数形结合思想及其在教学中的应用(作业)

合集下载

数形结合思想在初中数学教学中的应用

数形结合思想在初中数学教学中的应用

数形结合思想在初中数学教学中的应用
数形结合思想是一种将数学与几何形状相结合的思维方式,通过观察几何形状的特点
和数学关系,来解决数学问题。

在初中数学教学中,数形结合思想可以应用于以下几个方面。

第一,在解决几何问题时,数形结合思想可以帮助学生理解几何形状的性质和关系。

在解决平面图形相关问题时,可以通过观察图形的对称性、边长比例、角度关系等来找到
解决问题的方法。

这样不仅可以提高学生对几何形状的理解,还能培养其观察和分析问题
的能力。

第四,在证明数学定理时,数形结合思想可以帮助学生通过观察几何图形的性质和数
学关系来理解和证明数学定理。

在证明三角形内角和为180度时,可以通过绘制三角形的
外接圆或内切圆来展示角度和边的关系,进而得出结论。

这样可以培养学生的逻辑思维和
证明能力,提高其对数学定理的理解和应用能力。

数形结合思想在初中数学教学中具有重要的应用价值。

通过将数学与几何形状相结合,可以帮助学生更好地理解数学概念和解决问题的方法,培养其观察、分析、解决问题的能力,提高其数学学习的兴趣和自信心。

在教学过程中,教师应该灵活运用这种思维方式,
将抽象的数学知识与具体的几何形状相结合,创设适合学生的情境,激发学生的思维活力,使数学学习更加生动、实践、有意义。

数形结合思想在初中数学教学中的应用优秀获奖科研论文-2

数形结合思想在初中数学教学中的应用优秀获奖科研论文-2

数形结合思想在初中数学教学中的应用优秀获奖科研论文数形结合是一种非常重要的数学思想方法,也是数学解题中要求掌握的重要思想方法之一,在数学学习中有着重要的地位.数形结合,有利于学生对数学知识的理解,落实新课标的要求,即通过“以形助数,以数解形”,能够将复杂问题简单化,抽象问题具体化.很多数学问题利用数形结合思想来解决,能够达到化难为易的目的.在初中数学教学中,教师应重视数形结合思想,从而提高学生分析问题和解决问题的能力.下面结合自己的教学实践就数形结合思想在初中数学教学中的应用谈点体会.一、数形结合思想在集合问题中的应用在教学中,教师单一地讲解集合问题,很难使学生想象出各数集之间的关联性,而利用图示法,能够解决抽象的集合问题,让学生对集合问题一目了然.在图形中,一般利用圆来表示集合,两集合有公共的元素则两圆相交,两圆相离则表示没有公共的元素.例如,在学校开展兴趣班时,初中某班共有28个学生,其中有15人参加音乐兴趣班,有8人参加舞蹈兴趣班,有14人参加书法兴趣班,同时参加音乐和舞蹈兴趣班的有3人,同时参加音乐和书法兴趣班的有3人,没有人同时参加三个兴趣班,问:同时参加舞蹈班和书法兴趣班的有多少人?只参加音乐兴趣班的有多少人?图1解析:如图1,设A={参加音乐兴趣班的学生},B={参加舞蹈兴趣班的学生},C={参加书法兴趣班的学生},同时参加舞蹈和书法兴趣班的学生有x人.由题意可知,card(A交B)=3.card(A交C)=3,card(B交C)=x,则15+8+14-3-3-x=28,得x=3.因此,同时参加舞蹈和书法班的有3人,只参加音乐兴趣班的有15-3-3=9人.这样,利用图示法,可以使复杂的数学问题变得简单化和具体化,降低做题难度,有助于激发学生的学习兴趣.二、数形结合思想在函数问题中的应用函数是整个数学的重点,关于函数类型的题也数不胜数.利用函数求极值的问题是常见的题型,以数辅形,需要将图象中的数量关系整理清楚,以函数的形式表达出来,把握函数与图形之间的关系,达到快速解决数学问题的目的,体现数形结合在解题中的重要性.初中生对一次函数和二次函数的图象有着很深的了解,因此在面对这类函数问题时,往往可以根据函数图象来解答.这样,不但可以加深学生对基本概念的理解,还可以加强学生对这些基本知识的灵活运用.例如,当0 解析:方程中含有两个未知数,无法直接求解,可以转化成两个函数问题,图2求解的个数就是求函数图象的交点个数.由|1-x2|=kx+k,可构造y=|1-x2|和y=kx+k,如图2.所以原方程解的个数为3个.这样,复杂的函数问题,利用图形进行展示,能够直接得出问题的答案,强化了学生的认知,深化了学生的思维训练,提升了教学效率.三、数形结合思想在概率问题中的应用概率作为初中数学教学中的重点内容,一直是教学的难点.许多概率问题在思考中都存在着抽象,如果借助于坐标平面或数学模型的问题,以形助数,运用数形结合思想,就能够帮助学生迅速找到问题的切入点,优化解题过程,提高解题速度.总之,在初中数学教学中,数形结合思想既是一种教学手段,又是一种解题方法.运用数形结合思想,能够拓宽学生的思维;运用数形之间的关联性,以图形助数学解题,能够强化学生对数学本质的认知和了解,提高学生数学思维的灵活性、根基性等.教师应适当运用数形结合思想开展教学活动,从学生的角度出发,培养学生的综合技能和素质,提升初中数学教学质量,确保学生全面发展.。

