA或RNA结构单元的 核苷酸分别是5′-磷酸-脱氧核糖核苷酸和5′-磷酸-核糖 核苷酸。核苷酸 核苷+磷酸
戊糖+碱基+磷酸
O
HO P OH2C O B OH
O
HO P OH2C O B OH
OH OH
OH
核糖核苷酸
脱氧核糖核苷酸
B=腺 嘌 呤 , 鸟 嘌 呤 , 胞 嘧 啶 , 尿 嘧 啶 或 胸 腺 密 啶
核酸化学
格里菲斯——肺炎双球菌转化实验
多 糖 类 荚 膜
R型菌
(粗糙、 无毒性)
S型菌
(光滑、 有毒性)
核酸化学
将R型活菌注入小鼠体内
一段时间后
核酸化学
将S型活菌注入小鼠体内
一段时间后
核酸化学
将杀死的S型菌注入小鼠体内
一段时间后
核酸化学
将R型活菌与杀死的S型菌注入小鼠体内
一段时间后
细菌发生转化,性状的转化可以遗传。
O
(N = A、G、C、U、T)
O-
P
O
5´
CH2
O
N 碱基
O-
磷酸
4´ H
H 1´
O H 3´
2´ H
OH (O)H
核糖
(一)、戊糖
核酸化学
组成核酸的戊糖有两种。DNA所含的糖为 βD-2-脱氧核糖;RNA所含的糖则为β-D-核糖。
HOCH2 O OH HH
H
H
OH OH
D-核糖
Ribose
HOCH2 O OH HH
(四)核苷酸nucleotide
核酸化学
东华大学生物化学0习题二-核酸化学

习题二--- 核酸化学一、选择题1.决定tRNA携带氨基酸特异性的关键部位是:()A、3′末端B、T C环C、二氢尿嘧啶环D、反密码子环2.含稀有碱基较多的核酸是:()A、核DNAB、线粒体DNAC、tRNAD、mRNA3.真核细胞mRNA帽子结构最多见的是:()A、m7ApppNmPB、m7GpppNmPC、m7UpppNmPD、m7CpppNmP4.DNA变性后,下列那一项变化是正确的? ( )A、对260nm紫外吸收减少B、溶液粘度下降C、磷酸二酯键断裂D、核苷键断裂5.双链DNA的T m较高是由于下列哪组核苷酸含量较高所致: ( )A、A+GB、C+TC、A+TD、G+CE、A+C6.DNA复性的重要标志是: ( )A、溶解度降低B、溶液粘度降低C、紫外吸收增大D、紫外吸收降低二、填空题1.在DNA和RNA中,核苷酸残基以互相连接,形成不分枝的链状分子。
由于含氮碱基具有,所以核苷酸和核酸在处有最大紫外吸收值。
2.在含DNA和RNA的试管中加入稀的NaOH溶液,室温放置24小时后,被水解了。
3.Watson-CrickDNA双螺旋每盘旋一圈有对核苷酸,高度为。
4.核酸变性时,260nm紫外吸收显著升高,称为;变性的DNA复性时,紫外吸收回复到原来水平,称为。
5.病毒和噬菌体只含一种核酸,有的只有,另一些只有。
6.染色质的基本结构单位是,由核心和它外侧盘绕的组成,核心由各两分子组成,核小体之间由相互连接,并结合有。
7.tRNA的二级结构呈型,三级结构呈型,其3'末端有一共同碱基序列,其功能是。
三、是非题1.DNA是生物遗传物质,RNA则不是()。
2.同种生物体不同组织中的DNA,其碱基组成也不同()。
3.构成RNA分子中局部双螺旋的两个片段也是反向平行的()。
4.自然界的DNA都是双链的,RNA都是单链的()。
《生物化学》第二章核酸化学及答案

第二章核酸化学《生物化学》一、选择题1.自然界游离核苷酸中,磷酸最常见是位于:A.戊糖的C-5′上B.戊糖的C-2′上C.戊糖的C-3′上D.戊糖的C-2′和C-5′上E.戊糖的C-2′和C-3′上2.可用于测量生物样品中核酸含量的元素是:A.碳B.氢C.氧D.磷E.氮3.下列哪种碱基只存在于RNA而不存在于DNA:A.尿嘧啶B.腺嘌呤C.胞嘧啶D.鸟嘌呤E.胸腺嘧啶4.核酸中核苷酸之间的连接方式是:A.2′,3′磷酸二酯键B.糖苷键C.2′,5′磷酸二酯键D.肽键E.3′,5′磷酸二酯键5.