《数形结合思想》在解题中的应用

合集下载

数形结合思想在高考解题中的应用

数形结合思想在高考解题中的应用

数形结合思想在高考解题中的应用数形结合不仅是一种重要的解题方法,也是一种的思维方法。

它在中学数学教学中占有重要的地位,也是历年高考重点考察的内容之一。

在运用数形结合解题时要注意以下两点:(1)“形”中觅“数”:根据形的直观性来寻求数量关系,将几何问题代数化,以数助形,使问题得到解决;(2)“数”中构“形”:根据代数问题具有的几何特征,进而发现数与形之间的关系,从而使代数问题几何化,使问题得到解决。

下面通过一些典型例题来说明数形结合思想在解题中的运用。

题型一、集合问题例1.已知集合A={}{}|23,|14x x B x x x -≤≤=<->或,则集合A B = ____________________.解析:利用数轴表示,可得{}|21A B x x =-≤<-评注:本题考查集合的基本运算,属容易题。

题型二、函数问题 例2.点P (x,y )在直线430x y +=上,且x,y 满足147x y -≤-≤,则P 到坐标原点距离的取值范围是__________________.解析:如图,直线430x y +=分别与直线14,7x y x y -=--=的交点为12(6,8),(3,4)P P --易知12||10,||5OP OP ==,故||OP 的取值范围为[]0,10评注:考查两点间的距离公式及分析、解决问题的能力。

注意虽然12||10,||5OP OP ==,但||OP 的取值范围不是[]5,10。

题型三、三角问题例3函数()2)f x x π=≤≤的值域是_______________. 解析:原式可化为y ==1)x ≠ 由数形结合思想得1cos 1sin x x-+可理解为动点(sin ,cos )x x 与定点(1,1)连线斜率的取值范围,。

可求取值范围是[]0,+∞,由此可求得1)x ≠的值域为[1,0)-,当sin 1x =时,()0f x =,所以值域是[]1,0-。

数形结合思想在初中数学解题中的应用

数形结合思想在初中数学解题中的应用

数形结合思想在初中数学解题中的应用数形结合思想是指在解决数学问题时,通过将数学概念与几何图形相互结合,相互转化和应用的思考方法。

在初中数学的教学中,数形结合思想被广泛地应用。

本文将从初中数学的各个章节对其应用进行探讨。

1. 直线与圆在初中数学的直线与圆章节中,学生需要掌握直线与圆之间的基本关系,如切线、割线等,并学习如何运用这些关系解决问题。

数形结合思想在这一章节的应用体现在,通过将直线与圆相互结合,将抽象的数学概念转化为具体的几何图形,从而帮助学生更好地理解题意和解决问题。

例如,解决“过圆O外一点P作切线,过点P作另一条直线割圆于A、B两点,连接OP 并延长交圆于C点,求证:∠OAC=∠OBC”的问题时,我们可以通过画图,在圆上标出切线和割线,将几何图形与数学概念相互联系来解决问题。

2. 三角函数在初中数学的三角函数章节中,学生需要学习正弦、余弦、正切等三角函数的基本概念和运用。

例如,在解决“证明:sin2A+cos2A=1”的问题时,我们可以画出一个以A为顶点的直角三角形,将正弦、余弦与三角形的边相互对应,从而帮助学生理解三角函数的定义和性质。

3. 平面向量例如,在解决“ABCD为平行四边形,设向量AB=a,向量AD=b,求向量AC的坐标表示”的问题时,我们可以画出平行四边形ABCD的几何图形,并通过图形将向量的定义和运算法则转化为数学表示式。

4. 二次函数例如,在解决“已知二次函数y=x²+px+q的图像过点(1,3),且在x轴上的零点为-2和3,求p、q”的问题时,我们可以通过画出二次函数的图像,并通过图像求出零点和顶点,进而求出p、q的值。

结语数形结合思想在初中数学的教学中具有重要的应用价值,可以帮助学生更好地理解数学知识,提高解题能力和思维能力。

教师在教学中应该注重将数学概念与几何图形相互联系,设计具体、形象的教学案例,引导学生积极思考、用图解题,从而达到提高教学质量和学生学习水平的目的。

数形结合思想方法在高中数学教学与解题中的应用

数形结合思想方法在高中数学教学与解题中的应用

数形结合思想方法在高中数学教学与解题中的应用1. 引言1.1 概述数形结合思想方法是一种通过将数学与几何图形相结合的方式来解决数学问题的方法。

在高中数学教学与解题中,数形结合思想方法被广泛运用,对学生的数学思维能力和解题能力有着显著的提升作用。

本文将从理论基础、教学应用、解题实际操作、优势局限性和案例分析等方面对数形结合思想方法进行详细介绍和分析,旨在探讨这种方法在高中数学教学和解题中的实际应用效果及其潜在局限性。