数形结合思想在小学数学教学中的运用

数形结合思想在小学数学教学中的运用

数形结合思想在小学数学教学中的运用数形结合思想是指通过将数与图形相结合来帮助学生理解和解决数学问题的一种教学方法。

它通过图形的形象化表示,使抽象的数学概念和运算更具有可视化、可触摸性,激发学生学习兴趣,提高他们的数学思维能力和解决问题的能力。

以下是数形结合思想在小学数学教学中的一些具体运用。

一、图形解算式在小学数学中,数形结合思想可以通过将算式通过图形表示出来,帮助学生更好地理解和解决问题。

例如,对于一个简单的加法算式5+3=?可以用数形结合思想,将5个小圆圈和3个小圆圈相加,然后数一共有8个小圆圈,帮助学生理解加法的概念和运算过程。

二、面积与周长的关系三、图形分类和属性比较数形结合思想也可以用于图形的分类和属性比较。

例如,教学概念“平行四边形”,教师可以通过画出不同形状的平行四边形,让学生观察图形的相同点和不同点,并进行分类和比较。

通过观察图形的形状、边长等属性,帮助学生理解图形的分类规律,并能够灵活应用于解决问题。

四、图表分析和数据统计在学习数据统计时,数形结合思想可以通过图表的形式将数据可视化,帮助学生进行数据分析和统计。

例如,学生可以通过绘制一条折线图或直方图,来表示一些城市一周的天气情况。

通过观察图表,学生可以对数据进行比较和分析,从而理解数据的含义和规律。

五、数学建模与问题解决数形结合思想也可以应用于数学建模和问题解决。

例如,教学“找规律”时,可以通过图形的形式,帮助学生找出数列中的规律,进而解决问题。

例如,学生可以通过绘制一个图形,将一个数列中的数字按照一定规律排列起来,然后观察图形的特点,推导出数列的规律,从而解决问题。

总的来说,数形结合思想在小学数学教学中的运用可以帮助学生更好地理解和掌握数学知识和技能。

通过图形的形象化表示,激发学生学习兴趣,提高他们的数学思维能力和解决问题的能力。

因此,在小学数学教学中,教师可以灵活运用数形结合思想,设计各种形式的教学活动,以提高学生的数学学习效果。

“数形结合”思想在小学数学教学中的应用分析

“数形结合”思想在小学数学教学中的应用分析

“数形结合”思想在小学数学教学中的应用分析
“数形结合”思想是指数学中的数学知识和几何知识相互关联的思想,在小学数学教学中的应用非常广泛。

本文将分析“数形结合”思想在小学数学教学中的应用。

一、在几何题中运用数学知识
几何题是小学数学教学中的一个重要部分,但是对很多学生来说,几何图形是比较抽象的,难以理解。

通过“数形结合”思想,我们可以运用数学知识辅助理解几何知识。

例如,在计算矩形面积时,可以运用知识点“乘法”的概念,即将矩形两条边的长度相乘即可求出面积。

在计算三角形面积时,也可以采用“乘法”的概念,将底边长度与高的长度相乘再除以2即可求得面积。