核酸对紫外线的最大吸收峰在哪一波长附近?A.280nm B.260nm C.200nm D.340nm E.220nm6.有关RNA的描写哪项是错误的:A.mRNA分子中含有遗传密码B.tRNA是分子量最小的一种RNAC.胞浆中只有mRNAD.RNA可分为mRNA、tRNA、rRNAE.组成核糖体的主要是rRNA7.大部分真核细胞mRNA的3′-末端都具有:A.多聚A B.多聚U C.多聚T D.多聚C E.多聚G8.DNA变性是指:A.分子中磷酸二酯键断裂B.多核苷酸链解聚C.DNA分子由超螺旋→双链双螺旋D.互补碱基之间氢键断裂E.DNA分子中碱基丢失9.DNA Tm值较高是由于下列哪组核苷酸含量较高所致?A.G+A B.C+G C.A+T D.C+T E.A+C10.某DNA分子中腺嘌呤的含量为15%,则胞嘧啶的含量应为:A.15% B.30% C.40% D.35% E.7%二、填空题1.核酸完全的水解产物是________、_________和________。
其中________又可分为________碱和__________碱。
2.体内的嘌呤主要有________和________;嘧啶碱主要有_________、________和__________。
某些RNA分子中还含有微量的其它碱基,称为_________。
生物化学第三章核酸

第三节 RNA的结构与功能
Structure and Function of RNA
• DNA和RNA的区别
不同点 戊糖 碱基 二级结构 碱基互补配对 种类 RNA 核糖 G C A U 单链 忠实性较低 多 (mRNA,rRNA, tRNA 等) DNA 脱氧核糖 G C A T 双链 忠实性高 少
碱基互补配对: 腺嘌呤/胸腺嘧啶(A-T)
4.双螺旋表面存在大沟和小沟
小沟
大沟
(二) DNA二级结构的多样性
• 三种DNA构型的比较
螺距 旋向 (nm) 每圈碱 基数 螺旋直径 (nm) 骨架 走行
存在条件
A型 右手 B型 右手
2.3 3.54
11 10.5
2.5 2.4
平滑 平滑
体外脱水 生理条件
(二)碱基
碱基(base)是含氮的杂环化合物。
腺嘌呤
嘌呤 碱基 嘧啶 鸟嘌呤 存在于DNA和RNA中
胞嘧啶
尿嘧啶 胸腺嘧啶 仅存在于RNA中 仅存在于DNA中
NH2
嘌呤(purine,Pu)
N 7 8 9 NH
N
N
NH
5 4
6 3 N
1N 2
腺嘌呤(adenine, A)
O N
N
NH
NH
鸟嘌呤(guanine, G)
(二) 原核生物DNA的环状超螺旋结构
原核生物DNA多为环状,以负超螺旋的形 式存在,平均每200碱基就有一个超螺旋形成。
DNA超螺旋结构的电镜图象
(三) DNA在真核生物细胞核内的组装
真核生物染色体由DNA和蛋白质构成
基本单位是核小体
DNA染色质呈现出的串珠样结构。 染色质的基本单位是核小体(nucleosome)。
生物化学第二章核酸化学

核酸分类及命名规则
核酸可分为DNA和RNA两大类,根据来源不同可分为基因组DNA、病毒DNA、mRNA、tRNA、 rRNA等。
核酸的命名通常包括种类、来源和特定序列信息,如人类基因组DNA可命名为hgDNA,mRNA可命 名为信使RNA等。
02
DNA结构与性质
DNA双螺旋结构模型
DNA由两条反向平行的多核苷酸链 组成,形成右手螺旋结构。
长约21nt的双链RNA,可引导RISC复合物识别并切割靶mRNA,实现基因沉默。
其他小分子RNA
如piRNA、snoRNA等,在基因表达调控、RNA修饰等方面发挥作用。
04
核酸理化性质与分离纯化方法
核酸溶解度和沉淀条件
溶解度
核酸在不同溶剂中的溶解度不同,一般易溶于水,难溶于乙醇、乙醚等有机溶 剂。其溶解度受温度、pH、离子强度等因素的影响。
非同源重组