通过对数形结合思想方法的深入研究,可以为未来数学教学和研究提供新的思路和方法,促进学生对数学的深入理解和应用能力的提高。

【概述】1.2 研究背景随着科技的不断发展和社会的快速进步,教育也在不断改革和创新。

高中数学作为学生必修科目之一,承担着培养学生逻辑思维能力和数学素养的重要使命。

在传统的数学教学中,很多学生常常感到枯燥和无趣,难以理解和掌握抽象的概念和定理。

有必要寻找一种更加生动、直观且实用的教学方法来激发学生学习数学的兴趣和动力。

1.3 研究意义数范围等。

【研究意义】内容如下:研究数形结合思想方法在高中数学教学与解题中的应用具有重要的实际意义。

数学教学是培养学生逻辑思维能力和问题解决能力的重要途径,而数形结合思想方法能够帮助学生更好地理解数学知识,提高他们的数学学习兴趣和学习效果。

数形结合思想方法在解题中的应用能够帮助学生更加深入地理解问题的本质,提高他们的问题解决能力和创新思维水平。

研究数形结合思想方法的优势和局限性,有助于教师更好地指导学生应用该方法解决问题,并且能够帮助教育部门和相关机构调整和改进数学教学计划,推动数学教育的发展和进步。

深入研究数形结合思想方法在高中数学教学与解题中的应用,对于提高我国数学教育质量,培养优秀数学人才,具有重要的现实意义和战略意义。

2. 正文2.1 数形结合思想方法的理论基础数,具体格式等。

数形结合思想方法的理论基础主要包括几何与代数的融合和数学建模的理论支持。

数形结合思想在初中数学中的解题应用

数形结合思想在初中数学中的解题应用

数形结合思想在初中数学中的解题应用初中数学是学生转变学习方式的重要阶段,其中数形结合思想在解题过程中发挥着重要的作用。

数形结合思想是指通过几何形状和图形来解决数学问题,它能够帮助学生更好地理解抽象的数学概念,提高解题的效率和准确性。

本文将探讨数形结合思想在初中数学中的具体应用。

一、面积与周长的关系数形结合思想常常被用来解决与面积和周长相关的问题。

例如,给定一个矩形的周长为24厘米,问它的面积最大是多少?通过数形结合思想,我们可以设矩形的长为x厘米,宽为(24-x)/2厘米,然后利用矩形的面积公式(长乘以宽)求解。

这个例子清晰地展示了数形结合思想在解决面积和周长问题时的运用。

二、图形的相似性质数形结合思想还可以帮助我们研究图形的相似性质。

例如,两个三角形的高相等,我们能否得出它们的底的比例相等?通过数形结合思想,我们可以构建出两个相似的三角形,然后根据相似三角形的性质得出结论。

这个例子展示了数形结合思想在研究图形相似性质时的应用。

三、立体图形的体积计算除了平面图形,数形结合思想也可用于解决立体图形的体积计算问题。

例如,给定一个长方体的体积为216立方厘米,问其边长是多少?通过数形结合思想,我们可以设长方体的边长为x厘米,然后利用长方体的体积公式(长乘以宽乘以高)求解。

这个例子展示了数形结合思想在立体图形体积计算中的运用。

四、数据的统计分析数形结合思想还可用于数据的统计分析。

例如,在一组数据中,标准差较大是否意味着数据的波动性较大?通过数形结合思想,我们可以构建出一个以数据点为顶点的折线图,然后根据折线图的形状和曲线的趋势进行统计分析。