通过这种方式,可以更加深入地理解几何图形的面积计算方法。

三、在课堂教学中探究实际问题
在课堂教学中,我们可以通过“数形结合”的思想来探究实际中的问题。

例如,在生活中,有许多与几何有关的问题,如房子的面积、花园的大小、体育场馆的设计等。

我们可以通过课堂上的实践活动和讨论,让学生了解几何知识在生活中的应用和意义,从而激发学生对于几何的学习兴趣。

总而言之,“数形结合”思想是数学学习中的重要手段之一,它不仅能够加深学生对数学和几何知识的理解,而且还能够提高学生的数学综合素质,培养学生的思维能力和探究能力。

数形结合思想在小学数学教学中的实践应用

数形结合思想在小学数学教学中的实践应用

数形结合思想在小学数学教学中的实践应用一、数形结合思想的基本概念数形结合思想是指通过数学的抽象思维和几何的形象思维相互贯通、相互补充、相互渗透,以求达到更好的教学效果。

这种教学思想不仅能够增加数学的趣味性和实用性,同时也有助于培养学生的综合思维能力和创造力。

数形结合思想在小学数学教学中的应用主要体现在以下几个方面:1. 利用图形帮助理解数学概念。

通过绘制图形可以帮助学生更好地理解几何图形的性质和关系,有利于强化学生对几何概念的理解和记忆。

2. 利用数学知识解释图形现象。

通过数学知识可以对图形的属性进行量化分析,从而更深入地理解图形的性质和规律。

3. 通过数学模型对实际问题进行分析和求解。

通过建立数学模型对实际问题进行抽象和计算,从而更好地理解和解决实际问题。

1. 利用几何图形教学数学概念在小学数学的教学中,教师可以通过绘制几何图形的方式,来帮助学生更好地理解和掌握数学概念。

在教学加减法时,可以通过绘制几何图形,让学生直观地理解加减法的意义和运算规律。

在教学分数时,可以通过绘制图形让学生形象化地理解分数的大小和大小比较。

也可以通过观察图形的对称性来帮助学生理解和掌握对称性的概念。

2. 利用数学知识解释图形现象在小学数学教学中,教师可以通过数学知识来解释一些图形现象,从而帮助学生更深入地理解图形的性质和规律。

在教学三角形的面积时,可以通过数学知识来解释三角形面积与底和高的关系,从而让学生更好地理解三角形的面积计算方法。

3. 通过数学模型对实际问题进行分析和求解在小学数学的教学中,教师可以引导学生通过建立数学模型对实际问题进行分析和求解。

在教学解决实际问题时,可以通过建立代数方程或几何图形来对实际问题进行抽象和计算,从而更好地理解和解决实际问题。

也可以通过绘制图形来帮助学生形象化地理解和解决实际问题。

三、数形结合思想在小学数学教学中的效果评价数形结合思想在小学数学教学中的实践应用,可以有效地提高小学生的数学学习兴趣,激发他们的学习动力,增强他们的数学综合素养。