发生在非同源序列之间的重组过程。这种重 组不依赖于序列之间的相似性,而是通过一 些特殊的蛋白质和酶的作用来实现DNA片 段的连接。非同源重组可能导致基因的重排 和染色体的不稳定,进而对生物体产生遗传 影响。
07
总结与展望
核酸化学领域重要成果回顾
核酸结构与功能研
究
揭示了DNA双螺旋结构和RNA多 种功能,阐明了遗传信息存储、 传递和表达机制。
05
核酸酶及其作用机制
限制性内切酶和外切酶作用方式
限制性内切酶
识别DNA分子中的特定核苷酸序 列,并在该序列内部进行切割, 产生特定的DNA片段。
外切酶
从DNA或RNA链的末端开始,逐 个水解核苷酸,释放单个的核苷 酸或寡核苷酸。
DNA连接酶在基因工程中应用
连接DNA片段
生化课后练习答案

《生物化学》复习资料第二章核酸化学2、试从分子大小、细胞定位以及结构和功能上比较DNA和RNADNA由两条互补的脱氧核糖核甘酸亚单元的链组成的双螺旋结构,RNA 仅是比DNA小得多的核糖核苷酸亚单元单链结构;DNA中有胸腺嘧啶(T),但无尿嘧啶(U),但RNA则相反,DNA主要生物的遗传信息的载体,指导蛋白质的合成等,而RNA则在于遗传信息的转录,翻译与蛋白质的合成等,有时也可以作为一种催化剂在生物的生命活动起一定的作用.DNA主要存在于细胞核与线粒体,RNA主要存在细胞质基质中。
3. 试从结构和功能上比较tRNA,rRNA,mRNA.1. mRNA勺结构与功能:mRN是单链核酸,其在真核生物中的初级产物称为HnRNA大多数真核成熟的mRN分子具有典型的5'-端的7- 甲基鸟苷三磷酸(m7GTP帽子结构和3'-端的多聚腺苷酸(polyA)尾巴结构。
mRNA的功能是为蛋白质的合成提供模板,分子中带有遗传密码。
mRNA分子中每三个相邻的核苷酸组成一组,在蛋白质翻译合成时代表一个特定的氨基酸,这种核苷酸三联体称为遗传密码(coden)。
2. tRNA的结构与功能:tRNA是分子最小,但含有稀有碱基最多的RNAtRNA 的二级结构由于局部双螺旋的形成而表现为“三叶草”形,故称为“三叶草”结构,可分为五个部分:①氨基酸臂:由tRNA的5'-端和3'-端构成的局部双螺旋,3'-端都带有-CCA-OH顺序,可与氨基酸结合而携带氨基酸。
②DHU臂:含有二氢尿嘧啶核苷,与氨基酰tRNA合成酶的结合有关。
③反密码臂:其反密码环中部的三个核苷酸组成三联体,在蛋白质生物合成中,可以用来识别mRNAt相应的密码,故称为反密码(anticoden )。
④T®C臂:含保守的T®C 顺序,可以识别核蛋白体上的rRNA促使tRNA与核蛋白体结合。
⑤ 可变臂:位于T®C臂和反密码臂之间,功能不详。
生物化学教案 第二章 核酸的化学

授课教师授课班级2012级药剂班授课章节第二章蛋白质与核酸的化学授课题目第四节核酸的化学教学地点**教室授课方式(请打√)理论课√讨论课□实训课□其他□课时安排2授课时间教学分析生物化学是一门基础医学必修课程,是研究生物体内化学分子与化学反应的科学,主要采用化学的原理和方法从分子水平探讨生命现象的本质。
教学目标认知目标:(知识)1、核酸的组成2、DNA的空间结构3、RNA的分类及其特点能力目标:(专业能力、方法能力、社会能力)培养学生的空间想象能力和创新能力素质目标:培养学生学习生物化学的热情和严谨的求学态度。
教学重点:1、核酸的组成2、DNA的空间结构3、RNA的分类及其特点教学难点1、DNA的空间结构2、RNA的分类及其特点教学设计利用讲授、讨论、多媒体课件、提问、测试、等教学手段给学生进行全方位分析本节课内容。
通过多媒体进行变式教学,加深对基础知识的理解和掌握。
学法设计自主学习、合作探究:通过阅读、分析、讨论和交流,总结出DNA空间结构的特点。
教学准备人民卫生出版社《生物化学》第二版教材教案、PPT、讨论话题教学内容(任务)及过程设计教学组织、教学方法或采取的措施与手段和时间分配第三节蛋白质的理化性质导入:什么是核酸核酸是以核苷酸为基本组成单位的生物大分子,携带和传递遗传信息。