这个例子展示了数形结合思想在数据的分析和解读中的应用。

总结起来,数形结合思想在初中数学中具有广泛的应用。

它能够帮助学生更好地理解数学概念,提高解题的效率和准确性。

通过数形结合思想,学生可以在解决面积与周长的关系、图形的相似性质、立体图形的体积计算以及数据的统计分析等方面取得更好的成绩。

高中数学中数形结合思想在函数解题中的运用

高中数学中数形结合思想在函数解题中的运用

高中数学中数形结合思想在函数解题中的运用(一)数形结合在求函数定义域方面的应用例1:求函数y =的定义域. 解析:若要解决该函数的定义域,则有23200x x x ⎧-+≥⎨≠⎩,要解决此类不等式的解集, 需要借助图像,如右图:由图像可以看出,若要2320x x -+≥,只需1,x ≤或2x ≥,再由0x ≠,得出该函数的定义域即为:()(][),00,12,-∞+∞. 小结:随着学生做题熟练程度的增强,二次不等式的求解已不用再画图。

因此在求函数定义域方面,多见于画数轴选择出取值范围。

(二)数形结合在求函数值域方面的应用例2:求函数(]223,1,2y x x x =--∈-的值域. 解析:看到所求函数为二次函数,由于函数是非单调的,所以并不能代端点值去求出值域,因此需要借助图像来观察,如右图:借助图像的直观表达可知道,具有区间范围的该二次函数的图像应为黄色区域部分,此函数的最小值是在对称轴处取得,即当1x =时,4y =-。

从而该函数的值域为:(]0,4-。

小结:对于此类问题是学生的常见出错点,学生们习惯于直接带入端点值得出其值域,因此对于给定区间上的二次函数值域问题,培养学生数形结合的思想是非常重要的。

(三)数形结合在函数单调性方面的应用例3:已知2()2(1)2f x x a x =+-+在(],4-∞上是减函数,求实数a 的取值范围。

解析:函数解析式中含有字母,因此函数在坐标系内的具体位置不能固定,需要画图分析,看何种情况才能满足题干要求:通过图像分析可知:若要满足函数在给定区间上为单调函数,只能是后两种情况,也就是函数图像的对称轴不能出现在所给区间内,从而解题找到突破口。

所给函数对称轴方程:1x a =- ,由图像分析可知,需有a 14-≥,从而a 5≥。

小结:该类问题常见于二次函数中,因其单调性与对称轴的位置有关,故通常画图分析更能直观得出题目所需情况,从而快速得出结论。

(四)数形结合在函数奇偶性方面的应用例4:已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()(1)f x x x =+.试求当0x <时,函数()f x 的解析式。