“数形结合”思想在小学数学教学中的应用

“数形结合”思想在小学数学教学中的应用

“数形结合”思想在小学数学教学中的应用“数形结合”是指将数学理论与几何形状相结合,通过几何形状来帮助孩子理解数学概念和解决数学问题的一种教学方法。

这种思维方式的应用可以帮助小学生更好地理解抽象的数学内容,增强他们对数学的兴趣和学习动力。

下面我将从三个方面具体介绍“数形结合”思想在小学数学教学中的应用。

在教学过程中,教师可以通过使用具体的几何形状来让学生直观地感受和理解数学概念。

以学习平面图形为例,通过展示不同形状的图形,让学生观察并找出相同的特征,如边数、角度等,从而形成对各种图形的分类和认知。

教师还可以让学生自己动手拼凑出不同的图形,锻炼他们的观察力和动手能力。

通过与数学知识的结合,学生能够更加深入地理解和记忆数学概念,提高学习效果。

“数形结合”思想还可以帮助学生解决数学问题。

在解决实际问题时,教师可以通过引导学生将问题转化为几何形状,并与相关的数学知识相结合进行解答。

解决“一个正方形花坛的边长是5米,求其面积和周长”这个问题时,可以引导学生通过画图将问题转化为计算正方形面积和周长的问题。

通过将问题形象化,学生可以更容易地理解问题的本质,并应用所学的数学知识进行解答。

“数形结合”思想还可以在学生探索和发现的过程中发挥作用。

教师可以设计一些探究性的问题,让学生通过观察、实践和思考来发现问题的规律和解决方法。

通过观察几何形状的特征,学生可以发现数学概念之间的联系和性质,培养他们的发现和解决问题的能力。

教师还可以引导学生通过对几何形状的操作和变换来探索数学知识,如旋转、平移、翻转等。

通过这种探索和发现的方法,学生可以更加深入地理解和掌握数学知识,并培养他们的创造力和创新思维。

“数形结合”思想在小学数学教学中的应用

“数形结合”思想在小学数学教学中的应用

“数形结合”思想在小学数学教学中的应用数学是一门抽象而又实际的学科,数形结合是指在数学教学中,通过数学概念和图形表达相互联系的思想方法。

这种方法在小学数学教学中起着非常重要的作用,能够帮助学生更好地理解数学知识,提高数学素养,培养学生的数学思维和创造力。

本文将就数形结合思想在小学数学教学中的应用进行简要阐述。

一、数形结合在数字认知中的应用数形结合是指数学与图形相结合,通过图形来帮助学生理解数学概念。

在小学数学教学中,数形结合可以帮助学生更直观地认识数字,提高数字的认知能力。

比如在学习整数的绝对值时,可以通过画坐标轴和点的方法来帮助学生理解绝对值的概念。

这样的教学方法能够使学生更加深刻地理解概念,加深对数学知识的记忆和理解。

在小学数学教学中,数形结合也可以应用在计算的教学中。

比如在教学加法和减法时,可以通过图形的方式来帮助学生理解运算的意义和方法。

通过画图的方式,可以让学生更加直观地理解加法和减法的运算规则,提高他们对计算的理解和掌握程度。

这种方法还可以提高学生的动手能力和空间想象能力,培养学生综合运用数学知识解决问题的能力。

在学习几何图形的教学中,数形结合也有着非常重要的作用。

通过引入几何图形的概念,可以帮助学生理解各种图形的特征和性质。

比如在学习三角形和矩形时,可以通过图形的方式来帮助学生理解两者的特征和区别。

通过让学生画图、测量边长和角度,可以加深学生对几何图形的理解,并且培养他们观察和辨别图形的能力。

在小学数学教学中,数形结合的应用是非常丰富和灵活的。

比如在教学小数时,可以通过把小数用图形表示出来,让学生更加直观地理解小数的意义和大小关系。

在教学面积和体积时,可以通过图形的方式帮助学生理解面积和体积的计算方法。

在解决问题时,可以通过引入图形和实际情境,让学生更好地理解问题的意义和解决方法。

这些都是数形结合在小学数学教学中的实际应用案例,显示了数形结合在提高教学效果和学生学习兴趣方面的重要作用。

数形结合思想在小学数学教学中的应用 (6)

数形结合思想在小学数学教学中的应用 (6)