天然存在的核酸可分为核糖核酸(RNA)和脱氧核糖核酸(DNA)两大类。
脱氧核糖核酸90%以上分布于细胞核,其余分布于核外如线粒体,叶绿体,质粒等。
携带遗传信息,决定细胞和个体的基因型(genotype)。
核糖核酸分布于胞核、胞液。
参与细胞内DNA遗传信息的表达。
某些病毒RNA也可作为遗传信息的载体。
问题导入5min一、核酸的分子组成(一) 元素组成组成核酸的主要元素:C、H、O、N、P(9%~10%)(二) 分子组成1.碱基嘌呤碱,嘧啶碱2.戊糖核糖,脱氧核糖3.磷酸无机磷酸(三) 组成核酸的基本单位----核苷酸1、核苷1.碱基和核糖(脱氧核糖)通过糖苷键连接形成核苷(脱氧核苷)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学目标:1.掌握DNA和RNA在化学组分、分子结构和生物功能上的特点。
2.掌握DNA双螺旋结构模型和t-RNA二级结构的要点,了解核酸的三级结构。
3.熟悉核酸的性质(一般性质、DNA热变性、复性与分子杂交)。
4.掌握基因组的概念,原核生物和真核生物基因组的特点。
了解DNA测序的原理。
第一节核酸的化学组成天然存在的核酸有两类,即脱氧核糖核酸(deoxyribonucleic acid,DNA)和核糖核酸(ribonucleic acid,RNA)。
DNA分子是生物体的遗传信息库,分布在原核细胞的核区,真核细胞的核和细胞器以及病毒中;RNA分子参与遗传信息表达的一些过程,主要存在于细胞质。
一、核酸的基本组成单位(核酸—部分水解—核苷酸—部分水解—磷酸+核苷—部分水解—戊糖+含氮碱基)核酸是一种多聚核苷酸,用不同的降解法得到其组成单位——核苷酸。
而核苷酸又由碱基、戊糖和磷酸组成。
(一)戊糖DNA含β-D-2-脱氧核糖,RNA含β-D-核糖。
这是核酸分类的依据。
核糖中的C记为1'……5'。
(二)碱基(base)核酸中的碱基有两类:嘌呤碱和嘧啶碱。
有5种基本的碱基外,还有一些含量甚少的稀有碱基。
DNA 和RNA中常见的两种嘌呤碱是腺嘌呤(adenine,A)、鸟嘌呤(guanine,G)。
而嘧啶碱有所不同:RNA 主要含胞嘧啶(cytosine,C)、尿嘧啶(uracil,U),DNA主要含胞嘧啶、胸腺嘧啶(thymine,T)。
tRNA中含有较多的稀有碱基(修饰碱基),多为甲基化的。
(三)核苷是碱基和戊糖生成的糖苷。
通过C1'- N9或C1'- N1糖苷键连接,用单字符表示,脱氧核苷则在单字符前加d。
常见的修饰核苷有:次黄苷或肌苷为I、黄嘌呤核苷X、二氢尿嘧啶核苷D、假尿苷Ψ等。
注意符号的意义,如m5dC。
(四)核苷酸是核苷的磷酸酯。
生物体内游离存在的多是5'- 核苷酸(如pA、pdG等)。
常见的核苷酸为AMP、GMA、CMP、UMP。
常见的脱氧核苷酸有dAMP、dGMA、dCMP、dTMP。
AMP是一些重要辅酶的结构成分(如NAD+、NADP+、F AD等);环化核苷酸(cAMP/cGMP)是细胞功能的调节分子和信号分子。
A TP 在能量代谢中起重要作用。
核苷酸是两性电解质,有等电点。
核苷酸有互变异构和紫外吸收。
(含氧的碱基有酮式和烯醇式两种互变异构体,在生理pH条件下主要以酮式存在)二、核苷酸的连接方式RNA和DNA链都有方向性,从5'→3'。
前一位核苷酸的3'- OH与下一位核苷酸的5'位磷酸基之间形成3',5'-磷酸二酯键,从而形成一个没有分支的线性大分子,两个末端分别称为5'末端和3'末端。
大分子的主链由相间排列的戊糖和磷酸构成,而碱基可看作主链上的侧链基团,主链上的磷酸基是酸性的,在细胞pH下带负电荷;而碱基有疏水性。
讨论:列表说明DNA和RNA在化学组成、分子结构和生物功能方面的主要特点。