数形结合思想在解题中的应用

数形结合思想在解题中的应用

数形结合思想在解题中的应用主讲人:黄冈中学高级教师汤彩仙一、复习策略1.数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法.它可以使抽象的问题具体化,复杂的问题简单化.―数缺形时少直观,形少数时难入微‖,利用数形结合的思想方法可以深刻揭示数学问题的本质.2.数形结合的思想方法在高考中占有非常重要的地位,考纲指出―数学科的命题,在考查基础知识的基础上,注重对数学思想方法的考查,注重对数学能力的考查‖,灵活运用数形结合的思想方法,可以有效提升思维品质和数学技能.3.―对数学思想方法的考查是对数学知识在更高层次的抽象和概括的考查,考查时要与数学知识相结合‖,用好数形结合的思想方法,需要在平时学习时注意理解概念的几何意义和图形的数量表示,为用好数形结合思想打下坚实的知识基础.4.函数的图像、方程的曲线、集合的文氏图或数轴表示等,是―以形示数‖,而解析几何的方程、斜率、距离公式,向量的坐标表示则是―以数助形‖,还有导数更是数形结合的产物,这些都为我们提供了―数形结合‖的知识平台.5.在数学学习和解题过程中,要善于运用数形结合的方法来寻求解题途径,制定解题方案,养成数形结合的习惯,解题先想图,以图助解题.用好数形结合的方法,能起到事半功倍的效果,―数形结合千般好,数形分离万事休‖.二、典例分析例1.(07全国II) 在某项测量中,测量结果服从正态分布.若在内取值的概率为0.4,则在内取值的概率为.解:在某项测量中,测量结果服从正态分布N(1,2)(>0),正态分布图象的对称轴为x=1,在(0,1)内取值的概率为0.4,可知,随机变量ξ在(1,2)内取值的概率与在(0,1)内取值的概率相同,也为0.4,这样随机变量ξ在(0,2)内取值的概率为0.8.例2.(2007湖南)函数的图象和函数的图象的交点个数是()A.4B.3C.2D.1解:由图像易知交点共有3个.选B.例3.A. 1个B. 2个C. 3个D. 1个或2个或3个解:出两个函数图象,易知两图象只有两个交点,故方程有2个实根,选(B).例4.曲线y=1+(-2≤x≤2)与直线y=r(x-2)+4有两个交点时,实数r的取值范围___________.解析:方程y=1+的曲线为半圆,y=r(x-2)+4为过(2,4)的直线.答案:(]例5.分析:.例6.求函数的最大值.解:由定义知1-x2≥0且2+x≠0,∴-1≤x≤1,故可设x=cosθ,θ∈[0,π],则有可看作是动点M(cosθ,sinθ)(θ∈[0,π])与定点A(-2,0)连线的斜率,而动点M的轨迹方程,θ∈[0,π],即x2+y2=1(y∈[0,1])是半圆.设切线为AT,T为切点,|OT|=1,|OA|=2.≤.∴,∴0≤kAM即函数的值域为[0,],故最大值为.点评:(1)有些代数式经变形后具备特定的几何意义,此时可考虑运用数形结合求解,如:比值——可考虑与斜率联系;根式——可考虑与距离联系;二元一次式——可考虑与直线的截距相联系.(2)本题也可如下转化:令Y=,X=2+x,则(X+2)2+Y2=1(Y≥0),求的最大值,即求半圆(X-1)2+Y2=1(Y≥0)上的点与原点连线斜率的最大值,易知.变式1解法一(代数法):,....解法二(几何法):........变式2分析:转化出一元二次函数求最值;倘若对式子平方处理,将会把问题复杂化,因此该题用常规解法显得比较困难,考虑到式中有两个根号,故可采用两步换元.解:.第一象限的部分(包括端点)有公共点,(如图).相切于第一象限时,u取最大值....例7.已知A(1,1)为椭圆=1内一点,F1为椭圆左焦点,P为椭圆上一动点.则|PF1|+|PA|的最大值为__________,最小值为_____________。

数形结合思想在解题中的应用

数形结合思想在解题中的应用

数形结合思想在解题中的应用2012年秋季学期,广西将进入高中新课程改革,新课程理念逐渐深入人心;学习新理念,转变旧观念正成为高中教师重要的课题.数学课程改革的重心是发展学生的广泛的数学能力,注重数学思想、方法的教学渗透,培养学生形成良好的数学素质.数形结合是高中数学中重要的思想方法,通过数形结合可沟通数与形的内在联系,把代数语言的精确刻画与几何图形的直观描述有机地结合起来,使复杂问题简单化,抽象问题具体化,能使高中数学中许多复杂问题迎刃而解,收到事半功倍的效果.【例1】解不等式x+2>x.解法一:原不等式可化为x≥0x+2≥0x+2≥x2或x<0x+2≥0,解得0≤x<2或-2≤x<0,∴原不等式的解集为{x|-2≤x<2}.解法二:设y1=x+2,y2=x,在同一坐标系中作出这两个函数的图象(如图1),则不等式x+2>x的解就是y1=x+2的图象在y2=x的上方的那一段对应的横坐标,即不等式的解集为{x|xa≤x<xb},其中xa=-2,解方程x+2=x得xb=2.∴原不等式的解集为{x|-2≤x<2}.评析:比较上述两种解法,可以看到用图形直观地反映数量关系,解决问题简洁明了.【例2】设f(x)=x2-2ax+2-a,当x∈[-1,+∞]时,f(x)>a恒成立,求实数a的取值范围.解法一:f(x)>a在x∈[-1,+∞)上恒成立等价于x2-2ax+2-a >0在x∈[-1,+∞)上恒成立.设函数g(x)=x2-2ax+2-a,其图象在x∈[-1,+∞)时位于x轴上方有两种情况(如图2、图3所示).(1)δ=4a2-4(2-a)<0,解得-2<a<1;(2)δ=4a2-(2-a)≥0a<-1g(-1)=a+3>0,解得-3<a≤-2.故实数a的取值范围是(-3,1).解法二:由f(x)>a得x2+2>a(2x+1),设h(x)=x2+2,t(x)=a(2x+1),在同一坐标系中这两个函数的图象如图4所示,直线l1与抛物线相切,的对应值为1,直线l2经过点(- 12,0) 和点(-1,3),a的对应值为-3,符合题意的直线t(x)=a(2x+1)恒过点(-12,0)且位于l1与l2之间,故实数a的取值范围是(-3,1).图5【例3】已知:椭圆x29+y24=1 与抛物线y=x2+m有四个不同的交点,求实数m的取值范围.错解:在同一坐标系中作出椭圆和抛物线的图象(如图5),根据图象可得:m<-2-m<3,解得-9<m<-2.评析:图形的直观性给解决问题提供了很大的帮助,但离开了严格的数学推理,往往受图形直观错觉的影响得出错误的结论.图6正解:联立椭圆和抛物线的方程,得x29+y24 =1y=x2+m ,消去y,整理得9x4+(18m+4)x2+9m2-36=0,令t=x2,得9t2+(18m+4)t+9m2-36=0.设f(t)=9t2+(18m+4)t+9m2-36,根据题意知方程f(t)=0在(0,+∞)上有两个不相等的实数根(如图6),即得δ=(18m+4)2-36(9m2-36)>0,-18m+418 >0,f(0)=9m2-36>0解得-829<m<-2 .评析:这是一个关于图形交点的问题,求解过程却是从分析方程的根的情况入手,而在讨论方程f(t)=0在(0,+∞)上有两个不相等的实数根时,又需要利用二次函数的图象特征,这样数和形的密切结合、相互补充,使问题得到了圆满的解决.(责任编辑黄春香)。