数形结合思想在小学数学教学中的应用小学数学教学是一项重要的任务,也是一项具有挑战性的工作。

如何让孩子们在轻松愉悦的氛围下学习数学知识,提高数学学科素养和解决问题的能力,是将数学知识应用到现实中,培养未来创造力的一个关键方面。

本论文通过数形结合思想在小学数学教学中的应用,探讨如何将数学知识贯穿于现实生活的方方面面,鼓励学生发现数学的持续性与实用性。

一、数形结合思想的概述数形结合思想是一种将数学与几何图形相结合的学习方式,包括数学知识的量化和几何图像的可视化。

数形结合思想与传统的数字运算相比,更加直观、形象化,能够让学生更轻松地理解和运用数学公式和算法。

数形结合思想与现实生活相结合,可以使得学生凭借日常生活中的各种场景和图形,更加深入地理解数学知识。

二、数形结合思想在小学数学教学中的应用1. 直观理解分数教学中经常会涉及到分数。

在为小学生讲解分数概念时,可以通过直观的几何图形来进行帮助。

假设我们将一个正方形分成了四个相等的小正方形,则每个小正方形的面积都是总面积的四分之一。

这样的一个小正方形便是四分之一了。

通过这样的几何结合,使孩子们更好地理解分数的概念。

2. 应用比例问题比例在小学数学学习中扮演着重要角色。

在讲解到比例问题时,可以运用数形结合思想。

比如一个长方形平面图,长和宽的比例是5:3,那么我们就可以画出一个较小的长方形来表示它的比例关系,这样学生就可以更加容易地理解比例的概念,通过比例的练习来提高自己的计算技能。

3. 讲解面积、体积概念在小学数学教学中,面积和体积是非常重要的概念。

通过数形结合思想,可以让学生更加直观地理解面积和体积的概念。

例如,在讲解到面积概念时,引入根据三角形面积公式S=1/2ah来进行直观理解,将三角形存在于矩形中,剩余面积就是矩形面积减去三角形面积所得到的部分。

在讲解到体积概念时,可以使用小立方体、长方体、正方体等几何图形,将它们拼接成大正方体的样子,直观地感受体积的大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数形结合思想及其在教学中的应用姓名:xxx 学号:xxxxx 专业:数学与应用数学班级:数本x班一、前言部分数学思想方法作为数学知识内容的精髓,是数学的一种指导思想和普通适用的方法,是铭记在人们头脑中永恒作用的精神和观点。

它能使人们领悟到数学的真谛,懂得数学价值,学会数学的思考和解决问题。

它能把知识的学习、能力的培养和智力的发展有机的结合起来。

在中学数学研究中,数形结合思想是数学解题中的一种思想方法,他可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质。

数形结合思想是求解数学问题的一种常用思想,它不仅对于沟通代数、几何与三角的内在联系具有指导意义,并把数式的准确刻划与几何图形的直观描述有机的结合起来,而且更重要的是对发展学生的创造性思维,完善学生的思维品质有着特殊的重要作用。

所以,作为以后要从事数学教育工作的我们,对数学解题思想方面有所了解是很有必要的。

所谓的数形结合,就是数学问题的条件和结论之间的内在联系,即分析其代数干含义,同时又揭示其几何意义,是数量关系和空间形式巧妙地结合在一起,并充分的利用这种结合的相互转化来解决数学问题的一种重要的思想方法。

数形结合的根本特征是把数量关系和集合图形的直观形象有机的结合起来一、主题部分早在数学萌芽时期,人们在度量长度、面积和体积的过程中,就把数和形联系起来了。

我国宋元时期,系统地引进了几何代数化的方法,用代数式描述某些几何特征,把图形之间的几何关系表达成代数之间的代数关系。

17世纪上半叶,法国数学家笛卡尔以坐标为桥梁,在点与数列之间、曲线与方程之间建立起对应关系,用代数方法研究几何问题,从而创立了解析几何学。

后来,几何学中许多长期不能解决的问题,例如立方倍积、三等分任意角、化圆为方等问题,最终页借助代数的方法得到了完满的解决。

现在,数形结合一直就是一线数学教师和广大教研人员研究的一个基本问题,但是有一些研究存在很多缺憾,如未对数形结合形成合理的、正确的认识,主要限于单向认识,没有揭示数形之间的本质联系等。

现在,有一批研究人员对数形结合解题的研究更注重解题的思维过程和从心理层面揭示数学解题的心理规律。

就数形结合思想及其在数学教学中的应用这一课题,许多数学家早已经展开过讨论,并做了很多相关的课题研究和论文。

经阅读大量的资料,对他们的主要成果阐述如下:文献[1]中作者提出在高等数学中,一般地说,思考问题往往是把数学式子或函数等与几何图形联系起来,利用直观形象来启发人们的解题的解题思路,这种思考问题的方法正是数形结合方法的运用,在高等数学中数形结合实质上是“式”形结合。