第二节DNA的分子结构一、DNA的一级结构(primary stucture)DNA的一级结构是指分子中脱氧核苷酸的排列顺序,常被简单认为是碱基序列(base sequence)。
碱基序有严格的方向性和多样性。
一般将5'- 磷酸端作为多核苷酸链的“头”,写在左侧,如pACUGA(5'→3')。
在DNA一级结构中,有一种回文结构的特殊序列,所谓回文结构即DNA互补链上一段反向重复顺序,正读和反读意义相同,经反折可形成“十字形”结构,在转录成RNA后可形成“发夹”样结构,有调控意义。
→GCTA GTTCA CTC TGAAC AATT →←CGA T CAAGT GAG ACTTG TTAA ←DNA分子很大,最小的病毒DNA约含5000b。
1965年Holley用片段重叠法完成酵母tRNAala 76nt 序列测定;1977年Sanger利用双脱氧法(酶法)测定了φX174单链DNA5386b的全序列。
1990年实施的人类基因组计划(HGP),用15年,投资30亿美元,完成人类单倍体基因组DNA3×109bp全序列的测定。
该计划由美、英、日、法、德、中六国科学家合作,于2003年提前完成,生命科学进入后基因组时代,研究重点从测序转向对基因组功能的研究。
二、DNA的二级结构——双螺旋(double helix)1953年,Watson和Crick根据Wilkins 和Franklin拍摄的DNA X-射线照片(DNA有0.34nm和3.4nm两个周期性变化)以及Chargaff等人对DNA的碱基组成的分析(A=T,G=C,A+G=C+T),推测出DNA是由两条相互缠绕的链形成。
Watson-Crick 双螺旋结构模型如下图:1.两条反向平行的多核苷酸链形成右手螺旋。
一条链为5'→3',另一条为3'→5'。
(某些病毒的DNA是单链分子ssDNA)2.碱基在双螺旋内侧,A与T,G与C配对,A与T形成两个氢键,G与C形成三个氢键。
糖基-磷酸基骨架在外侧。
表面有一条大沟和一小沟。
3.螺距为3.4 nm,含10个碱基对(bp),相邻碱基对平面间的距离为0.34 nm。
螺旋直径为2 nm。
氢键维持双螺旋的横向稳定。
碱基对平面几乎垂直螺旋轴,碱基对平面间的疏水堆积力维持螺旋的纵向稳定。
4.碱基在一条链上的排列顺序不受限制。
遗传信息由碱基序所携带。
5.DNA构象有多态性。
Watson和Crick根据Wilkins 和Franklin拍摄的DNA X-射线照片是相对湿度92%的DNA钠盐所得的衍射图,因此Watson-Crick 双螺旋结构称B-DNA。
细胞内的DNA与它非常相似。
另外还有A-DNA、C-DNA、D-DNA。
1979年Rich发现Z-DNA(左手螺旋、螺距4.5nm、直径1.8nm)三、DNA的三级结构DNA 双螺旋进一步盘曲所形成的空间构象称DNA的三级结构。
某些病毒、细菌、真核生物线粒体和叶绿体的DNA是环形双螺旋,再次螺旋化形成超螺旋;在真核生物细胞核内的DNA是很长的线形双螺旋,通过组装形成非常致密的超级结构。
1.环形DNA可形成超螺旋当将线性过旋或欠旋的双螺旋DNA连接形成一个环时,都会自动形成额外的超螺旋来抵消过旋或欠旋造成的应力,目的是维持B构象。
过旋DNA会自动形成额外的左手螺旋(正超螺旋),而欠旋形成额外的右手螺旋(负超螺旋)。
一段双螺旋圈数为10的B-DNA连接成环形时,不发生进一步扭曲,称松弛环形DNA(双螺旋的圈数=链绕数,即T=L,超螺旋数W=0;L=T+W),但将这一线形DNA的螺旋先拧松一圈再连接成环时,解链环形DNA存在的扭曲张力,可导致双链环向右手方向扭曲形成负超螺旋(T=10,L=9,W = -1)。
在生物体内,绝大多数超螺旋DNA以负超螺旋的形式存在,也就是说,一旦超螺旋解开,则会形成解链环形DNA,有利于DNA复制或转录。