49.数形结合思想在解题中的应用(王景超)

49.数形结合思想在解题中的应用(王景超)

解析: 已 知 可 联 想 到 长 方 体 的 对 角 线 与 过 同 一 由
点的三条棱所成的角 的关 系. , , a ( 7可 以看做是长方 3
体 的一 条对 角 线 与 过 这 条 对 角 线 一 端 的 三 条 棱 所 成 的 角 . 样 通 过 构 造 长 方 体 模 型 , 使 问题 迎 刃 而解 . 这 可 构 造 如 图 5所 示 的 长 方 体 ABC - B, , D A, , C D,
求得 y 。 一万 +- 二6 ; . 一6 y 、 十棍 图3 r 已知点( , ) 二 , 满足的一 平面区域 , 罕 。 十b 的 最值 问 求 牛 . y
霎 嘿 毕1 } l l 赢 潜似 ; ! ) } ff! v , 甲' , 是 就 塑
设 艺 DAC “a 匕 B , , A, , , , , AC =召 乙 AC =y AD=a AB , =b A =( 连结 D , , C , , A, 一 C , C , ,易知 csa c s3 csy . B A, o ' ot ot + ( + =1
_丫' ,_ 。 丫 ' b+。 _ a +扩 t ana
譬鳗
N =何的关键是要能够把 “ 气‘ 有机结合起来 , 形 数‘ _ 实现 形中有 J‘
戮 瞥
成功是寻海人经过长途跋 涉后 看到 大海时的那份欣喜 。 — 贵州盘县第二 中学高三(o 班 l) 陈 刚
中 举 生 数 理 化
解 析 : F( ) ( ). ( ) 由 已知 得 F( ) 征 : 设 二 -f 二 g 二 , 二特 0 二 是 奇 函 数 ; 1F( ) ② 当 二 时 , x >0所 以 二 时 , ( ) <0 尸< ) , <。 F 二 为增 函数 ; ③ ( ) f 一3 g 一3 二0 F 一3 = ( )・ ( ) 二F( ) 3. 根 据 FC ) x 的性 质 大 致 画 出 F( ) 图 象 , 图 4 观 察 二 的 如 . 一3U 3 故选 D ( ) 0 ・ 知 不 等 式 F( ) O的 解 集 是 ( xG 一二 , ) , ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈数形结合思想在解题中的应用一、数形结合思想的提出在高中数学解析几何这一模块中, 处理问题的方法常见有代数法和几何法。