作者具体举了两例阐述用数形结合思想解决微积分问题:例1、设满足条件;例2、设函数在上是递增的连续函数,证明在上,使得。

通过例题说明在解决微积分问题中若能灵活、正确地运用数形结合的思想,就可把一些复杂问题简单化、抽象问题具体化,达到化难为易的目的。

文献[2]中指出数学研究必然要求将数与形结合起来,理解和掌握数形结合的思想将有助于提高我们分析问题、解决问题的能力。

数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷,能避免复杂的计算。

由形化数,有些几何问题通过“形化数”的转化会更简便,如采用代数方法解决几何问题,常用的方法有解析法、判别式法、复数法、面积(体积)法、代数三角法等;运用几何方法解决代数问题,根据解决问题的需要,常把数量关系转化为图形的性质问题来讨论,即把抽象的“数”结构与形象的“形”结构联系起来,化抽象为直观,通过对图形的研究,常能发现问题的隐含条件,诱发解题线索,使求解过程变得简捷直观,这个过程主要运用构造法,构建相应的几何模型,利用函数图象来解决问题。

文献[3]中作者认为:数形结合思想贯穿于高中数学的始终,特别是在新课程改革的背景下,更加强调对基本数学思想的掌握和考查,切实把握好数形结合的方法是学好数学的关键之一。

进行数形结合,一般说来要遵循三项基本原则:1、等价性原则;2、双向性原则;3、简单性原则。

运用数形结合的途径有两种,包括由数到形的转换途径和由形到数的转换途径。

文献[4]中作者指出数形结合是一个重要的数学思想,但同时它也是一柄双刃的解题利剑。

数形结合要遵循等价性、双向性与简单性的原则。

数转形时图形失真;形转数时不等价;数形互换不简洁;数形互换逻辑循环四个问题是应用数形结合解题时常出现的错误。

文中例3:求函数的最大值与最小值.可以用数形结合进行解答,但由原式直接进行变形再用判别式法即可得出,显然在这里用数形结合比较烦琐。

利用数形结合解题时,代数性质与几何性质的转换应该是等价的,否则解题就会出现漏洞,同时由于图形的局限性,有时不能完整的表现数的一般性。

文献[5]中作者指出:数学解题研究是我国数学教育研究的一个特色工作。

数学解题研究不能局限于解题技巧的直接展示,不能停留于解题方法的简单呈现,应该提高到数学思想和数学方法的理论高度,应该进入到数学教学和数学学习的心理层面乃至哲学层面。

数形结合在解题中的应用研究一直就是我国解题研究的一个重要内容,并且构成了解题研究的一个特色工作。

作者主要选取数学表征作为研究视角,选取数形结合作为研究对象,具体研究了运用数形结合方法解决问题的有关问题。

文献[6]中作者指出在教学中我们更多是向学生展示数形结合的优越性,渐渐的使学生认为数形结合是“万能”的。

但图形的直观性易使我们失去了精确的计算,解法的简洁性易使我们失去了深刻的反思,思路的奇异性也易使我们充满了幻想,所以片面的理解,使数形结合成为我们手中的一把双刃剑,时时充满危险。