螺旋具有相同的结构,但L值不同的分子称为拓扑异构体。
DNA拓扑异构酶切断一条链或两条链,拓扑异构体可以相互转变。
W的正表示双链闭环的螺旋圈在增加,W的负表示减少。
L和T的正负表示螺旋方向,右手为正,左手螺旋为负;L值必定是整数。
2.真核细胞染色体真核细胞DNA是线形分子,与组蛋白结合,其两端固定也形成超螺旋结构。
DNA被紧密地包装成染色体来自三个水平的折叠:核小体、30nm纤丝和放射环。
核小体是染色体的基本结构单位,是DNA包装的第一步,它由DNA结合到组蛋白上形成复合物,在电镜下显示为成串的“念珠”状。
组蛋白是富含精氨酸和赖氨酸的碱性蛋白质,其氨基酸序列在进化中是高度保守的。
组蛋白有5种,H2A、H2B、H3和H4各两分子组成的八聚体是核小体核心颗粒,DNA缠绕其上,相邻核小体间的DNA称为连接DNA且结合H1。
200 bpDNA的长度约为68nm,被压缩在10nm的核小体中。
压缩比约为7。
30nm纤丝是第二级压缩,每圈含6个核小体,压缩比是6。
30nm螺旋管再缠绕成超螺旋圆筒,压缩比是40。
再进一步形成染色单体,总压缩近一万倍。
典型人体细胞的DNA理论长度应是180 cm,被包装在46个5μm的染色体中。
四、DNA和基因组1.DNA分子中的最小功能单位称作基因,为RNA或蛋白质编码的基因称结构基因,DNA中具调节功能而不转录生成RNA的片段称调节基因。
基因组(genome)是某生物体所含的全部基因,即全部DNA 或完整的单套遗传物质(配子中的整套基因)。
2.细菌、噬菌体、大多数动植物病毒的基因组即指单个DNA分子。
最小病毒如SV40的基因组仅有5226b,含5个基因。
大肠杆菌含4.6×106 bp,有3000~4000个基因,DNA完全伸展总长约1.3mm。
原核生物基因组的特点是:结构简炼,绝大部分为蛋白质编码(结构基因);有转录单元,即功能相关的基因常串联一起,并转录在同一mRNA(多顺反子mRNA)中;有基因重叠现象,即同一段DNA携带两种不同蛋白质的信息。
3.真核生物基因一般分布在若干条染色体上,其特点是:有重复序列(按重复次数分单拷贝序、中度重复序和高度重复序);有断裂基因(由不编码的内含子和编码的外显子组成)。
酵母基因组有1.35×107bp,含6374个基因。
人类基因组有3×109 bp,含4万个基因。
第三节RNA的分子结构RNA通常以单链形式存在,比DNA分子小得多,由数十个至数千个核苷酸组成。
RNA链可以回折且通过A与U,G与C配对形成局部的双螺旋,不能配对的碱基则形成环状突起,这种短的双螺旋区和环称为发夹结构。
RNA的C2'位羟基是游离的,是一个易发生不良反应的位置,它使RNA的化学性质不如DNA稳定,能较DNA产生更多的修饰组分。
RNA的种类、大小、结构都比DNA多样化,按照功能的不同和结构的特点,RNA主要分为tRNA、rRNA和mRNA三类。
此外,细胞的不同部位还存在着另一些小分子RNA,如核内小RNA(snRNA)、核仁小RNA(snoRNA)、胞质小RNA(scRNA)等,分别参与mRNA的前体(hnRNA)和rRNA的转运和加工过程。
一、转运RNA(transfer RNA,tRNA)1.分子量最小的RNA,约占总RNA的15%。
主要功能是在蛋白质生物合成过程中,起着转运氨基酸的作用。
2.1965年Holley等测定了酵母丙氨酸tRNA的一级结构,并提出二级结构模型。
一级结构特点:核苷酸残基数在73~95;含有较多的稀有碱基(如mG、DHU等);5'-末端多为pG,3'- 末端都是-CCA。
3.tRNA的二级结构为“三叶草”形,包括4个螺旋区、3个环及一个附加叉。
各部分的结构都和它的功能有关。
5'端1~7位与近3'端67~72位形成的双螺旋区称氨基酸臂,似“叶柄”,3'端有共同的-CCA-OH 结构,用于连接该RNA转运的氨基酸。