代数法是从 “数”的角度解决问题、几何法从“形”的角度解决问题,这两种方法相辅相成, 相得益彰。

现举例如下:若直线 y = x • k 与曲线x - - y 2恰有一个公共点,求 k 的取值范围. 解:(代数法)曲线方程可化为x 2 • y 2 =1(x _ 0),把y = x • k 代入x 2 • y 2二1(x _ 0) 可得:Zx 2 +2kx+k 2 -1 = 0( xZ0),由题意可知方程仅有一个非负根①当方程有等根时,即厶=(2k)2 -8(k 2 -1)=0,可得k =「丿2,当k =衣2时,方程可化 为2x 2 ^2x ^0,得x = 不合题意;当k - - 2时,方程为2x 2 - 2、、2x • 1 = 0 得x -符合题意,可知k = -羔2 ;2②当方程根为x = 0时,得k 2 -1 =0,k = 一1,当k 二-1时,方程为2x 2 -2x = 0,得方 程两个根为& = 0,X 2 = 1不合题意应舍去;当k = 1时,方程为2x 2 2^ 0,得方程两 个根为捲=0, X 2 = -1适合题意,可知k= 1 ;综上所述:所求 k 的取值范围为k =或-1 ::: k 乞1。

(几何法)曲线x = ..1 - y 2是单位圆x 2 y 2 =1的右半圆(x - 0), k 是直线^x k 在y 轴上的截距.在同一坐标系中画出两曲线图像如 图所示知:直线与曲线相切时,k 「2, 由图形:可得k = —V2或 一1 : k 乞1。

上述两种解法可以看出利用代数法求解过程较为复杂、繁琐且容易错;而利用几何法即 一种数形结合的思想方法,却能使复杂问题简单化,抽象问题具体化,它在数学解题中具有 极为独特的指导作用。

二、数形结合思想的概述数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石。

在解决数学 问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察, 揭示 其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式 巧妙地结合起来,并充分利用这种“结合” ,寻找解题思路,使问题得到解决的方法称之为③当方程根为一正一负时,只需NX 2 k 2 -1 2:::0,可得-V k 1。

数形结合的思想方法。

数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。

在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。

三、数形结合思想解题方法指导1转换数与形的三条途径:①通过坐标系的建立,引入数量化静为动,以动求解。

②转化,通过分析数与式的结构特点,把问题转化到另一个角度来考虑,如将转化为勾股定理或平面上两点间的距离等。

③构造,比如构造一个几何图形,构造一个函数,构造一个图表等。

2 •运用数形结合思想解题的三种类型及思维方法:①“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。

②“由数化形”:就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。

③“数形转换”:就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。

四、数形结合思想方法的应用1化静为动用图像例1已知:有向线段PQ的起点P与终点Q坐标分别为(-1,1) , (2,2),若直线l : x m^ m = 0与有向线段PQ延长线相交,求实数m的取值范围。

分析:题中直线l: x my m = 0是一条过定点的动直线系,而有向线段PQ是一条定的有向线段,要使直线I与有向线段PQ延长线相交,可先找到I过一个临界点Q,再从运动观点促使直线I的斜率在某一范围内,从而可求实数m的取值范围。

1解:直线I的方程I : x my 0可化为点斜式:y • 1 (x- 0),易知直线I过定m1点M (0,-1)且斜率为,因为I与PQ的延长线相交,由数形结合可得:当过M且与PQm1 平行时,直线的斜率趋近于最小;当过点M,Q时,直线I的斜率趋近于最大,又kp Q二33kMQ = 2,设直线l的斜率为k,由k pQ::: k ::: k“Q1 13 2得所以_ 3 ::: m ■■-—3 m2 3评注:含有一个变量的直线方程可化为点斜式或化为经过两直线交点的直线系方程•本题是1化为点斜式方程后,可看出交点M(0,-1)和斜率,此类题目一般结合图形化静为动,m以动求解,可判断出斜率的取值范围。

2、破解疑难构图像sin x + 2例2求函数y 的值域。

cosx - 2分析:本题可以把函数化为关于x的三角函数,然后利用其有界性求值域,但其运算量大,对学生的运算能力有较高要求,有一定难度。

此题可看成过两点M( cosx,si nx),P(2,-2)构成直线的斜率的范围,又M ( cosx,sinx)在一个单位圆上,故可构造图像求此函数值域。

解:y二sinx 2的形式类似于斜率公式k = y2―y iCOSX-2 血-X i•••函数值域为[二7,土二]3 3评注:本题考查了三角函数值域与直线斜率之间的内在联系,考查学生的数形结合的能力。

在解决三角函数的有关问题时,若把三角函数的性质、化简的形式通过构造思想融于函数的图象之中,将数(量)与图形结合起来进行分析、研究,使抽象复杂的数量关系通过几何图形直观地表现出来,这是解决三角函数问题的一种思维策略。