数形结合的优越性体现在简洁性、直观性、奇异性和突破性。

数形结合的局限性则体现在精确性、等价性、存在性和完整性。

所以数形结合的思想方法,它的优越性和局限性同样明显,我们可以也应该让学生尝试一些失败,从中感悟出数形结合的两面性,正确掌握数形结合方法。

文献[7]中作者运用了以下几个方面的实例论证了数形结合的误区:1、图形失真;2、以偏概全;3、无中生有;4、逻辑循环。

在数形转换的过程中,必须遵循“数与形对应,形与数相通”的原则,如果违反了这一原则,常常会步入数形结合的误区。

文献[8]中简单总结关于数学思想归纳起来大致有几种:方程思想、分类思想、数形结合思想、整体思想、函数思想、化归思想等。

在数学教学中数形结合思想应用十分广泛的一种数学思想,在教学中注重数形结合思想的培养,是提高学生数学素质的一个重要途径。

同时作者概述数形结合思想在数学教学中的具体表现:1、利用图形进行数形结合思想;2、结合几何解题进行数形结合教学;3、把握好数形结合的尺度。

强化化数为形,以形表数的意识,不但在解题时,可化难为易,简捷地得出结论,还可以发挥学生的想像力。

文献[9]中作者从数形结合思想的历史,运用数形结合思想的意义和数形结合思想的教学精髓三方面进行阐述。

运用数形结合有利于更好地理解、掌握数学知识;有利于数学能力的提高;有利于培养学生的创新意识和创造能力。

作者指出数形结合思想是数学的本质之一,是数学教学的精髓,可以贯穿、融合在课堂教学过程中。

利用数形结合引进新知,建构概念,解决问题,用数学思想和数学方法去激发学习兴趣,提高数学能力,可为学生以后的学习、工作打下坚实的基础。

并用以下三点说明:1、以“形”激情,激发求知欲望;2、数形结合,建构概念;3、数形结合,解决问题。

文献[10]中作者认为构图法,指的是构造与数量关系对应的几何图形,用几何图形中反映的数量关系来解决数学问题的方法,也可以说是数形结合法。

任何一个数学关系,一般都有实际问题为背景,而这些背景又可以由几何图形来反映,因此一定的数学关系完全可以由它所对应的几何图形来体现。

作者在文中举了五个例子说明结合几何图形证明求解某些数学问题比单纯用代数方法证明更具有直观性,更易理解,有利于增强学生思维的灵活性,开拓解题思路,提高解题能力。

三、总结部分数形结合是贯穿中小学数学教学始终的基本思想,在高等数学教学中也有很大的益处,在我国数学教育界,人们对其的熟悉程度达到了路人皆知的地步。

对数形结合思想作充分的理解,提高作为中学数学教师的基本素质,使其走上工作岗位后,能尽快地适应、熟练数学教学工作,更好地指导中学数学的教学。

在运用数形结合解题时蕴涵着两种思维方式,一是严谨的逻辑思维,一是直觉的感知思维。

因此,对数形结合解题的研究要探究数与形的本质联系,关注解决问题的思维过程,既关注学生的逻辑思维,又关注学生的直觉思维。

数形结合的文章在基础教育刊物上蜂拥出现,作为文化现象的“数形结合”是流行的、繁荣的,但作为学术层面的“数形结合”始终止步于方法论层面,只是单纯的对一些题目进行总结、概括、分类。

从新课程改革的要求来看,在未来数学教育中,会倾向于从心理层面关注学生的数学学习,注重数学教学的研究与心理学的研究结合。

总之,一切为了提高未来数学教师的数学素质,能尽快地适应数学教学工作,成为合格的数学教师。

四、参考文献(根据文中参阅和引用的先后次序按序编排)[1] 朱殿利.数形结合法在高等数学中的应用再探析[J].岱宗学刊.1998, 4:23-25.[2] 朱智和.数形结合在解题中的应用[J].绍兴文理学院学报. 2006, 9:151-154.[3] 王俊平. 数形结合的原则与途径[J].高中数学教与学,2006,02:13-16.[4] 尚林涛.数形结合解题的几个误区[J].中学教研(数学).2005,6:37-39.[5] 罗新兵. 数形结合的解题研究:表征的视角[D]. 上海:华东师范大学,2005.[6] 冯寅. “数形结合”—一把双刃剑[J]. 数学教学.2003,11:31-34.[7] 刘星红.例谈“数形结合”应用的四个误区[J].数学通报.2007,11:48-49.[8] 张宏良.浅谈数学教学[J].衡水学院学报(自然科学版).2005,3:82-84.[9] 张林琴.“数形结合”-思想的解读与实践[J].学科教学探索.2007,10:53-55..[10] 谢余波.构图法在解题中的应用[J].咸宁师专学报.2002,12:125-127.。

相关文档
最新文档