3、寻求正解配图像例 3 设A={X| -2 乞x^a},B={y| y = 2x 3,x A},c={z| z = x2,x A},若C B,求实数a的取值范围。

p分析:解决本题的关键是依靠二次函数在区间上的值域求法确定集合 C,进而用不等式将C - B 这一集合语言加以转化。

解:••• y =2x 3在[-2, a ]上是增函数,••• B={y|乞 y 乞 2a • 3}。

① 当一2乞a < 0时,如图1, a 2乞z 乞4,即{ z| a 2空z 乞4 }o1要使C B ,必须且只需2a • 3 _ 4,解得a ,与-2乞a 乞0矛盾。

2② 当0 :::a 乞2时,如图2, 0乞z 乞4,即{ z| 0乞z 空4}."2a + 3Z41 要使C 5 B ,必须且只需 ,解得 a 乞2。

QEa 兰2 2③ 当 a - 2时,如图 3, 0 — z — a 2,即{ z| 0 - z — a 2}。

a 2兰2勺+ 3 要使C B ,必须且只需 ,解得2 ::: a 乞3。

12④ 当 a ::: -2 时,A=〔r ,此时 B =C =_ , C 二 B 成立。

— —1综上所述,a 的取值范围是(-::,-2)一.[ ,3]。

评注:解决集合问题首先要看清元素究竟是什么, 然后再把集合语言“翻译”为数学语言, 进而分析条件与结论的特点,再将其转化为图形语言,利用数形结合的思想来解决。

对于二次函数在闭区间上的最值问题,应抓住对称轴与所给区间的相对位置关系, 借助图象的直观形象,达到解决问题的目的。

4、观其意义想图像例4已知复数z 满足z-2-2i ,求z 的模的最大值、最小值。

分析:由复数z 满足z-2-2i = J2,可知有明显的几何意义,即复数z 在以(2,2)为圆心, 作出函数z ^x 2的图象,其定义域右端点 x = a 有三种不同的位置关系:以,2为半径的圆上,通过数形结合,进而可求 z 的模的最大值、最小值。

评注:二元一次不等式组与二元函数的对应实质上是简单线性规划问题, 利用可行域可以求 目标函数的最值,属于典型的数形结合的案例。

值得注意的是,目标函数对应的直线与边界 直线斜率的大小关系用于确定最优解的正确位置应仔细观察各直线的倾斜程度,准确判定可 行域内的最优解。

总之,数形结合思想是数学中基本而又重要的思想, 是解答数学试题的的一种常用方法与技巧,特别是在解决选择、填空题是发挥着奇特功效。

数学家华罗庚曾指出:“数缺形时 少直观,形少数时难入微;数形结合百般好,隔裂分家万事非。

”可见数形结合的思想可以 使某些抽象的数学问题直观化、 生动化,能够变抽象思维为形象思维,有助于把握数学问题 的本质。

在高考复习时, 同学们必须随时注意运用数形结合思想,复习中要以熟练技能、方法为目标,加强这方面的训练,以提高解题能力和速度。

解:由条件可知复数z 有明显的几何意义,它表示复数z 对应的点到复数2 2i 对应的点之 间的距离,因此满足z-2-2i = J2的复数z 对应的点Z ,应在以(2,2)为圆心,以为 半径的圆上,如图所示:而 z 表示复数z 对应的点Z 到原点0的距离,显然,当点 Z 、圆 心C 、点0三点共线时,z 取得最值,此时図斷「2, |z|ma x = 3、、2,评注:本题还可以令 z = a bi ,利用代数思想求解模的最值。

但是 利用复数的几何意义,借助图形利用数形结合是解决复数最值问题最有 效的途径,它将代数问题转化为几何问题,求解直观、形象,优化了解 题过程。

5、结论模糊画图像x_1,一 I ' 例5 (08年高考湖南卷理3改编)已知变量x 、y 满足条件 X-y^O, x 2y _9 _ 0,求x y 的最大值.分析:本题实质是线性规划问题,运用图像画平面区域,再求线性目标函数的最值。

解:如图所示,可行域为图中阴影部分(包括边界线) ,贝U z=x • y 在A 点处取得最大值,f x - v = 0由《 y 得A (3, 3),故最大值为3+ 3=6.x 2y-9=0。

相关文档
最新文档